-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain_lib.py
132 lines (121 loc) · 4.94 KB
/
train_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import random
import numpy as np
import torch
import time
import math
from copy import deepcopy, copy
class Lang():
pass
def seed_all(seed=0):
print("* Setting all random seeds to ",seed,'*')
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def extract(include,arr):
# Create a new list only using the included (boolean) elements of arr
#
# Input
# include : [n len] boolean array (numpy or python)
# arr : [ n length array]
assert len(include)==len(arr)
return [a for idx,a in enumerate(arr) if include[idx]]
def display_input_output(input_patterns,output_patterns,target_patterns):
# Verbose printing of query items
#
# Input
# input_patterns : list of input sequences (query inputs; each sequence is in list form)
# output_patterns : list of predicted output sequences (query outputs; each sequence is in list form)
# target_patterns : list of targets (query outputs; each sequence is in list form)
nq = len(input_patterns)
if nq == 0:
print(' no patterns')
return
for q in range(nq):
assert isinstance(input_patterns[q],list)
assert isinstance(output_patterns[q],list)
is_correct = output_patterns[q] == target_patterns[q]
print(' ',end='')
print(' '.join(input_patterns[q]),end='')
print(' -> ',end='')
print(' '.join(output_patterns[q]),end='')
if not is_correct:
print(' (** target: ',end='')
print(' '.join(target_patterns[q]),end='')
print(')',end='')
print('')
# Robertson's asMinutes and timeSince helper functions to print time elapsed and estimated time
# remaining given the current time and progress
def asMinutes(s):
# convert seconds to minutes
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def timeSince(since, percent):
# prints time elapsed and estimated time remaining
#
# Input
# since : previous time
# percent : amount of training complete
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
def list_remap(list_old,list_source,list_target):
# For a given list, replace each token in "source" with the corresponding token in "target"
#
# Input
# list_old : list of tokens where we will check each for a remap
# list_source : length k list of tokens to be replaced
# list_target : length k list of tokens that will replace the source tokens
assert(len(list_source)==len(list_target))
mydict = dict(zip(list_source,list_target))
list_new = deepcopy(list_old)
for i in range(len(list_new)):
if list_new[i] in mydict:
list_new[i] = mydict[list_new[i]]
return list_new
def assert_consist_langs(langs_new,langs_old):
# Make sure all symbols/indices in langs_old are the same as in langs_new
for s in langs_old['input'].symbol2index.keys():
assert(langs_old['input'].symbol2index[s] == langs_new['input'].symbol2index[s])
for s in langs_old['output'].symbol2index.keys():
assert(langs_old['output'].symbol2index[s] == langs_new['output'].symbol2index[s])
def score_grammar(G,sample,mytype):
# For a given grammar symbolic G, compute the accuracy in solving the support examples or query examples.
#
# This code assumes that all of the candidate examples in "sample" are in the "query set",
# and it figures out which are in the support set too by checking the support set
#
# Input
# G : candidate grammar
# sample : dict representing current episode
# mytype : do we want to score on the "support" or "query" examples?
#
# Output
# acc_support : accuracy on support (float 0-100)
# acc_novel : accuracy on queries (float 0-100)
# yq_predict : predictions on entire set
# in_support : entire query set
assert mytype in ['support','query']
in_support = np.array([x in sample['xs'] for x in sample['xq']])
yq_predict = [[] for x in sample['xq']] # init
if not G: return 0., yq_predict, in_support
yq_predict = [G.apply(' '.join(x)) for x in sample['xq']] # list of strings
yq_predict = [y.split() for y in yq_predict] # list of lists
# compute accuracy
nq = len(sample['xq'])
v_acc = np.zeros(nq)
for q in range(nq): # for each query
v_acc[q] = yq_predict[q] == sample['yq'][q]
if mytype=='support':
acc_support = np.mean(v_acc[in_support])*100. # for support examples
return acc_support, yq_predict, in_support
elif mytype=='query':
acc_novel = np.mean(v_acc[np.logical_not(in_support)])*100. # for novel examples
return acc_novel, yq_predict, in_support
assert False # invalid mytype