-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmodel.py
170 lines (156 loc) · 7.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from copy import deepcopy
import matplotlib.pyplot as plt
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def describe_model(net):
nparams = sum(p.numel() for p in net.parameters() if p.requires_grad)
if type(net) is BIML:
print('\nBIML specs:')
print(' nparams=',nparams)
print(' nlayers_encoder=',net.nlayers_encoder)
print(' nlayers_decoder=',net.nlayers_decoder)
print(' nhead=',net.nhead)
print(' hidden_size=',net.hidden_size)
print(' dim_feedforward=',net.dim_feedforward)
print(' act_feedforward=',net.act)
print(' dropout=',net.dropout_p)
print(' ')
print('')
else:
print('Network type ' + str(type(net)) + ' not found...')
class PositionalEncoding(nn.Module):
#
# Adds positional encoding to the token embeddings to introduce word order
#
def __init__(self, emb_size: int, dropout: float, maxlen: int = 5000):
super(PositionalEncoding, self).__init__()
den = torch.exp(-torch.arange(0, emb_size, 2) * math.log(10000.) / emb_size) # size emb_size/2
pos = torch.arange(0, maxlen).reshape(maxlen, 1) # maxlen x 1
pos_embedding = torch.zeros((maxlen, emb_size)) # maxlen x emb_size
pos_embedding[:, 0::2] = torch.sin(pos * den) # maxlen x emb_size/2
pos_embedding[:, 1::2] = torch.cos(pos * den)
pos_embedding = pos_embedding.unsqueeze(-2) # maxlen x 1 x emb_size
self.dropout = nn.Dropout(dropout)
self.register_buffer('pos_embedding', pos_embedding)
def forward(self, token_embedding):
# Input
# token_embedding: [seq_len, batch_size, embedding_dim] list of embedded tokens
return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :])
class BIML(nn.Module):
#
# Transformer trained for meta seq2seq learning
#
def __init__(self, hidden_size: int, input_size: int, output_size: int, PAD_idx_input: int, PAD_idx_output: int,
nlayers_encoder: int=5, nlayers_decoder: int=3, nhead: int=8,
dropout_p: float=0.1, ff_mult: int=4, activation='gelu'):
#
# Input
# hidden_size : embedding size
# input_size : number of input symbols
# output_size : number of output symbols
# PAD_idx_input : index of padding in input sequences
# PAD_idx_output : index of padding in output sequences
# nlayers_encoder : number of transformer encoder layers
# nlayers_decoder : number of transformer decoder layers
# nhead : number of heads for multi-head attention
# dropout_p : dropout applied to symbol embeddings and transformer layers
# ff_mult : multiplier for hidden size of feedforward network
# activation: string either 'gelu' or 'relu'
#
super(BIML, self).__init__()
assert activation in ['gelu','relu']
self.hidden_size = hidden_size
self.input_size = input_size
self.output_size = output_size
self.PAD_idx_input = PAD_idx_input
self.PAD_idx_output = PAD_idx_output
self.nlayers_encoder = nlayers_encoder
self.nlayers_decoder = nlayers_decoder
self.nhead = nhead
self.dropout_p = dropout_p
self.dim_feedforward = hidden_size*ff_mult
self.act = activation
self.transformer = nn.Transformer(d_model=hidden_size, nhead=nhead, num_encoder_layers=nlayers_encoder, num_decoder_layers=nlayers_decoder,
dim_feedforward=self.dim_feedforward, dropout=dropout_p, batch_first=True, activation=activation)
self.positional_encoding = PositionalEncoding(emb_size=hidden_size, dropout=dropout_p)
self.input_embedding = nn.Embedding(input_size, hidden_size)
self.output_embedding = nn.Embedding(output_size, hidden_size)
self.out = nn.Linear(hidden_size,output_size)
def prep_encode(self, xq_context_padded):
# Embed source sequences and make masks
#
# Input
# xq_context_padded : source sequences via token index # b*nq (batch_size) x maxlen_src
xq_context_embed = self.input_embedding(xq_context_padded) # batch_size x maxlen_src x emb_size
# Add positional encoding to input embeddings
src_embed = self.positional_encoding(xq_context_embed.transpose(0,1))
src_embed = src_embed.transpose(0,1) # batch_size x maxlen_src x emb_size
# Create masks for padded source sequences
src_padding_mask = xq_context_padded==self.PAD_idx_input # batch_size x maxlen_src
# value of True means ignore
return src_embed, src_padding_mask
def prep_decode(self, z_padded):
# Embed target sequences and make masks
#
# Input
# z_padded : b*nq (batch_size) x maxlen_tgt
# z_lengths : b*nq list
maxlen_tgt = z_padded.size(1)
z_embed = self.output_embedding(z_padded) # batch_size x maxlen_tgt x emb_size
# Add positional encoding to target embeddings
tgt_embed = self.positional_encoding(z_embed.transpose(0,1))
tgt_embed = tgt_embed.transpose(0,1) # batch_size x maxlen_tgt x emb_size
# create mask for padded targets
tgt_padding_mask = z_padded==self.PAD_idx_output # batch_size x maxlen_tgt
# value of True means ignore
# create diagonal mask for autoregressive control
tgt_mask = self.transformer.generate_square_subsequent_mask(maxlen_tgt) # maxlen_tgt x maxlen_tgt
tgt_mask = tgt_mask.to(device=DEVICE)
return tgt_embed, tgt_padding_mask, tgt_mask
def forward(self, z_padded, batch):
# Forward pass through encoder and decoder
#
# Input
# z_padded : tensor of size [b*nq (batch_size), maxlen_target] : decoder input via token index
# batch : struct via datasets.make_biml_batch(), which includes source sequences
#
# Output
# output : [b*nq x maxlen_target x output_size]
xq_context_padded = batch['xq_context_padded'] # batch_size x maxlen_src
src_embed, src_padding_mask = self.prep_encode(xq_context_padded)
tgt_embed, tgt_padding_mask, tgt_mask = self.prep_decode(z_padded)
trans_out = self.transformer(src_embed, tgt_embed, tgt_mask=tgt_mask,
src_key_padding_mask=src_padding_mask, tgt_key_padding_mask=tgt_padding_mask,
memory_key_padding_mask=src_padding_mask)
output = self.out(trans_out)
return output
def encode(self, batch):
# Forward pass through encoder only
#
# Output
# memory : [b*nq (batch_size) x maxlen_src x hidden_size]
# memory_padding_mask : [b*nq (batch_size) x maxlen_src] binary mask
xq_context_padded = batch['xq_context_padded'] # batch_size x maxlen_src
src_embed, src_padding_mask = self.prep_encode(xq_context_padded)
memory = self.transformer.encoder(src_embed, src_key_padding_mask=src_padding_mask)
memory_padding_mask = src_padding_mask
return memory, memory_padding_mask
def decode(self, z_padded, memory, memory_padding_mask):
# Forward pass through decoder only
#
# Input
#
# memory : [b*nq (batch_size) x maxlen_src x hidden_size] output of transformer encoder
# memory_padding_mask : [b*nq (batch_size) x maxlen_src x hidden_size] binary mask padding where False means leave alone
#
# Output
# output : [b*nq x maxlen_target x output_size]
tgt_embed, tgt_padding_mask, tgt_mask = self.prep_decode(z_padded)
trans_out = self.transformer.decoder(tgt_embed, memory,
tgt_mask=tgt_mask, tgt_key_padding_mask=tgt_padding_mask, memory_key_padding_mask=memory_padding_mask)
output = self.out(trans_out)
return output