diff --git a/docs/build/doctrees/environment.pickle b/docs/build/doctrees/environment.pickle index 1817002b..ec4aebb7 100644 Binary files a/docs/build/doctrees/environment.pickle and b/docs/build/doctrees/environment.pickle differ diff --git a/docs/build/doctrees/generated/plotting_prelude.doctree b/docs/build/doctrees/generated/plotting_prelude.doctree index adabf760..dc64359e 100644 Binary files a/docs/build/doctrees/generated/plotting_prelude.doctree and b/docs/build/doctrees/generated/plotting_prelude.doctree differ diff --git a/docs/build/html/_downloads/004048c0cbb6684bdb9047282ab71735/aaanalysis-plot_settings-2.pdf b/docs/build/html/_downloads/004048c0cbb6684bdb9047282ab71735/aaanalysis-plot_settings-2.pdf index a5dbc4be..1264f6b1 100644 Binary files a/docs/build/html/_downloads/004048c0cbb6684bdb9047282ab71735/aaanalysis-plot_settings-2.pdf and b/docs/build/html/_downloads/004048c0cbb6684bdb9047282ab71735/aaanalysis-plot_settings-2.pdf differ diff --git a/docs/build/html/_downloads/163aacac4bd235c9af7a62d7b4d0c89f/aaanalysis-plot_get_cdict-1.pdf b/docs/build/html/_downloads/163aacac4bd235c9af7a62d7b4d0c89f/aaanalysis-plot_get_cdict-1.pdf index c6af0d22..ab469cec 100644 Binary files a/docs/build/html/_downloads/163aacac4bd235c9af7a62d7b4d0c89f/aaanalysis-plot_get_cdict-1.pdf and b/docs/build/html/_downloads/163aacac4bd235c9af7a62d7b4d0c89f/aaanalysis-plot_get_cdict-1.pdf differ diff --git a/docs/build/html/_downloads/1f3abea1675a65bb341756c52c9927f4/aaanalysis-plot_gcfs-1.pdf b/docs/build/html/_downloads/1f3abea1675a65bb341756c52c9927f4/aaanalysis-plot_gcfs-1.pdf index ee43478c..4b625827 100644 Binary files a/docs/build/html/_downloads/1f3abea1675a65bb341756c52c9927f4/aaanalysis-plot_gcfs-1.pdf and b/docs/build/html/_downloads/1f3abea1675a65bb341756c52c9927f4/aaanalysis-plot_gcfs-1.pdf differ diff --git a/docs/build/html/_downloads/35bc22b1e83749ed4d42c9955ce176d6/aaanalysis-plot_set_legend-1.pdf b/docs/build/html/_downloads/35bc22b1e83749ed4d42c9955ce176d6/aaanalysis-plot_set_legend-1.pdf index f70e3856..15d72945 100644 Binary files a/docs/build/html/_downloads/35bc22b1e83749ed4d42c9955ce176d6/aaanalysis-plot_set_legend-1.pdf and b/docs/build/html/_downloads/35bc22b1e83749ed4d42c9955ce176d6/aaanalysis-plot_set_legend-1.pdf differ diff --git a/docs/build/html/_downloads/795a736e5af756908120c8bda412fd28/aaanalysis-plot_get_cmap-1.pdf b/docs/build/html/_downloads/795a736e5af756908120c8bda412fd28/aaanalysis-plot_get_cmap-1.pdf index 206520db..9180eca5 100644 Binary files a/docs/build/html/_downloads/795a736e5af756908120c8bda412fd28/aaanalysis-plot_get_cmap-1.pdf and b/docs/build/html/_downloads/795a736e5af756908120c8bda412fd28/aaanalysis-plot_get_cmap-1.pdf differ diff --git a/docs/build/html/_downloads/88d7f3f7cb5a284c0bfaa377fb4ce1d8/aaanalysis-plot_get_clist-1.pdf b/docs/build/html/_downloads/88d7f3f7cb5a284c0bfaa377fb4ce1d8/aaanalysis-plot_get_clist-1.pdf index 325d3db6..86006338 100644 Binary files a/docs/build/html/_downloads/88d7f3f7cb5a284c0bfaa377fb4ce1d8/aaanalysis-plot_get_clist-1.pdf and b/docs/build/html/_downloads/88d7f3f7cb5a284c0bfaa377fb4ce1d8/aaanalysis-plot_get_clist-1.pdf differ diff --git a/docs/build/html/_downloads/fb29bffb69140db4f68c4eb913c6f7d3/aaanalysis-plot_settings-1.pdf b/docs/build/html/_downloads/fb29bffb69140db4f68c4eb913c6f7d3/aaanalysis-plot_settings-1.pdf index 7289239e..0b7cecc9 100644 Binary files a/docs/build/html/_downloads/fb29bffb69140db4f68c4eb913c6f7d3/aaanalysis-plot_settings-1.pdf and b/docs/build/html/_downloads/fb29bffb69140db4f68c4eb913c6f7d3/aaanalysis-plot_settings-1.pdf differ diff --git a/docs/build/html/_images/output_3_0.png b/docs/build/html/_images/output_3_0.png index c7e6818d..c2d9b5b8 100644 Binary files a/docs/build/html/_images/output_3_0.png and b/docs/build/html/_images/output_3_0.png differ diff --git a/docs/build/html/_sources/generated/plotting_prelude.rst.txt b/docs/build/html/_sources/generated/plotting_prelude.rst.txt index b49efd12..cb1f8de4 100644 --- a/docs/build/html/_sources/generated/plotting_prelude.rst.txt +++ b/docs/build/html/_sources/generated/plotting_prelude.rst.txt @@ -89,3 +89,4 @@ Retrieve the set font size and create an independent legend like this: .. image:: output_9_0.png + diff --git a/docs/build/plot_directive/generated/aaanalysis-plot_gcfs-1.pdf b/docs/build/plot_directive/generated/aaanalysis-plot_gcfs-1.pdf index ee43478c..4b625827 100644 Binary files a/docs/build/plot_directive/generated/aaanalysis-plot_gcfs-1.pdf and b/docs/build/plot_directive/generated/aaanalysis-plot_gcfs-1.pdf differ diff --git a/docs/build/plot_directive/generated/aaanalysis-plot_get_cdict-1.pdf b/docs/build/plot_directive/generated/aaanalysis-plot_get_cdict-1.pdf index c6af0d22..ab469cec 100644 Binary files a/docs/build/plot_directive/generated/aaanalysis-plot_get_cdict-1.pdf and b/docs/build/plot_directive/generated/aaanalysis-plot_get_cdict-1.pdf differ diff --git a/docs/build/plot_directive/generated/aaanalysis-plot_get_clist-1.pdf b/docs/build/plot_directive/generated/aaanalysis-plot_get_clist-1.pdf index 325d3db6..86006338 100644 Binary files a/docs/build/plot_directive/generated/aaanalysis-plot_get_clist-1.pdf and b/docs/build/plot_directive/generated/aaanalysis-plot_get_clist-1.pdf differ diff --git a/docs/build/plot_directive/generated/aaanalysis-plot_get_cmap-1.pdf b/docs/build/plot_directive/generated/aaanalysis-plot_get_cmap-1.pdf index 206520db..9180eca5 100644 Binary files a/docs/build/plot_directive/generated/aaanalysis-plot_get_cmap-1.pdf and b/docs/build/plot_directive/generated/aaanalysis-plot_get_cmap-1.pdf differ diff --git a/docs/build/plot_directive/generated/aaanalysis-plot_set_legend-1.pdf b/docs/build/plot_directive/generated/aaanalysis-plot_set_legend-1.pdf index f70e3856..15d72945 100644 Binary files a/docs/build/plot_directive/generated/aaanalysis-plot_set_legend-1.pdf and b/docs/build/plot_directive/generated/aaanalysis-plot_set_legend-1.pdf differ diff --git a/docs/build/plot_directive/generated/aaanalysis-plot_settings-1.pdf b/docs/build/plot_directive/generated/aaanalysis-plot_settings-1.pdf index 7289239e..0b7cecc9 100644 Binary files a/docs/build/plot_directive/generated/aaanalysis-plot_settings-1.pdf and b/docs/build/plot_directive/generated/aaanalysis-plot_settings-1.pdf differ diff --git a/docs/build/plot_directive/generated/aaanalysis-plot_settings-2.pdf b/docs/build/plot_directive/generated/aaanalysis-plot_settings-2.pdf index a5dbc4be..1264f6b1 100644 Binary files a/docs/build/plot_directive/generated/aaanalysis-plot_settings-2.pdf and b/docs/build/plot_directive/generated/aaanalysis-plot_settings-2.pdf differ diff --git a/docs/source/generated/output_3_0.png b/docs/source/generated/output_3_0.png index c7e6818d..c2d9b5b8 100644 Binary files a/docs/source/generated/output_3_0.png and b/docs/source/generated/output_3_0.png differ diff --git a/docs/source/generated/plotting_prelude.rst b/docs/source/generated/plotting_prelude.rst index b49efd12..cb1f8de4 100644 --- a/docs/source/generated/plotting_prelude.rst +++ b/docs/source/generated/plotting_prelude.rst @@ -89,3 +89,4 @@ Retrieve the set font size and create an independent legend like this: .. image:: output_9_0.png + diff --git a/tutorials/plotting_prelude.ipynb b/tutorials/plotting_prelude.ipynb index 39991be0..05cdba68 100644 --- a/tutorials/plotting_prelude.ipynb +++ b/tutorials/plotting_prelude.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 24, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", @@ -28,8 +28,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2023-09-26T13:48:46.563345506Z", - "start_time": "2023-09-26T13:48:46.522557058Z" + "end_time": "2023-09-26T14:01:24.734714440Z", + "start_time": "2023-09-26T14:01:24.722687825Z" } }, "id": "2673a6d600050969" @@ -46,12 +46,12 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 25, "outputs": [ { "data": { "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAG+CAYAAABCjQqZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzq0lEQVR4nO3deXgUVd728bsh6YRsLIFAAAWULRhliSwiEBAYVEQNCrKDKyhmVFSUkZFV5XHGdZSwiCIoEHwARQVFXFDHUZYoLkRBx6APhCUCAQJkIef9g5cyRRaykNMJfD/X1Zd1qs6p+nWngneqq097jDFGAAAAKHdVfF0AAADAuYLgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AVUMLm5uVq0aJFuvPFGNWnSRCEhIQoMDFRkZKR69eqlZ555Runp6b4uU5Lk8Xicx/z5831dToWRkpLiem0++eSTM7LfnJwczZgxQxdddJGCgoIUGhqqiy66SE8//fQZ2X9JFfd57t+/Xz///LPd4oAKiuAFVCD79u1T586dNXToUC1btkwpKSnKyMhQZmamdu3apQ8//FDjxo1Tq1attH79el+XC8vuvvtuTZgwQVu2bNHRo0d1+PBhbdmyRTt37vR1aQXKysrSM888owsvvFCff/65r8sBKgQ/XxcA4E833nijvvrqK6cdEhKipk2byuPxaNu2bTp8+LAkaefOnbrqqqv0448/qk6dOr4qFxbl5ORo4cKFTtvr9apt27ZKT09Xx44dfVhZwdLS0tSpUyf98ssvvi4FqFC44gVUEF988YU+/vhjp/3ggw9q9+7d+vrrr5WUlKTU1FQNGzbM2b5v3z698MILvigVPvDHH3/oyJEjTjshIUFffvmlkpOTNWDAAB9WVrADBw4QuoACELyACmLDhg2u9sMPP6ygoCCnHRISotmzZ7vW/fvf/7ZWH3zr2LFjrvYFF1zgo0oAlAXBC6ggcnNzXe0pU6bo6NGjrnVBQUH65JNP9MEHH+iDDz7Q448/XuC+3nzzTV155ZUKDw9XQECAGjZsqIEDB2rdunWFHv/333/XPffco1atWik4OFhVq1ZVWFiYWrdurYceekgHDhw47XP46aefdNNNN6l27doKCgrSJZdcoscffzzf88jr4MGDev7559WlSxfVq1fPqXfAgAF6//33CxwzefJk54buYcOGKSkpSZ06dVJAQIDCw8M1btw4SVL37t2dfi+99JKOHj2qKVOmKCoqStWqVVPdunU1ZMgQ/fDDD6d9bgVZsmSJYmNjVb16dYWGhqp79+5avXp1scZu3rxZw4YNU4MGDeT1elWnTh317t1br776qo4fP+7q6/F41LhxY9e6Hj16FLh+0aJF6tOnj+rWrSt/f38FBASoQYMGuuaaa/Tee+/lq2P+/PmuG+QLUtIPUYwaNUrNmjVzrbv55pvl8XjUvXv3044HzmoGQIWwfv16I8n1qFGjhhk+fLhZsGCB+e233067j5ycHDN8+PB8+8n7eOCBB/KN27Ztm6lXr16R4xo1amR2797tGpd3+/Dhw021atUKHNumTRuzd+/efMf98ssvTaNGjYo87sCBA01GRoZr3KRJk5ztnTp1MjVq1HCNef75540xxsTGxjrrnnjiCRMdHV3gMYKDg01SUlKxf1a5ublmxIgRhdZ8xx13uNoff/yxa3xCQoKpWrVqoeN79OhhDh48WODrXNDP5aT777+/yL6SzIwZM1y1vPLKK67tBcm7/ZVXXnHW//rrrwU+z5EjRxZ6/NjY2GK/zsDZiOAFVCDXXnttkf/TbNmypXnkkUdMSkpKgeMnTpzo6l+7dm3Tvn17Ex4e7lo/e/Zs17guXbo42zwej7nkkktMhw4dTPXq1V3jHn30Ude4gmqMjIw0bdq0MV6v17X+uuuuc4397bffTK1atVx9IiIiTNu2bfMFuP79+7vG5g1eJx8NGzY0rVu3Nv7+/k5AzBu8AgICjCQTHh5uOnbsaMLCwoqsryjPPvusa6zH4zHNmjUzzZs3Nx6PJ19teYPXmjVrXH2CgoJMTExMvgA6ePBgZ0xsbKzp2LGja3vr1q1NbGysuemmm4wxxqxduzbfz/6yyy4zLVq0cK0PDAw0R44ccfZdHsHriSeeMB06dHBta9GihYmNjTX33HNPsV9n4GxE8AIqkIMHD5pevXqd9qqF1+s1Tz75pGvsnj17TGBgoNPnzjvvNJmZmcYYY44ePeq6CtGgQQOTnZ1tjDFm586dJjo62vj7+xuPx2M++OADZ58ZGRmmefPmzri4uDjXMU+t69lnn3W2paSkmNatW7u2f/fdd872AQMGOOurVKniCoP79+83/fr1c41dsWKFs/3U4HXdddeZnJwcY4xxXRnMG7wkmbvuusscO3bMGGNMWlqaufDCC51t9erVK9bP6Pjx46Z+/frOuJCQENdr9vHHH+e7Apc3eMXExDjrO3XqZPbs2eNsS0hIcI3bsmWLs62wkHPS1KlTTZ06dYwk07NnT+d5GmPMSy+95Bq7efNmZ1t5BC9jTlxFLWwccC4jeAEVTG5urnnzzTfNVVddZfz9/YsMYP/617+ccfPnz3fWV61a1XVVwxhjUlNTXWO//PJL1/bMzEyzdetW17p9+/aZnj17OmN69uzp2p53f3/5y1/yPZevvvrK1efpp582xhize/du4+fn56y/44478o09cOCAiYiIcPpcc801zrZTg9f69esLfC3zBq/IyEiTlZXl2j558mRnu7+/f4H7ONW3337rOvaUKVPy9ZkxY0aBgSQlJcW1fs2aNfnG5r1ClfdtwdMFr5N27drlels3NzfXvP32266xn332mbOd4AXYxc31QAXj8Xh03XXXadWqVdq3b5/eeecdjRs3TtHR0fn6Tpo0yblx/bvvvnPWHz9+XEFBQa6boiMjI11jv/nmG1fb6/Xq+PHjmjNnjm677Ta1bt1atWvX1ocffuj0ycnJKbTu2NjYfOvat2+v4OBgp31yeoHNmze79hUXF5dvbPXq1dWjRw+nXdiEsVWqVFHbtm0Lreuktm3byt/f37WuXr16znJ2dvZp9yEp3wzsBd0snrfuvPL+jCTpL3/5i+tn5PF49NNPPznbT/0ZFUdoaKg2bNigv//977r66qtVu3Zt9evXz9WnqJ8jgPLFBKpABZKdna29e/c6n84LCQlR37591bdvX0nS119/raFDhyo5OVnSibm81q9fr9jY2BJ/jdAff/zhLG/cuFF33nmnNm7c6OrTtGlTZWZm6vfffz/t/sLDw/Ot83g8qlmzpjIyMiTJ+W/eY0tSgwYNCtxn3vWFfaqyevXq8vM7/T9lNWvWzLcuICDgtONOlXcuLUmqW7dusY4lqUw/o9PJycnRxIkT9eKLLzoT7UpScHCwOnbs6JqYtyjGGNenG4sbSAEUD8ELqACys7PVsGFD7d27V8YYjRgxQq+++mq+fm3bttX06dN1ww03OOt27dolSa75vYKCgrRjx44ijxkYGChJ+u2339SrVy8nFNx0000aOXKkOnXqpJo1a2rEiBGuGdMLc7KOU+UNG9WrV5fkvtIkSTt27NDFF1+cb+z//d//Ocu1atUqcP95n3dRihPOiiM0NNTV3rdvX74+qampBY49tdYPP/xQ7dq1K/RYJal5/PjxeuaZZyRJkZGRevjhh3XFFVeoVatWSklJ0YUXXlis/WRnZ8vr9TrtvCEOQNnxViNQAfj7++v888+XMUaStHLlSu3evbvAvnnDiCTVr19fktSqVStn3ZEjR/T777+rRo0azmPPnj1KSEjQunXrtHfvXud/rq+++qoTjlq1aqUlS5boqquucq7aFBYiTvX222/nW/f111/r0KFDTvtkjVFRUapataqzfsWKFfnGpqenu2byv+yyywo87pkKVMUVFRXlahf0xdB5357NK+/PSJJ++OEH188oODhYzz33nFavXq3t27cX+7llZ2crISHBaT/33HP661//qujoaFWpUqXIn2G1atVc7f3797vaZ+rLrU+e28C5juAFVBA333yzs3zgwAHFxcVp69atrj6rV6/Wo48+6rTr1q2r9u3bS5KuueYaV5i5/fbbnfCWlZWl++67T3/72990/fXXq02bNs7bWHmD3O+//65t27ZJOjGh65w5c4p9j9emTZs0efJkZyLYnTt36vbbb3e2V61aVVdeeaVTd58+fZxt8+bN05w5c1zPf8SIEdq7d6+zbsyYMYUe26ZmzZqpZcuWTnvGjBn64osvnPZHH32kp59+usCxLVq0UIsWLZz21KlTXW/vPvnkk5o8ebKGDBmiNm3aFBrgTpWWluaa2f7jjz92gs5vv/2m+++/39U/78/x1O/6fPPNN53lY8eOaeLEicWq4VR5r5qdrFHKP1EwcM7x6a39ABxZWVmmXbt2rk+CVa1a1Vx44YWmY8eOJjIyMt+nGufMmePax1133eXaXq1aNRMTE2Pq1q3rWj9+/HhnzPPPP+/aFhgYaNq3b1/g8S655BLX8U6tVf//04OXXnqpa2oLSeb22293jd2yZYsJCQlx9albt65p165dvnm8RowY4Rqb91ONeScQPVXeTzWOHDky3/bifKKvIEuWLHGNOzn3WYsWLZw5uvJOkJr3035Lly51ja1SpYq56KKLTLNmzVzrO3bs6DpmUZ8gzMnJcaaSOPlo3LixadeuXYGfjF2+fLkz9tChQ84cZ5KMn5+f6d+/v7n11lvNeeed59R4cntxP9V4+PBh17iAgAATExNjunTpUuzXGTgbEbyACmT37t3m8ssvz/c/ylMf/v7+5rHHHss3/tixY/nmvzr1ccMNNzhzeBlz4n+QUVFRhfbPO7FnSEiIa0qGvP1efPHFQmeu7969e77Z5405MedVw4YNi6x31KhRznxkJ/k6eBljzIQJEwqtefLkyaZBgwYFBhJjjJk+fXqBE62efLRo0cKkpqa6xpxuOol58+YVur/g4GDXJLpPPPGEa+wTTzxR5OvfuXPnEgcvY4zp3r17vv3VqVOnRK8zcLYheAEVzPHjx83y5cvNwIEDzQUXXGCCg4ONv7+/qVu3rrn00kvNQw89ZJKTk4vcR2Jiounbt6+pW7eu8ff3N2FhYaZr165m3rx55vjx4/n6//HHHyY+Pt6cf/75xs/Pz4SGhpqOHTuamTNn5ptz66233nLG5f0f6rZt28xPP/1khg4daiIiIkxgYKC55JJLzNNPP51v/qy8Dhw4YJ599lnTtWtXExERYbxer6lfv74ZOHCg+fDDDwscUxGClzHGvPPOO+aKK64woaGhJjQ01PTs2dOsWrXKGGOKDF7GnPiKqBEjRphGjRqZwMBAU61aNXPxxRebSZMmmfT09Hz9izOP18qVK023bt2cc+a8884zI0aMMD/++KO55557nLFt27bNN3bx4sXmsssuMyEhIaZ69eqmR48eZunSpcYY4/pjoCTBa+fOnWbIkCEmPDzceL1e07BhQzNo0CCTm5tb/BcZOMt4jOGORwAAABu4uR4AAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYUumC19ChQxUTE6OhQ4f6uhQAAIASsfvtsmfAjz/+qKSkJF+XAQAAUGKV7ooXAABAZUXwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABY4ufrAgAAKKnL/3W5r0vAWeLf8f+2ejyueAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYQvACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlhC8AAAALClz8MrMzFSbNm3k8Xjk8XiUkpLi2p6bm6tZs2YpJiZGwcHBCgsLU2xsrFasWFHWQwMAAFQqZQ5eEyZM0ObNmwvdfuutt+rOO+9UUlKSjhw5okOHDunTTz9V//799T//8z9lPTwAAEClUabgtWbNGj377LOFbl+xYoXmz58vSfJ6vRo1apT69+/vbJ84caK+++67spQAAABQaZQ6eKWlpWnUqFEyxhTa51//+pezPGPGDL3yyitatmyZRo0aJUnKycnRrFmzSlsCAABApVLq4HXrrbcqNTVVfn5+qlatWr7tR44c0bp165z24MGDneWRI0c6y6tWrSptCQAAAJVKqYLXrFmztHLlSkkn3i6MiIjI12fLli3Kzc2VJIWGhqpevXrOthYtWjjL27dv1+HDh0tTBgAAQKVS4uD1448/aty4cZKkyy67TBMnTiyw344dO5zlWrVqubbVrFnTWTbGaNeuXSUtAwAAoNLxK0nnrKwsDRkyREePHlVISIgWLlyoqlWrFtg3IyPDWQ4ICHBt83q9rvahQ4cKPebs2bM1Z84cp52cnFySkgEAACqMEgWvv/3tb/r6668lSc8995wuvPDCcikqr9TUVCUlJZX7cQAAAMpbsYPX2rVr9fTTT0uS4uLidMsttxTZPzg42FnOyspybcvMzHS1Q0NDC91PZGSk2rVr57STk5N19OjR4pYNAABQYRT7Hq/XX3/dmTpixYoVzkz1Ho9H27dvd/o1adJEHo9HkZGRzrr9+/e79rVv3z5n2ePxuG68P9Xo0aO1adMm5xEVFVXckgEAACqUYgevoubrKkhgYKA8Ho8kKT09Xbt373a2bdu2zVlu3LixQkJCSrRvAACAyqjYbzX27du30CtTCQkJOnjwoCRpzJgxql69us477zx16NBBX331lSRp4cKFeuCBByRJixYtcsZeffXVpS4eAACgMil28BowYIAGDBhQ4LYlS5Y4weuhhx5S48aNJUljx451gtcjjzyiLVu26ODBg1q2bNmJg/v5acyYMWWpHwAAoNIo0acaS2r48OFas2aNXnvtNWVlZemVV15xbZ8+fbqio6PLswQAAIAKo0xfkl0cCxYs0Lx589S+fXsFBQUpJCREXbp00bJly/TQQw+V9+EBAAAqjDNyxSslJaXQbR6PR7fccstpp58AAAA425X7FS8AAACcQPACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlhC8AAAALCF4AQAAWELwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYQvACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlhC8AAAALCF4AQAAWELwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYQvACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlhC8AAAALCF4AQAAWELwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCkVMHLGKMFCxaoe/fuqlmzpgIDA9W8eXONHz9ef/zxR4Fjli5dqi5duigsLEwhISHq0KGD5s2bJ2NMmZ4AAABAZeFX0gHGGN1000164403XOu3bdumf/zjH1q6dKnWrVunRo0aOdumTJmiyZMnu/pv2LBBGzZs0MaNG5WQkFC66gEAACqREl/xSkxMdEKXn5+fBg0apNtvv12hoaGSpO3bt2v06NFO/40bN2rq1KmSJI/Ho4EDB2r48OHy8zuR+WbNmqXVq1eX+YkAAABUdCUOXvPnz3eW58yZo8WLF2vOnDl6/fXXnfVr1qxRRkaGJGnmzJnKzc2VJMXHxysxMVELFizQxIkTnf4vvPBCaesHAACoNEocvBYuXKjPPvtML7/8sgYNGuSsj4iI+HOnVarI399fklxXswYPHuwsjxw50lleu3atsrOzS1oKAABApVLie7zq1KmjOnXqqEuXLpKkzMxMffvtt7r77rudPoMHD5bX61VaWpp27drlrG/evLmz3KhRIwUEBCgzM1NZWVnaunWrLrroorI8FwAAgAqtzNNJXH755erQoYM2btwoSerXr59mzZolSdqxY4fTz+PxqEaNGoW2U1NTy1oKAABAhVbiK16nSklJcZarV6+uHj16ODfOn7zPS5L8/f1VpYo753m9Xmf50KFDBe5/9uzZmjNnjtNOTk4ua8kAAAA+UabglZWVpZ49e6p27dpatWqVUlJSNG7cOC1fvlwfffTRGSkwNTVVSUlJZ2RfAAAAvlSm4OX1epWYmChJOnjwoFq3bq2UlBR9/vnnmj17trp27er0zc7OljFGHo/HWZeZmeksn5yO4lSRkZFq166d005OTtbRo0fLUjYAAIBPnLGvDAoLC9OAAQOc9rp16xQZGem0jTFKT093tQ8cOOC069evX+B+R48erU2bNjmPqKioM1UyAACAVSUKXpmZmZo2bZruuOMOXXPNNTp27Jhre94pITIzMxUREaFatWo567Zu3eosb9++XVlZWZJOXDlr1qxZqZ4AAABAZVGi4BUQEKBZs2Zp7ty5evfddzV37lxnW1pampYsWeK0O3ToIEnq3bu3s27BggXO8qJFi5zl3r17O/N+AQAAnK1KfI9XfHy8JkyYIEm65557tHbtWtWvX19vvfWWM2dXeHi4xowZI0kaO3ascx/YzJkzlZaWJq/Xq8WLF7v2CQAAcLYrcfB64IEHtGnTJv3v//6vjDFauXKla3utWrW0cuVK1a5dW5LUtWtXPfLII3rsscdkjHFC2EljxoxRnz59yvAUAAAAKocS31zv5+enpUuXauHCherWrZvCwsLk9Xp1wQUXKD4+Xt9++606d+7sGjN9+nQtX75c3bp1U0hIiIKCghQTE6O5c+dq5syZZ+zJAAAAVGSlmk7C4/Fo2LBhGjZsWLHHxMXFKS4urjSHAwAAOCucsekkAAAAUDSCFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYQvACAACwhOAFAABgiZ+vCwBQPn6berGvS8BZ4vxHv/N1CcBZgyteAAAAlhC8AAAALCF4AQAAWELwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYQvACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlhC8AAAALCF4AQAAWELwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEv8fF2Ar8U8uMDXJeAssOkfI3xdAgCgEuCKFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYQvACAACwhOAFAABgCcELAADAklIFr9zcXM2fP189evRQzZo15fV61aBBAw0aNEgbN24scMzSpUvVpUsXhYWFKSQkRB06dNC8efNkjCnTEwAAAKgs/Eo6IDs7W9dff71WrVrlWr9z504lJiZq2bJlevnllzV8+HBn25QpUzR58mRX/w0bNmjDhg3auHGjEhISSlc9AABAJVLiK17PPfecE7qqVKmi/v3766677lLjxo0lSTk5Obrjjjv022+/SZI2btyoqVOnSpI8Ho8GDhyo4cOHy8/vROabNWuWVq9efSaeCwAAQIVW4uD10ksvOcv//Oc/tWzZMr344ovavHmzIiMjJUnHjh3T0qVLJUkzZ85Ubm6uJCk+Pl6JiYlasGCBJk6c6OznhRdeKNOTAAAAqAxKFLyOHTumKlWqKCwsTJJ03XXXOdvCwsJ0+eWXO+3ff/9dklxXswYPHuwsjxw50lleu3atsrOzS1g6AABA5VKi4BUYGKgtW7YoPT1dGRkZatKkiWv7r7/+6izXqVNHaWlp2rVrl7OuefPmznKjRo0UEBAgScrKytLWrVtL9QQAAAAqi1JPJxEUFCSPx+O0V69erU2bNjntPn36aMeOHU7b4/GoRo0ahbZTU1NLWwoAAEClUOJPNRZk/fr1GjRokNPu1auX2rdvry+++MJZ5+/vrypV3DnP6/U6y4cOHSpw37Nnz9acOXOcdnJy8pkoGQAAwLoyB69PPvlE1157rROcatSooblz55a5sJNSU1OVlJR0xvYHAADgK2UKXitXrtTAgQOVmZkpSQoODtbbb7/tTC0RHBzs9M3OzpYxxvX25MlxkhQaGlrgMSIjI9WuXTunnZycrKNHj5albAAAAJ8o9T1eb7zxhm644QYnPNWoUUMffPCBunTp4vQ5Ob2EJBljlJ6e7mofOHDAadevX7/A44wePVqbNm1yHlFRUaUtGQAAwKdKFbxWr16tIUOGKCcnR9KJ0PTZZ5/psssuc/WLiIhQrVq1nHbeTy5u375dWVlZkk7c69WsWbPSlAIAAFBplDh4/fe//9WgQYOc0BUREaFPP/1U0dHRBfbv3bu3s7xgwQJnedGiRa4+/v7+JS0FAACgUinxPV7jx4/XwYMHnXZUVFSBN9N36tRJ119/vcaOHavExERJJ2axT0tLk9fr1eLFi52+8fHxpakdAACgUilR8Nq+fbtWrFjhWrdu3TqtW7cuX9/Ro0fr+uuvV9euXfXII4/osccekzHGCWEnjRkzRn369ClF6QAAAJVLid5qXLdunfO9iyUxffp0LV++XN26dVNISIiCgoIUExOjuXPnaubMmSXeHwAAQGVUoiteI0aM0IgRI0p1oLi4OMXFxZVqLAAAwNmg1NNJAAAAoGQIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYQvACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlhC8AAAALCF4AQAAWELwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYQvACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlhC8AAAALCF4AQAAWELwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYQvACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlpQ5eBljFBMTI4/HI4/HU2i/pUuXqkuXLgoLC1NISIg6dOigefPmyRhT1hIAAAAqBb+y7uDJJ59UUlJSkX2mTJmiyZMnu9Zt2LBBGzZs0MaNG5WQkFDWMgAAACq8Ul/xOn78uCZNmqSHH364yH4bN27U1KlTJUkej0cDBw7U8OHD5ed3IvPNmjVLq1evLm0ZAAAAlUapgteaNWvUqVMnJ1AVZebMmcrNzZUkxcfHKzExUQsWLNDEiROdPi+88EJpygAAAKhUShy8Nm/erD59+mjjxo2SpNatWxfZP+/VrMGDBzvLI0eOdJbXrl2r7OzskpYCAABQqZQ4eJ28GT4gIEDTp0/X8uXLC+2blpamXbt2Oe3mzZs7y40aNVJAQIAkKSsrS1u3bi1pKQAAAJVKiYNXSEiIJk2apO3bt+uRRx5RlSqF72LHjh3OssfjUY0aNQptp6amlrQUAACASqXEn2ps2rRpvk8oFiYjI8NZ9vf3zxfSvF6vs3zo0KEC9zF79mzNmTPHaScnJ5egWgAAgIqjzNNJlLfU1NTTTlcBAABQGZRr8AoODnaWs7OzZYxxTbKamZnpLIeGhha4j8jISLVr185pJycn6+jRo+VQLQAAQPkq168MioyMdJaNMUpPT3e1Dxw44LTr169f4D5Gjx6tTZs2OY+oqKhyqxcAAKA8lWvwioiIUK1atZx23k8ubt++XVlZWZJO3OvVrFmz8iwFAADA58r9S7J79+7tLC9YsMBZXrRokauPv79/eZcCAADgU+V+c/3YsWOVmJgo6cQs9mlpafJ6vVq8eLHTJz4+vrzLAAAA8Llyv+LVtWtXPfLII5JO3NeVmJiohQsXKicnR5I0ZswY9enTp7zLAAAA8LlyD16SnBnuu3XrppCQEAUFBSkmJkZz587VzJkzbZQAAADgc2V+q7Fx48bO1wgVJS4uTnFxcWU9HAAAQKVl5YoXAAAACF4AAADWELwAAAAsIXgBAABYQvACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlhC8AAAALCF4AQAAWELwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYQvACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlhC8AAAALCF4AQAAWELwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEsIXgAAAJYQvAAAACwheAEAAFhC8AIAALCE4AUAAGAJwQsAAMASghcAAIAlBC8AAABLCF4AAACWELwAAAAsIXgBAABYQvACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlhC8AAAALCF4AQAAWELwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCUELwAAAEsIXgAAAJZYC15JSUmKi4tT7dq1FRgYqObNm2vixIk6fPiwrRIAAAB8ys/GQdasWaN+/fopKyvLWbdt2zY99thjeu+997Ru3ToFBwfbKAUAAMBnyv2K1+HDh3XzzTc7oatLly4aO3aswsPDJUmbNm3S1KlTy7sMAAAAnyv34LV8+XLt3LlTktS2bVt98skneuGFF7Rs2TKnz9y5c11XwwAAAM5G5R68Vq9e7SwPHDhQVatWlSTFxsaqUaNGkqT9+/frP//5T3mXAgAA4FPlHry+++47Z7l58+aubS1atHCWv//++/IuBQAAwKfKPXjt2LHDWa5Vq5ZrW82aNZ3l1NTU8i4FAADAp8r9U40ZGRnOckBAgGub1+t1lg8dOlTg+NmzZ2vOnDlOe/PmzZKk5ORkxcTElLm+5B1/lHkfQMxHz/m6hHyyUn/2dQk4S3jfKvu/tWfaT3t+8nUJOEvEzD9z53fLli31+uuvF9nHynQSZZGamqqkpKR8648ePVrgesAXknZv93UJQPlJ5d9anL2S/s/u+V3uwSs4OFgHDhyQpHyfXMzMzHSWQ0NDCxwfGRmpdu3aOe3vv/9exhiFhISoSZMmZ75gAACAUmjZsuVp+5R78IqMjHSC1/79+13b9u3b5yzXr1+/wPGjR4/W6NGjy60+AAAAW8r95vqoqChneevWra5t27Ztc5ajo6PLuxQAAACfKvfg1bt3b2f59ddf1/HjxyVJX3zxhbZvP3FfTK1atdSpU6fyLgUAAMCnyj143XTTTapdu7Yk6dtvv1X37t11991369prr3X63HHHHa5POJ6rjh8/rtdee03XX3+9GjZsqMDAQFWvXl2tW7fW/fffr//+978FjmvcuLE8Ho88Ho8++eQTu0WXo8zMTNWpU8d5brVr13bdF4jKg3NbGjVqlPNcTn34+fkpJCREF1xwgYYPH64ffvjB1+WiBDi/3dLT0/Xkk08qNjZWdevWldfrVe3atdWtWzf94x//UHp6uq9L9C1jwbvvvmu8Xq+RlO8RExNjMjIybJRRoW3dutVER0cX+BqdfAQEBJgXX3wx39hGjRo5fT7++GP7xZeTRYsW5XsNFixY4OuyUEKc2yeMHDmyyNcg76NatWqV/vmeKzi/3d555x1Tq1atIl+PyMhI89lnn/m6VJ+xMp3E1VdfrQ0bNmjatGn65JNPdPDgQZ1//vkaOHCgJkyYoKCgIBtlVFgpKSnq3Lmz0tLSJJ2Y7+zKK69UkyZN9Pvvv+vdd9/VsWPHlJmZqbFjx6pOnToaMGCAj6suf3nnbzspISFBw4cP90E1KA3O7YJFR0erb9++kiRjjHJycrRr1y6tXLlShw8f1tGjR3XLLbfo559/VpUq5f7GBEqJ89tt5cqViouLU25uriSpTp06uvLKK1WzZk19//33+uijjySdmCaqX79+Wr9+vZo1a+bLkn3D18kPxnTp0sX5S6BFixbm559/dm3fvn27adq0qdPnvPPOM9nZ2c72s/Gvpq1btzrPKSQkxPj7+zvtb775xtfloZg4t/+U94rXyJEjC+zz6aefuq4MfPvtt3aLRIlwfv8pLS3NVK9e3Xk+119/vTl06JCrz9q1a021atWcPoMGDfJRtb7Fn1I+9umnn+rzzz932kuWLNGFF17o6nP++efr5ZdfliQ1bdpUV1xxhXbv3l2s/e/Zs0f33XefWrZsqaCgIPn5+Sk8PFzdu3dXYmJivv65ubl66aWX1L17d4WHhzv3nkRHR2v8+PH644/8M/1nZmbqqaeeUqdOnVSjRg35+fkpLCxMMTExmj59uo4cOVKSl0SS+2rXoEGDdN111znthISEEu8P9nFul1znzp3l8Xic9skPI6Hi4fx2e/HFF517txo0aKDXX39dISEhrj49e/bUhAkT5Ofnp5iYGDVo0EDGmGIf46zh6+R3rrv//vud9N++ffsi++7Zs6fA9YX91bR3717TsmXLIt9rnzZtmmtfQ4cOLbJ/q1atXHXk5OSY2NjYIsd069bNHDlypNivSWZmpqlTp44z/j//+Y9Zs2aN6wrYwYMHi70/+Abntltxrni98847Tp+IiAhz7NixYu0b9nF+u8XExDjjHnzwwUL7ZWRkmMOHDxdrn2crgpeP5T3xR48eXap9FPbL+8ADD7j+Eb/zzjvN3XffbS655BJnffXq1U1ubq4xxpj169c7671er7nhhhvMfffdZ4YNG2aCg4OdbfHx8c4xli5d6gpEQ4YMMePGjTM33nij6+3Bp556qtjPZ8mSJc646OhoY4wxubm5pkmTJs76gm5URcXCue2WN3hFR0ebhx56yHmMGzfO9O/f37XfRYsWleo1gx2c33/KyckxVatWdcYsXry4VK/HuaLCf1fj2W7v3r3Ocnh4+Bndd9OmTTV06FD98MMPWrJkiVq0aCHpxPdc1qlTRxkZGUpPT9cff/yh2rVr65dffnHGDhgwQK+99prT/vjjj/XUU08pKipKl156qbM+75h77rlH06dPd9qLFi3SG2+8oaioKNdEuqeT923GW2+9VZLk8Xh06623auLEiZJOvN141113FXufsI9zu3Dff/+9vv/++0K3P/rooxo8eHCJ9wt7OL//tG/fPtfb4mf69Tjr+Dr5netatGjh/JXw8MMPl2ofxb1B8/Dhw2bdunVm0qRJJigoyBmzfft2Y4wxP/74o/F4PM76zp07m8mTJ5sPPvgg302SJ+V9C7Bq1aqmV69eZsaMGebTTz8t1dsk27Ztc2oICAgwaWlpzrYdO3YYPz8/53jn8seRKwPObbeSTCchyVx11VWF1gbf4/z+U2pqquvcfe+990o0/lxD8PKxzp07OyfrbbfdVqp9FPXL+80335j4+Hhz8cUXmypVqhT4D/yvv/7q9H/66addl4xPPvz8/ExsbKxZuHChOX78uOsY9913X4H7DQgIMFdffbV5++23i/1cxo8f74wPDQ01PXv2dD3yXjYfMmRIqV4v2MG57VbUPV6ZmZkmNTXVvP7666ZmzZplfgsL5Y/z+0+ZmZmu8a+99lqpXo9zBcHLx+68807nZG3btm2h/TIyMkzXrl3NtGnTzHfffefaVtgv7+zZs51f2ICAAHPVVVeZadOmmffff9/Ur1+/wF9eY05cdfr73/9uYmJiCvyFHzx4cL76vv76a3P//febiy66qMBf5AkTJpz2tcjKyjIRERHFviLg9XoLvWkVvse57Vacm+uNMeaFF15w/Q8wJyenWPuHXZzfblFRUc6Y++67r9B+n3/+uenTp49JSEgwO3fuLNa+zzYELx979913XSf5119/XWC/efPmufolJSU52wr65T1w4IBzSdrr9Zpt27a59hceHl7oL+/hw4dNenq6McaY9PR0s2bNmnx/GZ06l9aBAwecbyBIS0szb7/9thkxYoTT3+PxmP379xf5WuS92bO4jxkzZpzmFYavcG67FTd45f1koySza9eu0+4b9nF+uz344IPOmPr16xf6jTTDhw93+oWHh7vmNTtXELx8LDc317Rp08Y5EVu2bJnvl2nTpk2uiek6dOjg2l7QL++XX37prKtWrZrZt2+f0/+tt95y/SL+8ssvxhhjJk+ebBo1amQ8Ho+Ji4tzPjFjjDHHjh0zoaGhzpiVK1caY4y54447TGRkpJFk7r33XlddO3bscB3ndJNB9urVy+n717/+tdB+eX/BmzRpku/yOSoGzm234gavUaNGOf1CQ0M5vysozm+Tb0zeyVH79++fb9qIl156ybXfoqadOJsRvCqALVu2mLCwMNcv2w033GDuvfde07dvX9f79gEBAWb9+vWu8QX98qakpLhO8KZNm5r4+Hhz9dVX57sE/f333xtjjFm9erVrfUxMjImPjzdjxowxzZs3d9Vw8q/whIQE15jY2Fhz7733mttuu800aNDAWR8REWEyMzMLfQ1++eUX182hn3/+eaF9v/nmG9cxV61aVcafAMoL5/afippOYvz48SY+Pt506NDBdcyxY8ee2R8IzijOb7fXXnvNtc+6deuam2++2dx9992mY8eOrm1NmjQp1pW0sxHBq4L45ptvzAUXXOA6MU99hIWFmXfeeSff2MLuExgyZEih+6pRo0a+v4CMMWbatGlF1lClShUzb948p39ubq65/fbbixwTGBh42k+5PPzww07/hg0buv5iK0je+xH69etXzFcZvnCun9snlfRTjRdffLE5cOBA6V94WMH57bZ48WITEhJS5H5btGiR7y3UcwnBqwLJzMw0s2bNMr179zYRERHGz8/PhIWFmUsvvdQ8+uijhd7rUdgvb1ZWlvnnP/9poqOjTbVq1UxYWJjp0qWLSUxMNHPmzHHG3Hzzza79vf/++6Z///6mQYMGxt/f3wQEBJgmTZqY4cOHmw0bNuQ7fm5urklMTDRXXXWVU3dgYKBp3ry5GT16tPnpp5+KfN5ZWVmmXr16Tj2nXvYuyOOPP+76B+Xkx6pRMZ2r53ZeRQUvj8dj/P39TfXq1c2ll15qpk6dyrczVCKc32579uwxkyZNMu3btzc1atQwfn5+pnbt2qZnz54mISHhnP9GBo8x5+IXJQEAANjHl2QDAABYQvACAACwhOAFAABgCcELAADAEoIXAACAJQQvAAAASwheAAAAlhC8AAAALCF4AQAAWELwAgAAsITgBQAAYAnBCwAAwBKCFwAAgCX/D7Tp6CsNh42IAAAAAElFTkSuQmCC" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAG+CAYAAABCjQqZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2pklEQVR4nO3de3hNV+L/8c+RnCAhQoQS49qitKgxlLrTaVNUhrQonaG+MvSufBXtdFpmvnoZpW7Vm2mr7upSxN001C16GSIlGBOtS0kbkUjEOUnO7w+/7GZLQiKycvF+PU+fZ+291957nVjqk7XXXsfh8Xg8AgAAQJErV9wNAAAAuFUQvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGeBd3AwDYZWZmat26ddq8ebMOHjyo8+fPKz09XVWqVNHtt9+url27qn///qpcuXJxN1VNmjSxylOmTFG/fv2KsTUlx8mTJ9WjRw9r+9NPP1W7du0Kfd309HTNmzdPq1ev1smTJ1WuXDnVrl1bYWFhGjZsWKGvX1D5/ZwXLlxQYmKi6tWrZ7J5QIlE8AJKkMTERIWHh2v//v05jsXHxys+Pl67d+/WRx99pNmzZ6tFixbF0EoUl0mTJmnJkiW2fceOHdO5c+eKqUXX5nK5tHDhQs2ZM0fjx48neAEieAElyrPPPmsLXb6+vqpXr54cDofi4uKUmpoqSTp37pxGjBih9evXq1q1asXVXBiUnp6uL774wtp2Op1q1qyZkpOTS2QAT0hI0IABA/TDDz8Ud1OAEoXgBZQQ3377rfbu3WttDx8+XM8884wqVqwoSUpJSdGrr75q/eObmJiozz77TM8++2yxtBdmJSYm6tKlS9b2q6++qrCwsGJs0bUlJycTuoBcMLkeKCGio6Nt2+Hh4VbokiQ/Pz9NmjTJtu/bb7811j4Ur8uXL9u2f/Ob3xRTSwAUBiNeQAnh8Xhs27NmzdLYsWNVoUIFa1/FihX16aef6uLFi5KkSpUq5XqtLVu2aNGiRTp48KBSUlJUrVo13XPPPRo8eLDatm2b6zlnzpzRRx99pF27dun06dO6fPmyKlasqDp16qhTp07685//LH9//2t+huPHj2vGjBnavXu30tLSVLduXfXq1UtDhw61fY7sLl68qBUrVmj9+vX64YcfdOHCBVWrVk2tWrXSI488ok6dOuU4Z+bMmZo1a5YkqU+fPho2bJhee+01ff/99/Lz81NoaKgmTJigxx9/XFFRUZKkv/3tb+rTp48+/PBDrVu3TqdOnVKlSpXUvn17jRw5Unfcccc1P1tu1q1bp0WLFunQoUPKzMzUXXfdpf/5n/9Ro0aNrnvu4cOH9eGHH2rv3r06f/68KlWqpDvvvFMPP/ywHn74YXl5eVl1s7/EkOWPf/yjJCk4OFjbtm2z9q9Zs0arVq3SoUOHdOHCBTkcDlWtWlXNmjXT4MGD1blzZ9t1VqxYoQkTJljbsbGxOe5V0Jcoxo8fr5UrV9r2TZgwQRMmTFDbtm01f/78a54PlGUEL6CEaN26tW17/vz5Wr16tbp166YOHTqoXbt2qlWr1jXn82RkZGjChAlavXq1bf/Zs2e1YcMGbdiwQU888YRefPFF2/ETJ05o8ODBio+Pt+1PSUlRbGysYmNjtX79ei1btkyBgYG53nvPnj167bXXlJaWZu07cuSIjhw5og0bNmjevHk55qPt379fo0eP1qlTp3K0d+PGjdq4caNCQkI0ZcoU20hfdj/++KOGDh2qpKQkSVceydWpUydHvfPnz+uRRx7RkSNHrH2XL1/W2rVrtW3bNi1YsEDNmjXL9R5X83g8Gj9+vFatWmXbHxUVpaioKA0YMOCa5y9atEiTJ09WRkaGrX27du3Srl27tHLlSs2ZMyfPYJ2XN954Q/Pmzcux/9y5czp37py+/PJLjRkzRuHh4QW6LoCbh0eNQAnRokULde/e3bYvKSlJq1ev1osvvqiuXbsqJCRE06ZNyxFUssycOdMWuqpWraq7775bAQEB1r558+bleDNuwoQJVuhyOBxq0qSJWrRoYVuy4tSpU1qwYEGe7V+9erXS0tIUFBSkO++8U06n0zp26NAhvfzyy7b6Z86cUXh4uO2zBAYGqlmzZrbRsfXr12vcuHF53vff//63kpKSdNttt6lp06ZyOp166KGHctSbOXOmjhw5ooCAALVs2dIWalJTU60RtPz49NNPbaHL4XCofv36ql+/vhwOR46fb3Y7d+7Ua6+9ZoWuihUrqnnz5goODrbq7N27V3/961+t7bZt26ply5a26zRt2tS2f/fu3bbQVbVqVd1zzz1q0KCB7bxZs2bZwnFRaNiwYY5fEBo0aKC2bduqadOmRXpvoKQjeAElyFtvvaUOHTrkefz48eOaO3euHnjgAX344Ye2YwkJCbZ/eAcNGqTt27dr+fLl2r59u/7whz9Yx2bPnq309HRJV0ZDkpOT5XQ65XA4NG/ePH3xxRdatmyZduzYofr161vnZR8tys3EiRP11VdfadWqVdq4caPtH9mtW7fazn/99deVmJgoSSpXrpwmTZpkjfbs2LFD3bp1s+pu2rRJW7ZsyfO+PXr00LZt27R69Wpt3rw511E5l8ulxx57TDt27NDSpUu1ZcsW1a1b1zp+4MCBa362LJmZmbafva+vr+bNm2eN0H3yySfXfCQ7depU67Fyq1attG3bNq1YsULbtm3Tq6++atVbu3at/vOf/0i6Mvr59ttv264zceJEzZ8/X9OmTZN0Zb5f1ohi+/bttX37di1evFgbNmzQ3/72N+u8y5cvKy4uLl+f9UaFh4frH//4R4598+fP10svvVSk9wZKOoIXUIJUqlRJ8+bN0+zZs9W5c2fbqFF2brdbb731lj777DNrX2RkpDUB28vLS+PHj5ePj48kqXz58hozZoxV9+zZs4qJiZEk1ahRQ2vWrNG3336rDRs22IKfy+VSrVq1rO2suWW56dixo/70pz9Z28HBwZo8ebKtzq5duyRJv/zyiy1IPfLII7bHc/7+/nrrrbdsAWr58uV53nvkyJHWnKjs7c0uKChIEydOtH4mVatWVd++fa3jWSHweo4ePWpbN2v48OG2n1m7du00YsSIXM89deqU9XOXriwfkv3x66BBg2wjVFu3bs1XmyTpqaee0u7du7Vz5069/fbb1uf0eDyqXr26re61/hwBFC3meAEljMPhUM+ePdWzZ0+lpKRo37592rNnj3bu3JljxGnmzJkKCwtThQoVbMcyMjJyPJq62qFDh2x1fHx8lJGRoSVLlujAgQOKjo7W0aNHlZmZabtuXn73u9/l2Hf33XfL19fXWn8sa3mBw4cPWyNuktSzZ88c51auXFnt2rVTRESEpLxHpMqVK5evuVnNmjXLEWSzBxK3233da0jKsURCbiu133vvvbmee/Wf3xNPPHHNex0+fDhfbcrOz89PUVFR+u677xQTE6MDBw7kCJXX+nMEULQIXkAJ4na7lZCQIB8fH1WtWlV+fn7q2rWrunbtKkn6/vvvNXbsWOsRVGJiog4cOKC2bdsqOTm5QPfK/o9xdHS0Xn31VR08eNBWp169enK5XDpz5sx1r5d9HlkWh8Mhf39/K3hlrUN1dRCoWbNmrtfMvj9r8vzVKleuLG/v6/+vLLfHf1mjQgWRfS0tSbk+1szrUWNh/oyuJz09XdOnT9eCBQusn7d05VFoy5Ytc/02hNx4PB45HA5rO7+BFED+ELyAEsDtdqtLly5KSEiQx+NRaGio3njjjRz1mjVrpueff17PPPOMte/nn3+WpBzLTmzfvv2a9yxfvrwk6fTp0xo2bJgVCh566CGFhoaqVatWqlKlisaNG5fjLcncZLXjatnDRtaE9qsffZ09ezbXJRN++uknq5xbsJOU5zIVV8tPOMsPPz8/2/aFCxdy1Ln67dAsV7+Z+fHHH6t58+Z53iv7khLX89Zbb+njjz+WdOWxanh4uO69917dfvvtOnXqVK6jirlxu922QJo9xAEoPOZ4ASWA0+lUrVq1rEnX27ZtyzPIZA8j0pU5WpJ0++23W/suXbqkM2fOyN/f3/rvl19+0aJFixQVFaWEhATrsdvKlSutcHT77bdr2rRp6tKli6pUqSIp7xBxtexrSWX5/vvvlZKSYm1ntbFRo0a2UJHbxPnk5GTbSv6tWrXK9b43K1Dl19VrdGWtE5bd7t2783XusWPHbH9GWeu0bd++XadPn873Z3O73Vq0aJG1/dJLL+mPf/yjGjdurHLlyl3zuxyvDq5XjyyeOHEiX224nqvXqQNuVQQvoITIvihlUlKSnn76af33v/+11YmMjNSMGTOs7erVq+vuu++WJHXr1s0WZv7yl79Y4c3lcmnKlCl6++239dRTTyk0NNR6jHX27FnrnDNnzlhvvGVmZmrJkiW2EJF9XtbVYmJiNHPmTGtO2NmzZ21LSHh5eVmLoVavXl0dO3a0ji1fvty2BENSUpLGjRunhIQEa9/AgQPzvLdJ9evXV8OGDa3t999/3/YNArt379Y///nPXM9t2LChbfL87Nmzbd9Y8OGHH2rmzJkaM2aM+vbtm2eAu9r58+dtK9vv3bvXCjqnT5/OMXqafY5X1apVbceyh+DLly/rnXfeyVcbrnb1fLrz589Lkm3OIHAr4lEjUEI8+uij+vzzz6233r777jv16tVLwcHBqlq1qk6fPp1j9Om5556zHhnWrFlTAwYM0MKFCyVdWZy0R48eatSokc6ePWsbQRs8eLD1Nl32FdtTUlL08MMPq3Hjxvrpp59yXVA1L15eXpo1a5aWLFmimjVr6ujRo7Yw0L9/f9WuXdvafvHFF7Vv3z6lpqYqIyNDr7zyimbMmKGaNWvqP//5j22tqdDQUFtQK27PPPOMRo8eLenKG4KPPfaYGjduLJfLpbi4OHk8Hnl5eeU6if25557T888/L+lKGHn00UfVqFEjud1u2zIPLVu2tOb2XU9gYKCqVatmBdVFixZp+/btCggI0JEjR3LM08r+59iiRQv5+PjI5XJJkiZPnqydO3fK399fO3fu1JkzZ1SuXLkCB6aAgADbee+8844iIiJUoUIFq48CtyJGvIASwul06oMPPrCtYJ+RkaEffvhB+/fvt4Ugp9Op0aNH69FHH7VdY8KECbb1r9LS0hQTE2MLXQ888IAVGqQrgSj7I7DLly8rOjraul/2hT1//PHHPCdbv/TSS6pQoYLi4+N18OBBW+hq27atJk6caKvfqFEjzZ07V7fddpu17+eff1ZMTIwtdPXr1y/HshTF7aGHHtKf//xna9vj8Sg2Nlb//e9/5fF49Mwzz+SYx5YlJCREzz//vDWBPTMzU0ePHrWFrgYNGmj27Nn5bo+Xl5dtuRDp16Ur3G63fH19bXPkso+k+vn52eYMpqena9OmTVq+fLnOnDmjfv36XfcN2dz4+vqqTZs21rbL5VJMTEyOUVzgVkPwAkqQwMBALViwQLNmzVJISIh+85vfyNfXV06nU9WrV9ddd92lESNGaPXq1Ro5cmSO8318fDR37lxNmzZNXbt2VfXq1eV0OlWpUiW1adNGf//73zV9+nTb3CFfX18tXLhQjz/+uGrXri1vb2/5+fmpZcuW+utf/6ply5ZZ9VNTU/OctN+xY0etWrVKffr0UWBgoMqXL68mTZpowoQJmjdvXq5f+dOuXTutXbtWEydOVJs2bRQYGCin06kaNWooJCREH3/8saZMmXJDbx8WtRdeeEHvvfee7r33Xvn5+cnPz0/t27fX+++/r6effvqa544aNUpLly5VaGiogoODVb58eVWoUEGNGzfW008/reXLlysoKKhA7QkLC9O7776r3/3ud1afqVWrlkJDQ/X555/r4YcftuquX7/edm54eLjefvtt3XPPPfL19bWW8pg+fbqmTJlie8uxIKZOnarevXsrICBATqdTt912m9q3b898L9zSHB7+BgAAABjBiBcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwhOAFAABgSKn9yiC3O0OJianF3QwAAAAFBVXOVz1GvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwhOAFAABgCMELAADAEIIXAACAIQQvAAAAQwheAAAAhngXdwMAACiIoKDKxd0ElDHx8cnG7sWIFwAAgCGMeAEASqVeH/ZSmjutuJuBUqqCs4LW/c864/cleAEASqU0d5rS0gleKF141AgAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwhOAFAABgCMELAADAEIIXAACAIQQvAAAAQwheAAAAhhC8AAAADCl08HK5XOrbt6+aNGmiJk2a6OTJk7bjmZmZWrRokfr166dWrVqpdevWGjJkiDZv3lzYWwMAAJQq3oW9wNSpU3X48OE8j7/00ktasWKFbd++ffu0b98+jRkzRuHh4YVtAgAAQKlQqBGvr776Sp988kmexzdv3myFLqfTqX79+un3v/+9dfydd95RbGxsYZoAAABQatxw8EpISND48ePl8XjyrDN//nyrPHbsWE2ZMkUzZ85Uv379JEnp6elavHjxjTYBAACgVLnh4PXSSy8pPj5e3t7eqlChQo7jly5d0r59+6ztXr16WeXQ0FCrHBkZeaNNAAAAKFVuKHgtWrRI27ZtkySNGjVKgYGBOeocO3ZMmZmZkiQ/Pz8FBQVZxxo0aGCVT58+rZSUlBtpBgAAQKlS4OD1n//8R6+//rok6Z577tGoUaNyrXf27FmrHBAQYDtWpUoVq+zxePTzzz8XtBkAAAClToHeanS5XBo7dqzS0tLk6+urN998U15eXrnWvXTpklV2Op22Y1dv38iIl9PppaCgygU+DwAAIDuTeaJAI17Tpk3T999/L+nKHK+6desWSaMAAADKonyPeO3atUv//Oc/JUn333+/wsLCrlm/YsWKVtntdtuOuVwu27afn19+m5HtmhlKTEwt8HkAgNKNpx242eLjkwt9jfz2y3wHrzVr1lhLR2zevFlNmjTJtV6PHj0kScuWLbP2JSUl2epcuHDBKjscDlWvXj2/zQAAACi18v2o8VrrdeXGx8dHDodDkpScnGybQB8XF2eVg4ODb2jECwAAoLTJ94hXly5d8hyZWrRokS5evChJGjhwoCpXrqxatWqpRYsW2r9/vyRp9erVGj58uCRp7dq1tusCAADcCvIdvEJCQhQSEpLrsYiICCt4jRgxQnXq1JEkPfbYY1bwmjZtmo4dO6aUlBRt3Ljxys29vTVw4MBCfQAAAIDSotBfkn0toaGh2rlzp7744gu53e4cX5b93HPPqXHjxkXZBAAAgBKjSIOXJL355ptq166dFi9erGPHjsnhcOjOO+/U0KFDbV+YDQAAUNbdlOCV9fVBuXE4HAoLC7vu8hMAAABl3Q1/STYAAAAKhuAFAABgCMELAADAEIIXAACAIQQvAAAAQwheAAAAhhC8AAAADCF4AQAAGELwAgAAMITgBQAAYAjBCwAAwBCCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwhOAFAABgCMELAADAEIIXAACAIQQvAAAAQwheAAAAhhC8AAAADCF4AQAAGELwAgAAMITgBQAAYAjBCwAAwBCCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwhOAFAABgCMELAADAEIIXAACAIQQvAAAAQwheAAAAhhC8AAAADCF4AQAAGELwAgAAMITgBQAAYAjBCwAAwBCCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADCE4AUAAGCI942c5PF4tHr1an3++ec6fPiw0tLSVLt2bfXo0UMjRoxQ1apVc5wTERGh+fPnKzY2Vh6PR40aNdKAAQMUFhYmh8NR6A8CAABQ0hU4eHk8Hj3//PPasGGDbX9cXJw++ugjbdiwQfPnz1dwcLB1bNasWZo5c6atfnR0tKKjo3Xw4EG99tprN9h8AACA0qPAjxojIiKs0OXt7a1evXrp0UcflZ+fnyTp1KlTeuWVV6z60dHRmj17tiTJ4XAoJCREffv2lbf3lcy3ePFiRUZGFvqDAAAAlHQFHvFasWKFVZ40aZL69+8vSerWrZtGjRolSdq5c6dSU1Pl6+urhQsXKjMzU5I0ZMgQvfzyy5KkunXrWqNgCxYsUJcuXQr3SQAAAEq4Agevt956S8ePH9eJEyfUq1cva39gYKBVLleunDWitWPHDmt/7969rXJoaKgVvHbt2iW32y2n01nwTwAAAFBKFDh4VatWTdWqVVObNm0kSS6XS4cPH9akSZOsOr169ZKPj48SEhIUHx9v7a9fv75VDg4Olo+Pj1wul9xut+Li4nTHHXcU4qMAAACUbDf0VmN2AwcOVExMjLXdrVs3a7L8uXPnrP0Oh0P+/v45tn/++WdJUnx8PMELAACUaYUOXqdOnbLKlStX1r333ms9ZkxNTf31Rt7eKlfOPpc/+6PFlJSUAt3X6fRSUFDlG2kyAACAxWSeKNQCqi6XS+3bt9djjz2m4OBgJScna8qUKRo6dKjcbvfNaiMAAECZUKgRLx8fH02fPl2SdPHiRT388MM6deqUvvnmGy1ZssSaByZJ6enp8ng8tsVSXS6XVc5ajiK/3O4MJSamXr8iAKBM4WkHbrb4+ORCXyO//fKmfWVQpUqV9OCDD1rbUVFRCgoKsrY9Ho+Sk5Nt20lJSdZ2jRo1blZTAAAASqQCjXi5XC598MEH+umnn3Tu3DnNmDFD5cuXt46np6fb6gYGBiogIECJiYmSrqxu36JFC0lX5oZlPY50Op2qV69eYT8LAABAiVagES8fHx8tXrxYS5cu1ZdffqmlS5daxxISEhQREWFtZwWsDh06WPtWrVplldeuXWuV77vvPtbwAgAAZV6B53g9/vjjmjp1qiTp73//u3bt2qUaNWpo69at1ppdAQEBGjhwoCRp8ODBViBbuHChzp8/L6fTqXXr1lnXHDJkSKE/CAAAQElX4OD1xBNP6ODBg9q4caM8Ho+2bdtmOx4QEKB3331X1apVkyS1adNGI0eO1Ny5c+XxeGyjYtKVdcA6depUiI8AAABQOhQ4eHl7e+udd97RF198oWXLlunQoUO6fPmybrvtNnXt2lUjRoxQzZo1beeMHj1ad911lz755BPFxMTI4/GoYcOGGjRokMLCwm7ahwEAACjJHB6Px1PcjbgRLCcBALemrNf2e7zbQ2npacXcGpRWFbwraOuorZJK6XISAAAAuDaCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwxLu4GwDg5gsKqlzcTUAZEx+fXNxNAMoERrwAAAAMYcQLKMNO/qOLPO5Lxd0MlFIOZ0XVGRtZ3M0AyhSCF1CGedyXCF4AUILwqBEAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwhOAFAABgCMELAADAEIIXAACAIQQvAAAAQwheAAAAhhC8AAAADCF4AQAAGELwAgAAMITgBQAAYAjBCwAAwBCCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAM8S7uBhSnoKDKxd0ElCHx8cnF3QQAQAnHiBcAAIAht/SIV5aery7VJVd6cTcDpVBFH29tefXR4m4GAKCUIHhJuuRKV5qb4AUAAIoWjxoBAAAMIXgBAAAYQvACAAAwhOAFAABgCMELAADAEIIXAACAIQQvAAAAQwheAAAAhhC8AAAADCF4AQAAGELwAgAAMITgBQAAYAjBCwAAwBCCFwAAgCHeN3JSZmamVq1apZUrV+rw4cO6dOmSqlatqjZt2uiJJ57Q3XffneOciIgIzZ8/X7GxsfJ4PGrUqJEGDBigsLAwORyOQn8QAACAkq7Awcvtduupp55SZGSkbf+5c+cUERGhTZs26e9//7tCQ0OtY7NmzdLMmTNt9aOjoxUdHa2DBw/qtddeu7HWAwAAlCIFftT46aefWqGrXLly+v3vf6/HHntMwcHBkqT09HS98sorOn36tKQrAWv27NmSJIfDoZCQEPXt21fe3lcy3+LFi3OEOAAAgLKowCNey5Yts8ovvviihg4dKkm6ePGiHnzwQcXHx+vy5ctav369hg8froULFyozM1OSNGTIEL388suSpLp161qjYAsWLFCXLl0K+1kAAABKtAKNeF2+fFnlypVTpUqVJEk9evSwjlWqVEmtW7e2ts+cOSNJ2rFjh7Wvd+/eVjn7o8hdu3bJ7XYXrOUAAAClTIFGvMqXL6+IiAhJ0qVLl1ShQgXb8ZMnT1rlatWqKSEhQfHx8da++vXrW+Xg4GD5+PjI5XLJ7XYrLi5Od9xxx418BgAAgFLhhpeTqFixou1txMjISMXExFjbHTt21Llz56xth8Mhf3//PLezBzQAAICy6IaWk7jagQMH9MILL1jbHTp0UIsWLfTtt9/+eiNvb5UrZ895TqfTKqekpBTonk6nl4KCKt9gi4Gbj/6Isoz+jbLMZP8u9AKqe/fu1dChQ3Xx4kVJkr+/vyZPnlzohgEAAJQ1hRrx2rp1q55//nm5XC5Jkq+vr959913VqVPH2s6Snp4uj8djezyZdZ4k+fn5FejebneGEhNTC9N8foPDTRUfn1zcTbDQt3Gz0b9Rlt2M/p3ffnnDI17r16/Xs88+a4Unf39/zZs3T23atMnWiCCr7PF4lJycbNtOSkqytmvUqHGjTQEAACgVbih4RUZGauzYsUpPT5d0JTQtWLBA99xzj61eYGCgAgICrO24uDirfOrUKWsJCafTqXr16t1IUwAAAEqNAgevH3/8US+88IIVugIDA7VgwQI1btw41/odOnSwyqtWrbLKa9eutcr33XefbaI9AABAWVTgOV5vvfWWNZFekho1aqSlS5fmqNeqVSv17NlTgwcPttb+Wrhwoc6fPy+n06l169ZZdYcMGXIjbQcAAChVChS8Tp06pc2bN9v2RUVFKSoqKkfdAQMGqGfPnmrTpo1GjhypuXPnyuPxWCEsy8CBA9WpU6cbaDoAAEDpUqDgtW/fPut7Fwti9OjRuuuuu/TJJ58oJiZGHo9HDRs21KBBgxQWFlbg6wEAAJRGBQpeoaGhtu9YLIj7779f999//w2dCwAAUBYUegFVAAAA5A/BCwAAwBCCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwhOAFAABgCMELAADAEIIXAACAIQQvAAAAQwheAAAAhhC8AAAADCF4AQAAGELwAgAAMITgBQAAYAjBCwAAwBCCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwhOAFAABgCMELAADAEIIXAACAIQQvAAAAQwheAAAAhhC8AAAADCF4AQAAGELwAgAAMITgBQAAYAjBCwAAwBCCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwhOAFAABgCMELAADAEO/CXsDj8ah///6KiYmRJMXGxuZaLyIiQvPnz1dsbKw8Ho8aNWqkAQMGKCwsTA6Ho7DNAAAAKPEKHbw++OADK3TlZdasWZo5c6ZtX3R0tKKjo3Xw4EG99tprhW0GAABAiXfDjxozMjI0Y8YMTZ069Zr1oqOjNXv2bEmSw+FQSEiI+vbtK2/vK5lv8eLFioyMvNFmAAAAlBo3NOL11Vdfadq0aTp48OB16y5cuFCZmZmSpCFDhujll1+WJNWtW9caBVuwYIG6dOlyI00BAAAoNQo84nX48GENHz7cCl1Nmza9Zv0dO3ZY5d69e1vl0NBQq7xr1y653e6CNgUAAKBUKXDw8ng8kiQfHx89//zzmjVrVp51ExISFB8fb23Xr1/fKgcHB8vHx0eS5Ha7FRcXV9CmAAAAlCoFDl6+vr56+umn9a9//UujRo265huJ586ds8oOh0P+/v55bmcPaAAAAGVRged41atXT88880y+6qampv56I29vlStnz3lOp9Mqp6SkFKgdTqeXgoIqF+gcoCjRH1GW0b9Rlpns3yygCgAAYEih1/G6Fl9fX6ucnp4uj8djezTpcrmssp+fX4Gu7XZnKDEx9foVr4Hf4HAzxccnF3cTLPRt3Gz0b5RlN6N/57dfFumIV1BQkFX2eDxKTk62bSclJVnbNWrUKMqmAAAAFLsiDV6BgYEKCAiwtrO/uXjq1ClrCQmn06l69eoVZVMAAACKXZHP8erQoYNVXrVqlVVeu3atVb7vvvtsE+0BAADKoiKd4yVJgwcPVkREhKQrq9ifP39eTqdT69ats+oMGTKkqJsBAABQ7Ip8xKtNmzYaOXKkpCvzuiIiIrR69Wqlp6dLkgYOHKhOnToVdTMAAACKXZGPeEnS6NGjddddd+mTTz5RTEyMPB6PGjZsqEGDBiksLMxEEwAAAIpdoYNXnTp1FBsbe916999/v+6///7C3g4AAKDUYgFVAAAAQwheAAAAhhC8AAAADCF4AQAAGELwAgAAMITgBQAAYAjBCwAAwBCCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwhOAFAABgCMELAADAEIIXAACAIQQvAAAAQwheAAAAhhC8AAAADCF4AQAAGELwAgAAMITgBQAAYAjBCwAAwBCCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGELwAAAAMIXgBAAAYQvACAAAwhOAFAABgCMELAADAEIIXAACAIQQvAAAAQwheAAAAhhC8AAAADCF4AQAAGELwAgAAMITgBQAAYAjBCwAAwBCCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADCE4AUAAGAIwQsAAMAQghcAAIAhBC8AAABDCF4AAACGeJu6UUxMjObMmaOvv/5aqampql27th588EGFh4fLz8/PVDMAAACKjZHg9dVXX2nkyJFyu93Wvri4OM2dO1c7duzQZ599Jl9fXxNNAQAAKDZF/qgxJSVFEyZMsELXb3/7Ww0ePFgBAQGSroyEzZ49u6ibAQAAUOyKPHht3rxZ586dkyQ1a9ZM8+fP1yuvvKKZM2dadZYtWyaXy1XUTQEAAChWRR68tm/fbpVDQkLk5eUlSWrbtq2Cg4MlSRcuXNC///3vom4KAABAsSry4HXkyBGrXL9+fduxBg0aWOWjR48WdVMAAACKVZFPrj979qxVrlKliu2Yv7+/Vc56HFkcKvoYe7kTZUxJ7zsOZ8XibgJKsZLefyo4KxR3E1CKFVf/KfJ/NS5dumSVfXx8bMecTqdVTklJKdB1nU4vBQVVLlzj/r8trz56U66DW9vN6o83U52xkcXdBJQRJbF/r/ufdcXdBJQRJvs3C6gCAAAYUuTBq2LFX4eqs6/jJcn2JiOLqAIAgLKuyINXUFCQVU5KSrIdu3DhglWuUaNGUTcFAACgWBV58GrUqJFV/u9//2s7duLECavcuHHjom4KAABAsSry4NWhQwervGbNGmVkZEiSvv32W506dUqSFBAQoJYtWxZ1UwAAAIqVw+PxeIryBhcuXNADDzyg8+fPS7rylUFNmzbVunXrlJiYKEkKDw/XmDFjirIZpUJGRobWrl2rjRs36uDBgzp//rx8fHwUHBysDh06aPDgwfrNb36T47zu3btbIfbTTz9Vu3btTDe9SLhcLnXu3NnqOwEBAdqxY0eOt2NR8tG3pfHjx2vlypW5HvPy8lL58uVVrVo1tW7dWuHh4brjjjsMtxA3iv5tl5ycrMWLFysyMlLHjx9XUlKS/Pz8dPvtt6tbt24aMGCAKlcueW/JmlLky0lUqVJFb7zxhp566im53W598803+uabb6zjzZs315NPPlnUzSjx4uLi9Mwzz9gWnJWuhI/Y2FjFxsZqwYIFGj9+vAYPHlxMrTRr06ZNVuiSpMTEREVERCg0NLT4GoUCo29fX0ZGhlJTU5WamqqTJ09q06ZNev/998vMP8RlGf3b7ssvv9SLL75oDaxkSUxM1Ndff62vv/5aH3/8saZPn642bdoUTyOLmZHVH7t06aLly5drzpw5ioqK0sWLF1W7dm2FhIQoPDzc9ubjrejkyZMaOHCgFTJ8fHzUqVMn1alTRz/99JO+/PJLXb58WS6XS5MmTVK1atUUEhJSzK0uekuWLMmxb/HixQSvUoS+nbvGjRurS5cukiSPx6OMjAzFx8dr27ZtSk1NVVpamiZOnKjNmzerXDlW/Smp6N92W7du1dNPP63MzExJUrVq1dSpUyf5+/vr6NGj2rNnjyQpPj5eo0aN0rJly3J8o82twNiy202bNtWMGTNM3a5UGTdunPUXt0GDBnr//fdVt25d6/jp06c1dOhQ62WEN954Q/fff7+8vUv2qumFERcXp6ioKEmSr6+v3G633G63vvvuOx0+fFhNmzYt5hYiP+jbuWvevLnGjh2bY//XX39tjYqcPHlSR48eVZMmTUw3D/lE//7V+fPn9eKLL1qhq2fPnnrzzTdtS0Xt3r1bI0eOVFpampKSkjRjxgy9/fbbxdXkYlP2/vRLmX379tkevU6bNs32F1eSateurf/7v//T4MGDVa9ePbVu3Vq//PKLatased3r//LLL3rvvfe0fft2nTlzRm63W5UrV1bjxo01aNAgPfTQQ7b6mZmZ+vzzz/XFF1/oyJEjSk5OVvny5RUcHKzOnTtrxIgRqlq1qu0cl8ulzz77TBs2bNDx48eVmpqqChUqqH79+urZs6eGDRtW4FHN7KNdvXr1UlJSkjZu3ChJWrhwoSZNmlSg68E8+nbB3XPPPXI4HMqaepv1jxhKHvq33YIFC5ScnCxJqlmzpv7xj3/kOLd9+/YKDw/XnDlz1KRJE9WsWVMej0cOhyNf9ygrCF7FbNu2bVb57rvv1p133plrvTZt2mj37t2qVq1avq+dkJCgIUOG6Pjx47b9iYmJioqKUlRUlOLi4mxz7MaNG6c1a9bY6qempuro0aM6evSoIiMjNX/+fKsdGRkZGj58uDU6lSUlJUUxMTGKiYnRrl279OGHH6pChfx9L5bL5dKqVaus7bCwMKWkpFjBa82aNRo3bpwqVaqU758FzKNvF9yOHTus0BUYGGhbjgclC/3bLvvPo3fv3nkGtieeeELDhg2Tr6/vda9ZVhG8itnBgwetcrNmza5ZtyB/cSXpgw8+sP7iBgYG6ve//728vLy0b98+xcbGSpLmzZunUaNGyeFw6MCBA9ZfXKfTqe7du6tWrVpKSEjQli1blJqaqmPHjmnOnDl6+eWXJV2ZAJ/9kWD37t0VFBSk06dPa9u2bXK73dq3b58WLVqkYcOG5avdW7ZsUUJCgqQrc2FatWolj8ejOnXq6OTJk0pNTdXq1atviYmqpRl9O28xMTH6xz/+YW2np6fr1KlT+te//mXtmzhxIm/wlmD0719lZGTo8OHD1nbz5s3zrHurz+mWCF7FLitgSMoxDFxY9erVU58+fXTs2DG9/fbbatiwoSQpLS1N7du3V2pqqpKTk3X+/HlVq1ZNP/74o3Xugw8+aPuHYc+ePfrnP/+phg0b6u6777b2Zz/nj3/8o0aPHm1tr1mzRhs2bFCjRo2se+dH9seM/fv3lyQ5HA6FhYVp+vTpkq5Msid4lWz07bwdOXIkx1tw2T311FPq3bt3ga8Lc+jfv7pw4YK1Rqd0Zekf5I3gVcyyd9abPZ9j4MCBGjhwoLWdmpqqmJgY7dmzR9mXb0tLS5Mk3Xnnndb8kjVr1ujkyZPq2LGjWrdurZYtW+q9997LcY/sv9l88MEHOnDggNq3b6/WrVvrgQceUJ8+fQrU5hMnTmjv3r2Srrwh1LdvX+tYv379NGvWLKWnp+vIkSP6+uuvb9nXkUsD+vaNmz17tqKjozV9+nS+x7aEon//KvvPQmJu4vUQvIpZ9t8Msq9ZdbMcPnxYy5cv1969e3Xs2LFc/0Jk7WvYsKHGjx+vN998UxkZGfruu+/03XffSZK8vb3VunVrhYWFqU+fPtYr7vfdd5+GDh2qjz/+WBkZGdq1a5d27dol6Upwat++vQYNGqRu3brlq71Lly61/sfidDptv4VlXTM9PV2StGjRIoJXCUbfztsf/vAHvf7669a2y+XShQsXtGfPHk2ePFkXLlzQ9u3b9cYbb/AiSQlF//5VlSpVbNtF8fMoS1ggpphlXxYhJiYmz3qXLl3S4MGDNWfOnGs+oshuyZIl+sMf/qD58+crLi5OHTt21HPPPaePPvoozy8lHzp0qNavX68nn3xSzZs3t/6SpqenKyoqSuPGjdP//u//2s6ZMGGCVq1apSeeeMK22rbL5VJkZKRGjhyZr1eG3W63bWXvlJQU7d692/ZfamqqdXzjxo224X6ULPTt/PPx8VFQUJD69Omj5557ztq/cuXKHKMJKBno37/y8fGxvQhyrZ/HN998o+HDh2vRokU6d+7cda9dFhG8iln23ya+//57HTp0KNd669at09dff6133nlHffr00ffff3/N6yYnJ2vKlCnKzMyU0+nU2rVr9cEHH+jJJ59Ux44d5XK58jw3KChIw4cP14oVK7Rv3z7NmzdPQ4cOtY6vXbvWNpFSkurUqaNnn31Wa9eu1Z49ezR37lzbQqfvv/++kpKSrtnmLVu26JdffrlmnezcbreWL1+e7/owi759Y4KDg62yy+Vi9KCEon/bde3a1SpHRETo0qVLudZbsmSJvvrqK7366qvq06eP9QTjVkLwKmadO3e2vYb8wgsv6OTJk7Y6MTExtscSLVq0uO5bNMePH7c6vpeXl21YfOvWrbavc8h6tDdr1ix1795drVu31vjx4+XxeFSpUiXdd999GjNmjG2uyenTpyVJr7zyijp27Kg2bdpo2rRpkq5MNO3WrZteeOEF2z3OnDlzzTYvXbrUKj/++OPW121c/d/w4cOtekuWLGE+QQlF374xWcumSJKfn1+B34iDGfRvuz/96U/WshPnzp3TuHHjbE8oJGnZsmVavXq1td2/f/8yuZjs9dx6n7iEcTgcmjp1qh599FFdvHhRx48fV69evdSlSxfddtttOnHihHbs2GE9bvDx8dFf/vKX6163evXqVjktLU2PPPKIOnfurB9++EE7duyw1c2aoNmiRQvNnDlTkrR582b1799frVu3ltvt1p49e5SSkmK1oUWLFpKuTOrMegvxk08+0aFDh3TnnXcqNTVV27dvt+4RGBioBg0a5NneH3/8Ubt377a2r/W1Gg8//LA++ugjSVdW996xY4f19SsoOejbebt6OQmPx6PLly9r//79OnDggLU/NDSUrwwqoejfdjVr1tTkyZOtx5mbNm3St99+q86dO8vX11fR0dHav3+/Vb9OnToaOXLkda9bFjk82V+RQLE5fPiwnn76adsrvlerVKmSpk6dahvSlfL+hvsxY8Zo7dq1uV7L39/fGj5+99131b17d0nSnDlz9M477+TZhnLlymny5MkKCwuTdOUfjFdeecU2WnW18uXLa/bs2erUqVOedaZOnar3339fknTbbbfpyy+/vOZqxr1799bRo0clXRnynzt3bp51Ubxu9b6dZfz48bY5jNfTuHFjLVy4UJUrV873OTCP/m23bt06vfzyyzlGu7Jr0KCB3nvvPdWrVy/f1y1LGPEqIZo2baqIiAitWLFCmzZt0uHDh3XhwgXr6xu6dOmixx57zPbb0PW8/vrrat68uVauXKkffvhB3t7eatKkiYYMGaKLFy9av31t3rzZ+sv75JNPqkWLFlqyZIn279+vhIQEORwO1ahRQ7/97W/1+OOP29aCcTgcmjRpktq3b6+VK1cqJiZGFy5ckJeXl2rVqqV27dpp2LBh1/yN6epJ9Q888MB1v0KiT58+1qTPyMhInT59WrVr1873zwbm3Mp9O78cDoe8vb1VoUIF1atXT927d9ef/vQnvp2hFKB/2/Xq1Uvt27fXggULFBkZqRMnTig1NVWVK1dW06ZN9cADD6h///639OLAjHgBAAAYwuQBAAAAQwheAAAAhhC8AAAADCF4AQAAGELwAgAAMITgBQAAYAjBCwAAwBCCFwAAgCEELwAAAEMIXgAAAIYQvAAAAAwheAEAABhC8AIAADDk/wHZpCZn7qssfwAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" @@ -67,8 +67,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2023-09-26T13:48:47.972209418Z", - "start_time": "2023-09-26T13:48:47.697891283Z" + "end_time": "2023-09-26T14:01:27.301069826Z", + "start_time": "2023-09-26T14:01:27.029642912Z" } }, "id": "534370d41438e7e5" @@ -85,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 26, "outputs": [ { "data": { @@ -109,8 +109,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2023-09-26T13:48:49.046331657Z", - "start_time": "2023-09-26T13:48:48.781403923Z" + "end_time": "2023-09-26T14:01:31.206293169Z", + "start_time": "2023-09-26T14:01:30.992241917Z" } }, "id": "f2353d6d788f0c36" @@ -127,7 +127,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 29, "outputs": [ { "data": { @@ -151,8 +151,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2023-09-26T13:48:50.372958339Z", - "start_time": "2023-09-26T13:48:49.747363609Z" + "end_time": "2023-09-26T14:02:18.396937790Z", + "start_time": "2023-09-26T14:02:18.156447418Z" } }, "id": "e4f4597893bf7638" @@ -169,7 +169,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 28, "outputs": [ { "data": { @@ -196,11 +196,21 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2023-09-26T13:48:51.261248294Z", - "start_time": "2023-09-26T13:48:50.956211801Z" + "end_time": "2023-09-26T14:01:34.451149238Z", + "start_time": "2023-09-26T14:01:34.149502680Z" } }, "id": "69ce1a8d9552157c" + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [], + "metadata": { + "collapsed": false + }, + "id": "75a8f6e2d267c8c0" } ], "metadata": {