This repository has been archived by the owner on Feb 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.py
108 lines (90 loc) · 3.04 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
from pathlib import Path
import json
import numpy as np
from pandas import DataFrame
# List of indexes
exploration = ['0.5-0.6', '0.6-0.7', '0.7-0.8', '0.8-0.9', '0.9-1.0']
# List of columns
leniency = ['0.5-0.6', '0.4-0.5', '0.3-0.4', '0.2-0.3', '0.1-0.2']
# Convert the list of files to a map
def to_map(files, filenames, attribute):
shape = (len(leniency), len(exploration))
map = np.zeros(shape)
for l in range(len(leniency)):
for e in range(len(exploration)):
map[l, e] = None
for i in range(len(files)):
name = filenames[i].replace('level-', '')
name = name.replace('.json', '')
name = name.split('-')
x = int(name[1]) # Leniency
y = int(name[0]) # Exploration
map[x, y] = json.loads(files[i])[attribute]
# Uncomment to check if the levels are being placed in the right position
# print(json.loads(files[i])['exploration'])
# print(exploration[y])
# print(json.loads(files[i])['leniency'])
# print(leniency[x])
# print()
return map
shape = (len(leniency), len(exploration))
mean_map = np.zeros(shape)
std_map = np.zeros(shape)
maps = []
files = []
filenames = []
for i in range(10):
path = 'results' + os.path.sep + '60-20-5-3' + os.path.sep + str(i)
print(i)
for p in Path(path).glob('*.json'):
with p.open() as f:
if p.name == 'data.json':
continue
files.append(f.read())
filenames.append(p.name)
# Convert the read files into a map of fitness
# and add them to the list of maps
maps.append(to_map(files[1:], filenames[1:], 'fitness'))
# maps.append(to_map(files[1:], filenames[1:], 'fGoal'))
# maps.append(to_map(files[1:], filenames[1:], 'fSTD'))
# maps.append(to_map(files[1:], filenames[1:], 'fEnemySparsity'))
for map in maps:
for l in range(len(leniency)):
for e in range(len(exploration)):
if not np.isnan(map[l, e]):
mean_map[l, e] += map[l, e]
mean_map = mean_map / 10
# Uncomment to debug the mean map
# for l in range(len(leniency)):
# for e in range(len(exploration)):
# print('%3.2f' % mean_map[l, e], end=' ')
# print()
for map in maps:
for l in range(len(leniency)):
for e in range(len(exploration)):
if not np.isnan(map[l, e]):
std_map[l, e] += pow(map[l, e] - mean_map[l, e], 2)
std_map = std_map / 10
std_map = np.sqrt(std_map)
# Uncomment to debug the std map
# for l in range(len(leniency)):
# for e in range(len(exploration)):
# print('%3.2f' % std_map[l, e], end=' ')
# print()
# Merge the mean and std maps
fmap = [ [ '' for e in range(len(exploration)) ] for l in range(len(leniency)) ]
for l in range(len(leniency)):
for e in range(len(exploration)):
fmap[l][e] = '{:.2f}+-{:.2f}'.format(mean_map[l, e], std_map[l, e])
# Uncomment to debug the merged map
# for l in range(len(leniency)):
# for e in range(len(exploration)):
# print(fmap[l][e], end=' ')
# print()
# Print the resulting table
df = DataFrame(fmap, index=leniency, columns=exploration)
print(df)
# Uncomment to write a CSV file with the resulting table
# filename = 'std_atual.csv'
# df.to_csv(filename)