-
Notifications
You must be signed in to change notification settings - Fork 3
/
Chron1.0Coupled.jl
326 lines (276 loc) · 16.5 KB
/
Chron1.0Coupled.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Chron1.0Coupled.jl #
# #
# Illustrates the use of the Chron.jl package for eruption/deposition #
# age estimation and production of a stratigraphic age model. #
# #
# You may have to adjust the path below which specifies the location of #
# the CSV data files for each sample, depending on what you want to run. #
# #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
## --- Load the Chron package - - - - - - - - - - - - - - - - - - - - - - - - -
using Chron
using Plots
## --- Define sample properties - - - - - - - - - - - - - - - - - - - - - - - -
# This example data is from Clyde et al. (2016) "Direct high-precision
# U–Pb geochronology of the end-Cretaceous extinction and calibration of
# Paleocene astronomical timescales" EPSL 452, 272–280.
# doi: 10.1016/j.epsl.2016.07.041
nsamples = 5 # The number of samples you have data for
smpl = ChronAgeData(nsamples)
smpl.Name = ("KJ08-157", "KJ04-75", "KJ09-66", "KJ04-72", "KJ04-70",)
smpl.Height .= [ -52.0, 44.0, 54.0, 82.0, 93.0,]
smpl.Height_sigma .= [ 3.0, 1.0, 3.0, 3.0, 3.0,]
smpl.Age_Sidedness .= zeros(nsamples) # Sidedness (zeros by default: geochron constraints are two-sided). Use -1 for a maximum age and +1 for a minimum age, 0 for two-sided
smpl.Path = joinpath(@__DIR__, "DenverUPbExampleData") # Where are the data files?
smpl.inputSigmaLevel = 2 # i.e., are the data files 1-sigma or 2-sigma. Integer.
smpl.Age_Unit = "Ma" # Unit of measurement for ages and errors in the data files
smpl.Height_Unit = "cm" # Unit of measurement for Height and Height_sigma
# IMPORTANT: smpl.Height must increase with increasing stratigraphic height
# -- i.e., stratigraphically younger samples must be more positive. For this
# reason, it is convenient to represent depths below surface as negative
# numbers.
# For each sample in smpl.Name, we must have a csv file at smpl.Path which
# contains two columns of data, namely:
# Age, Age sigma
# where uncertainty (sigma) is absolute uncertainty.
# For instance, examples/DenverUPbExampleData/KJ08-157.csv contains:
#
# 66.12,0.14
# 66.115,0.048
# 66.11,0.1
# 66.11,0.17
# 66.096,0.056
# 66.088,0.081
# 66.085,0.076
# 66.073,0.084
# 66.07,0.11
# 66.055,0.043
# 66.05,0.16
# 65.97,0.12
# If you are using U-Pb data and want Pb-loss-aware eruption estimation,
# simply provide five columns of data instea of two, corresponding to
# ²⁰⁷Pb/²³⁵U, ²⁰⁷Pb/²³⁵U sigma, ²⁰⁶Pb/²³⁸U, ²⁰⁶Pb/²³⁸U sigma, correlation
## --- Bootstrap pre-eruptive distribution - - - - - - - - - - - - - - - - - - -
# Bootstrap a KDE of the pre-eruptive (or pre-depositional) mineral age
# distribution using a KDE of stacked sample data from each data file
BootstrappedDistribution = BootstrapCrystDistributionKDE(smpl)
x = range(0,1,length=length(BootstrappedDistribution))
h = plot(x, BootstrappedDistribution,
label="Bootstrapped distribution",
xlabel="Time (arbitrary units)",
ylabel="Probability Density",
framestyle=:box
)
savefig(h, joinpath(smpl.Path,"BootstrappedDistribution.pdf"))
display(h)
## --- Estimate the eruption age distributions for each sample - - - - - - - -
# Configure distribution model here
distSteps = 1*10^6 # Number of steps to run in distribution MCMC
distBurnin = distSteps÷10 # Number to discard
# Choose the form of the prior closure/crystallization distribution to use
dist = BootstrappedDistribution
## You might alternatively consider:
# dist = UniformDistribution # A reasonable default
# dist = MeltsVolcanicZirconDistribution # A single magmatic pulse, truncated by eruption
# dist = ExponentialDistribution # Applicable for survivorship processes, potentially including inheritance/dispersion in Ar-Ar dates
# Run MCMC to estimate saturation and eruption/deposition age distributions
@time tMinDistMetropolis(smpl,distSteps,distBurnin,dist)
# This will save rank-order and distribution plots, and print results to a
# csv file -- you can find them in smpl.Path
## --- Run stratigraphic model - - - - - - - - - - - - - - - - - - - - - - - - -
# Configure the stratigraphic Monte Carlo model
config = StratAgeModelConfiguration()
# If you in doubt, you can probably leave these parameters as-is
config.resolution = 1.0 # Same units as sample height. Smaller is slower!
config.bounding = 0.5 # how far away do we place runaway bounds, as a fraction of total section height
(bottom, top) = extrema(smpl.Height)
npoints_approx = round(Int,length(bottom:config.resolution:top) * (1 + 2*config.bounding))
config.nsteps = 15000 # Number of steps to run in distribution MCMC
config.burnin = 10000*npoints_approx # Number to discard
config.sieve = round(Int,npoints_approx) # Record one out of every nsieve steps
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Run the stratigraphic MCMC model
@time (mdl, agedist, lldist) = StratMetropolisDist(smpl, config)
exportdataset(NamedTuple(mdl), "AgeDepthModel.csv")
## --- Plot stratigraphic model - - - - - - - - - - - - - - - - - - - - - - - -
# Plot results (mean and 95% confidence interval for both model and data)
hdl = plot(framestyle=:box,
xlabel="Age ($(smpl.Age_Unit))",
ylabel="Height ($(smpl.Height_Unit))",
)
plot!(hdl, [mdl.Age_025CI; reverse(mdl.Age_975CI)],[mdl.Height; reverse(mdl.Height)], fill=(round(Int,minimum(mdl.Height)),0.5,:blue), label="model") # Age-depth model CI
plot!(hdl, mdl.Age, mdl.Height, linecolor=:blue, label="") # Center line
t = smpl.Age_Sidedness .== 0 # Two-sided constraints (plot in black)
any(t) && plot!(hdl, smpl.Age[t], smpl.Height[t], xerror=(smpl.Age[t]-smpl.Age_025CI[t],smpl.Age_975CI[t]-smpl.Age[t]),label="data",seriestype=:scatter,color=:black)
t = smpl.Age_Sidedness .== 1 # Minimum ages (plot in cyan)
any(t) && plot!(hdl, smpl.Age[t], smpl.Height[t], xerror=(smpl.Age[t]-smpl.Age_025CI[t],zeros(count(t))),label="",seriestype=:scatter,color=:cyan,msc=:cyan)
any(t) && zip(smpl.Age[t], smpl.Age[t].+nanmean(smpl.Age_sigma[t])*4, smpl.Height[t]) .|> x-> plot!([x[1],x[2]],[x[3],x[3]], arrow=true, label="", color=:cyan)
t = smpl.Age_Sidedness .== -1 # Maximum ages (plot in orange)
any(t) && plot!(hdl, smpl.Age[t], smpl.Height[t], xerror=(zeros(count(t)),smpl.Age_975CI[t]-smpl.Age[t]),label="",seriestype=:scatter,color=:orange,msc=:orange)
any(t) && zip(smpl.Age[t], smpl.Age[t].-nanmean(smpl.Age_sigma[t])*4, smpl.Height[t]) .|> x-> plot!([x[1],x[2]],[x[3],x[3]], arrow=true, label="", color=:orange)
savefig(hdl,"AgeDepthModel.pdf")
display(hdl)
## --- Interpolate model age at a specific stratigraphic height - - - - - - - -
# Stratigraphic height at which to interpolate
interp_height = 0
age_at_height = linterp1s(mdl.Height,mdl.Age,interp_height)
age_at_height_min = linterp1s(mdl.Height,mdl.Age_025CI,interp_height)
age_at_height_max = linterp1s(mdl.Height,mdl.Age_975CI,interp_height)
print("Interpolated age at height=$interp_height: $age_at_height +$(age_at_height_max-age_at_height)/-$(age_at_height-age_at_height_min) $(smpl.Age_Unit)")
# Optional: interpolate full age distribution
interpolated_distribution = Array{Float64}(undef,size(agedist,2))
for i=1:size(agedist,2)
interpolated_distribution[i] = linterp1s(mdl.Height,agedist[:,i],interp_height)
end
hdl = histogram(interpolated_distribution, nbins=50, label="", framestyle=:box)
plot!(hdl, xlabel="Age ($(smpl.Age_Unit)) at height=$interp_height", ylabel="Likelihood (unnormalized)")
savefig(hdl, "Interpolated age distribution.pdf")
display(hdl)
## --- Calculate deposition rate binned by age - - - - - - - - - - - - - - - -
# Set bin width and spacing
binwidth = round(nanrange(mdl.Age)/10,sigdigits=1) # Can also set manually, commented out below
# binwidth = 0.01 # Same units as smpl.Age
binoverlap = 10
agebinedges = collect(minimum(mdl.Age):binwidth/binoverlap:maximum(mdl.Age))
agebincenters = (agebinedges[1:end-binoverlap] + agebinedges[1+binoverlap:end])/2
# Calculate rates for the stratigraphy of each markov chain step
dhdt_dist = zeros(length(agebincenters), config.nsteps)
@time for i=1:config.nsteps
heights = linterp1(reverse(agedist[:,i]), reverse(mdl.Height), agebinedges, extrapolate=NaN)
dhdt_dist[:,i] .= (heights[1:end-binoverlap] - heights[binoverlap+1:end]) ./ binwidth
end
# Find mean and 1-sigma (68%) CI
dhdt = nanmean(dhdt_dist,dim=2)
dhdt_50p = nanmedian(dhdt_dist,dim=2)
dhdt_16p = nanpctile(dhdt_dist,15.865,dim=2) # Minus 1-sigma (15.865th percentile)
dhdt_84p = nanpctile(dhdt_dist,84.135,dim=2) # Plus 1-sigma (84.135th percentile)
# Plot results
hdl = plot(
xlabel="Age ($(smpl.Age_Unit))",
ylabel="Depositional Rate ($(smpl.Height_Unit) / $(smpl.Age_Unit) over $binwidth $(smpl.Age_Unit))",
fg_color_legend=:white,
framestyle=:box,
)
plot!(hdl, agebincenters,dhdt, label="Mean", color=:black, linewidth=2)
plot!(hdl,[agebincenters; reverse(agebincenters)],[dhdt_16p; reverse(dhdt_84p)], fill=(0,0.2,:darkblue), linealpha=0, label="68% CI")
for lci in 20:5:45
dhdt_lp = nanpctile(dhdt_dist,lci,dim=2)
dhdt_up = nanpctile(dhdt_dist,100-lci,dim=2)
plot!(hdl,[agebincenters; reverse(agebincenters)],[dhdt_lp; reverse(dhdt_up)], fill=(0,0.2,:darkblue), linealpha=0, label="")
end
plot!(hdl, agebincenters,dhdt_50p, label="Median", color=:grey, linewidth=1)
savefig(hdl,"DepositionRateModelCI.pdf")
display(hdl)
## --- Make heatmap - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
rateplotmax = 3*maximum(dhdt) # May want to adjust this -- this is just a guess
using StatsBase: fit, Histogram
ratebinedges = range(0, rateplotmax, length=length(agebincenters)+1)
dhdt_im = zeros(length(agebincenters),length(agebincenters))
for i=1:length(agebincenters)
histcounts!(view(dhdt_im, :, i), view(dhdt_dist,i,:), ratebinedges)
end
# Apply colormap. Available colormaps include viridis, inferno, plasma, fire, etc.
img = imsc(dhdt_im, inferno, nanpctile(dhdt_im, 2.5), nanpctile(dhdt_im, 97.5))
# Plot image
h = plot(agebincenters, cntr(ratebinedges), img, yflip=false, xflip=false, colorbar=:right, framestyle=:box)
plot!(h, xlabel="Age ($(smpl.Age_Unit))", ylabel="Rate ($(smpl.Height_Unit) / $(smpl.Age_Unit), $binwidth $(smpl.Age_Unit) Bin)")
xrange = abs(last(agebincenters)-first(agebincenters))
yrange = abs(last(ratebinedges) - first(ratebinedges))
plot!(h, ylims = extrema(cntr(ratebinedges)), size=(600,400), aspectratio=2/3/(yrange/xrange))
savefig(h,"AccumulationRateModelHeatmap.pdf")
display(h)
## --- Probability that a given interval of stratigraphy was deposited entirely before/after a given time
# Stratigraphic height and absoltue age/uncert to test
testHeight = -40.0
testAge = 66.0
testAge_sigma = 0.05
# Find index of nearest model height node
nearest = argmin((testHeight .- mdl.Height).^2)
# Cycle through each possible age within testAge +/- 5 sigma, with resolution of 1/50 sigma
test_ages = (testAge-5*testAge_sigma):testAge_sigma/50:(testAge+5*testAge_sigma)
test_prob_older = Array{Float64}(undef,size(test_ages))
# Evaluate the probability that model age is older than each test_age at the given strat level
for i=1:length(test_ages)
test_prob_older[i] = sum(agedist[nearest,:] .> test_ages[i]) ./ size(agedist,2)
end
# Normalized probability for each distance away from testAge between +5sigma and -5sigma
prob_norm = normpdf.(testAge, testAge_sigma, test_ages) ./ sum(normpdf.(testAge, testAge_sigma, test_ages)); # SUM = 1
# Integrate the product
prob_older = sum(test_prob_older .* prob_norm)
print("$(prob_older*100) % chance that $(mdl.Height[nearest]) $(smpl.Height_Unit) was deposited before $testAge +/- $testAge_sigma $(smpl.Age_Unit) Gaussian")
## --- (Optional) If your section has hiata / exposure surfaces of known duration, try this:
# Data about hiatuses
nhiatuses = 2 # The number of hiatuses you have data for
hiatus = HiatusData(nhiatuses) # Struct to hold data
hiatus.Height = [-7.0, 35.0 ]
hiatus.Height_sigma = [ 0.0, 0.0 ]
hiatus.Duration = [ 0.3, 0.3 ]
hiatus.Duration_sigma = [ 0.05, 0.05]
# Run the model. Note the additional `hiatus` arguments
@time (mdl, agedist, hiatusdist, lldist) = StratMetropolisDist(smpl, hiatus, config)
exportdataset(NamedTuple(mdl), "AgeDepthModel.csv")
# Plot results (mean and 95% confidence interval for both model and data)
hdl = plot([mdl.Age_025CI; reverse(mdl.Age_975CI)],[mdl.Height; reverse(mdl.Height)], fill=(minimum(mdl.Height),0.5,:blue), label="model")
plot!(hdl, mdl.Age, mdl.Height, linecolor=:blue, label="")
plot!(hdl, smpl.Age, smpl.Height, xerror=(smpl.Age-smpl.Age_025CI,smpl.Age_975CI-smpl.Age),label="data",seriestype=:scatter,color=:black)
plot!(hdl, xlabel="Age (Ma)", ylabel="Height (cm)", framestyle=:box)
savefig(hdl,"AgeDepthModel.pdf")
display(hdl)
## --- (Optional) Add systematic uncertainties for U-Pb data
# # Tracer (ET2535) uncertainty converted from per cent to relative
# unc_tracer = 0.03/2/100
#
# # U-238 Decay constant and uncertainty, Myr^-1
# lambda238 = 1.55125e-10 * 1e6
# unc_lambda238 = 0.107/2/100 # converted from per cent to relative
#
# # Consider only the distribution of ages at model nodes where we have an ash bed
# age_dist_X = Array{Float64}(undef,length(smpl.Height),size(agedist,2))
# for i = 1:length(smpl.Height)
# closest_model_node = argmin(abs.(mdl.Height-smpl.Height[i]))
# age_dist_X[i,:] = agedist[closest_model_node,:]
# end
#
# # Convert ages to 206Pb/238U ratios of the distribution
# ratio_dist = exp.(age_dist_X.*lambda238)-1
#
# # Add tracer uncertainty
# ratio_dist_tracerunc = Array{Float64}(undef,size(ratio_dist))
# for i=1:size(ratio_dist,2)
# ratio_dist_tracerunc[:,i] = ratio_dist[:,i].*(1 + unc_tracer*randn())
# end
#
# # Convert 206/238 ratios back to ages, in Ma
# age_dist_XY = log.(ratio_dist_tracerunc+1)./lambda238
#
# # Add decay constant uncertainty
# age_dist_XYZ = Array{Float64}(undef,size(ratio_dist))
# for i=1:size(ratio_dist,2)
# age_dist_XYZ[:,i] = log.(ratio_dist_tracerunc[:,i]+1)./(lambda238.*(1 + unc_lambda238.*randn()))
# end
#
# # Calculate the means and 95% confidence intervals for different levels of systematic uncertainties
#
# age_dist_X_mean = nanmean(age_dist_X,2) # Mean age
# age_dist_X_std = nanstd(age_dist_X,2) # Standard deviation
# age_dist_X_median = nanmedian(age_dist_X,2) # Median age
# age_dist_X_025p = nanpctile(age_dist_X,2.5,dim=2) # 2.5th percentile
# age_dist_X_975p = nanpctile(age_dist_X,97.5,dim=2) # 97.5th percentile
#
# age_dist_XY_mean = nanmean(age_dist_XY,2) # Mean age
# age_dist_XY_std = nanstd(age_dist_XY,2) # Standard deviation
# age_dist_XY_median = nanmedian(age_dist_XY,2) # Median age
# age_dist_XY_025p = nanpctile(age_dist_XY,2.5,dim=2) # 2.5th percentile
# age_dist_XY_975p = nanpctile(age_dist_XY,97.5,dim=2) # 97.5th percentile
#
# age_dist_XYZ_mean = nanmean(age_dist_XYZ,2) # Mean age
# age_dist_XYZ_std = nanstd(age_dist_XYZ,2) # Standard deviation
# age_dist_XYZ_median = nanmedian(age_dist_XYZ,2) # Median age
# age_dist_XYZ_025p = nanpctile(age_dist_XYZ,2.5,dim=2) # 2.5th percentile
# age_dist_XYZ_975p = nanpctile(age_dist_XYZ,97.5,dim=2) # 97.5th percentile
#
# age_X_95p = [age_dist_X_mean age_dist_X_975p-age_dist_X_mean age_dist_X_mean-age_dist_X_025p]
# age_XY_95p = [age_dist_XY_mean age_dist_XY_975p-age_dist_XY_mean age_dist_XY_mean-age_dist_XY_025p]
# age_XYZ_95p = [age_dist_XYZ_mean age_dist_XYZ_975p-age_dist_XYZ_mean age_dist_XYZ_mean-age_dist_XYZ_025p]
## ---