-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbackTestC.m
620 lines (575 loc) · 20.1 KB
/
backTestC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
classdef backTestC < handle
% BACKTEST
%
% obj = backTest(finData, buyStrategy, sellStrategy)
% Classe responsavel por gerar o objeto backTest. O backTest e uma
% estrutura capaz de avaliar estrategias de mercado utilizando dados
% financeiros a ele fornecidos. Sua finalidade e gerar um relatorio de
% avaliacao desta estrategia, mostrando o quao bem esta se saiu neste
% dado periodo
%
% Ver Tambem: FINDATA, FINPOINT, OPERATION
% by: Breno Rodrigues Brito
% by: Dyego Soares de Araujo
% Last Edited 25/11/2013
properties
%% Informacoes Principais
% Objeto Contendo o R-Learn
rLearnObj;
% Function Handle da Estrategia de Saida
sellStrat;
% Function Handle da Estrategia de Entrada
buyStrat;
% Objeto FinData que contem a informacao da bolsa
finData;
% Vetor de Controle de Operaçoes
operate;
% Vetor de Estados
state;
%% Variaveis de Controle
% Variavel de controle Temporal
time;
initTime;
% Operação atual
currentOp;
% Ponto de Mercado Atual
finPoint;
% Estado atual
curState;
% Estado passado
oldState;
% Variavel Comprado/Vendido
byslFlag;
transit;
% Recompensa Passada
reward;
% N
N;
end
methods
%% Create Method
function obj = backTestC(finData, buyStrategy, sellStrategy)
%STATE: Objeto gerador de estados
obj.state = estadoC(finData);
%RLEARN: Objeto que contem o sistema inteligente munido de
%Reinforcement Learning, que sera treinado nos pontos adequados
%de entrada do mercado.
% Parametros:
%%%%%%%%%%%%%% PESQUISAR VALORES ADEQUADOS %%%%%%%%%%%%%%%%%%%%
NESTADO = obj.state.getN;
% NNEURON = 30;
EPSILON = 35;
GAMMA = .7;
LAMBDA = .6;
ALPHA = .08;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
obj.rLearnObj = rLearn(NESTADO, EPSILON,...
ALPHA, GAMMA, LAMBDA);
% obj.N = N;
obj.initTime = 40;
%SELLSTRAT: Function Handle contendo a estrategia de Saida do
%Mercado.
obj.sellStrat = sellStrategy;
%BUYSTRAT: Function Handle contendo a estrategia de Entrada do
%Mercado.
obj.buyStrat = buyStrategy;
%FINDATA: Contem todas as informacoes financeiras pertinentes,
%alem das ferramentas de calculo de parametros
obj.finData = finData;
%OPERATE: Cell de registro de operacoes. Cada cell contem uma
%operation. Cada operation posteriormente sera analisada e
%estudada separadamente
obj.operate = cell(0);
%TIME: variavel que controla passagem do tempo
obj.time = 0;
%BYSLFLAG: Variavel que indica se a estrategia esta dentro ou
%fora do mercado. 0 para fora do mercado, 1 para dentro do
%mercado
obj.byslFlag = 0;
obj.transit = 0;
comprado = obj.byslFlag;
end
%% Run Strategy
% RunStrategy: Roda um número N de steps
function runStrategy(obj, N)%, init)
% if init
% initStep(obj);
% end
obj.time = obj.initTime;
for i = 1:N
normStep(obj);
end
% fprintf('\n');
end
%% Steps
% Init Step: Passo inicial de configuracao
function initStep(obj)
% Zera o Tempo
obj.time = obj.initTime;
% Coleta o Primeiro finPoint
obj.finPoint = obj.finData.point{obj.time};
% Gera o primeiro estado
obj.curState = getEstado(obj.state, obj.time);
% Toma a Primeira acao - (por padrao: Nao Comprar)
obj.byslFlag = false;
% Inicializa o rLearn - (Registra primeiro estado)
initLearn(obj.rLearnObj, obj.curState, obj.byslFlag);
% Primeira Recompensa: 0
obj.reward = 0;
end
% Normal Step: Roda um passo da simulacao
function normStep(obj)
% Passa o tempo
obj.time = obj.time+1;
% Coleta um novo finPoint
obj.finPoint = obj.finData.point{obj.time};
% Gera um novo Estado
obj.curState = getEstado(obj.state,obj.time);
obj.oldState = getEstado(obj.state,obj.time-1);
s = [obj.oldState, obj.curState];
comprado = obj.byslFlag;
% Verifica a situacao atual da estrategia
if obj.byslFlag
% Se estiver Dentro do Mercado, roda a estrategia de Saida
obj.byslFlag = obj.sellStrat(obj.finPoint,...
obj.currentOp, s);
% Se a estrategia pediu para vender
if ~obj.byslFlag
% Venda e Colete recompensa
obj.reward = sellLong(obj);
% reward = obj.reward;
% Zera a Eligibilidade
% obj.transit = 1;
% resetE(obj.rLearnObj);
end
else
% Se estiver fora do mercado, rode o rLearn:
obj.byslFlag = obj.buyStrat(obj.finPoint,...
obj.currentOp, s);
% % Registra o par Estado / Acao
% register(obj.rLearnObj, obj.curState, obj.byslFlag);
% % Atualiza Tabela E
% updateE(obj.rLearnObj);
% % Atualizar Tabela Q
% updateQ(obj.rLearnObj, obj.reward);
% % Se acabou de vender, zera a eligibilidade
% if obj.transit
% obj.transit = 0;
% resetE(obj.rLearnObj);
% end
% Recebe a Recompensa Passada
% obj.reward = 1;
% Registra a compra
if obj.byslFlag
buyLong(obj);
end
end
end
%% Operations
% Buy
function buyLong(obj)
% Cria uma nova operação
obj.currentOp = operation(true);
% Limite StopLoss
lim = 0.999;
% Efetua a compra
buy(obj.currentOp, obj.finPoint, obj.time,lim);
end
% Sell
function reward = sellLong(obj)
% Efetua a Venda
reward = sell(obj.currentOp, obj.finPoint, obj.time, obj.finData);
% Registra a compra
obj.operate = [obj.operate obj.currentOp];
end
%% Plots
% Plot Final
function plotBack(obj)
plot(obj.finData);
hold on
for i = 1:length(obj.operate)
plot(obj.operate(i).buyTime, obj.operate(i).buyPoint.close, 'b^');
plot(obj.operate(i).sellTime, obj.operate(i).sellPoint.close, 'rv');
end
hold off
end
% RESET OPERATE
function resetOperate(obj)
obj.operate = {};
end
% Novo Papel para operar
function novoPapel(obj,newFinData)
% reseta o tempo e outros parâmetros
obj.time = obj.initTime;
obj.operate = cell(0);
obj.byslFlag = 0;
obj.transit = 0;
% novo papel
obj.finData = newFinData;
% novos estados
obj.state = estado(newFinData);
% Coleta o Primeiro finPoint
obj.finPoint = obj.finData.point{obj.time};
% Gera o primeiro estado
obj.curState = getEstado(obj.state, obj.time);
end
%% Relatorio
function [profits, profitsPerc, holdTime,NOT] = getProfit(obj)
profits = zeros(1,length(obj.operate));
profitsPerc = zeros(1,length(obj.operate));
holdTime = zeros(1,length(obj.operate));
for i = 1:length(obj.operate)
profits(i) = obj.operate(i).profit;
holdTime(i) = obj.operate(i).holdTime;
profitsPerc(i) = obj.operate(i).profitPerc;
end
NOT = length(obj.operate);
end
function [evolperc, evol2] = moneyEvol(obj)
[profits, profitsPerc, ~,NOT] = getProfit(obj);
evolperc = zeros(1,NOT+1);
evol2 = zeros(1,NOT+1);
evolperc(1) = 100;
for i = 1:NOT
evolperc(i+1) = evolperc(i) * (1 + profitsPerc(i)/100);
end
for i = 1:NOT
evol2(i+1) = evol2(i) + (profits(i));
end
papel = obj.finData.name{1};
if (exist(papel, 'dir')~=7)
mkdir(papel);
end
% Salva as figuras
figure(1);
plot(evol2)
title(papel)
xlabel('Número de Operações')
ylabel('Valor Monetário')
nome = [papel '/' obj.finData.gran 'MonEvoC.png'];
saveas(1, nome, 'png');
figure(2);
plot(evolperc)
title([papel,' percentual'])
xlabel('Número de Operações')
ylabel('Valor Percentual')
nome = [papel '/' obj.finData.gran 'MonPerC.png'];
saveas(2, nome, 'png');
figure(3);
hist(profitsPerc,100)
title([papel,' Ocorrencias'])
ylabel('Ocorrências')
xlabel('Valor do Trade')
nome = [papel '/' obj.finData.gran 'OcorrC.png'];
saveas(3, nome, 'png');
close all;
end
function BH = buyHold(obj)
BH = obj.operate(end).sellPoint.close - obj.finData.point{40}.close;
end
% Total Net Profit
% Evaluate Gross Profit
% Evaluate Gross Loss
function [NP, GP, GL] = netGrossProfitLoss(obj)
[profits, ~, ~,~] = getProfit(obj);
NP = sum(profits);
GP = sum(profits .*(profits > 0));
GL = sum(profits .*(profits < 0));
end
% Evaluate Profit Factor
function PF = profitFactor(obj)
[~, GP, GL] = netGrossProfitLoss(obj);
PF = abs(GP/GL);
end
% Evaluate Total Number of trades
function NOT = numOfTrades(obj)
[~,~,~,NOT] = getProfit(obj);
end
% Percent Profitable
function PP = percProfitable(obj)
[profits, ~,~,~] = getProfit(obj);
PP = 100 * mean(profits>0);
end
% Winning trades
% Losing trades
function [WT, LT] = winLostTrades(obj)
[profits, ~,~,~] = getProfit(obj);
WT = sum(profits > 0);
LT = sum(profits < 0);
end
% Avg. trade net profit
% Avg. Win
% Avg. Loss
% Ratio avgWIN/avgLOSS
function [avgNET, avgWIN, avgLOSS, ratio] = avgNetWinLossTrades(obj)
[profits, ~,~,~] = getProfit(obj);
avgNET = mean(profits);
[~, GP, GL] = netGrossProfitLoss(obj);
noWIN = sum(profits>0);
avgWIN = GP/noWIN;
noLOSS = sum(profits<0);
avgLOSS = GL/noLOSS;
ratio = abs(avgWIN/avgLOSS);
end
% Largest winning trade
% Largest Losing trade
function [LW, LL] = largestWinLoss(obj)
[profits, ~,~,~] = getProfit(obj);
LW = max(profits);
LL = min(profits);
end
% Maximum consecutive winning trades
% Maximum consecutive losing trades
function [MW, ML] = consecWLTrades(obj)
[profits, ~, ~, ~] = getProfit(obj);
win = profits > 0;
lose = ~win;
nwin = 0;
MW = 0;
ML = 0;
nlose = 0;
for i = 1:length(win)
if win(i)
nwin = nwin + win(i);
else
nwin = 0;
end
if MW < nwin
MW = nwin;
end
if lose(i)
nlose = nlose + lose(i);
else
nlose = 0;
end
if ML < nlose
ML = nlose;
end
end
end
% Avg bars in total trades
% Avg bars in Winning trades
% Avg bars in Losing trades
function [avgTotT, avgWT, avgLT] = avgBars(obj)
[profits, ~, holdTime,~] = getProfit(obj);
avgTotT = mean(holdTime);
win = profits > 0;
lose = ~win;
avgWT = sum(holdTime.*win)/sum(win);
avgLT = sum(holdTime.*lose)/sum(lose);
end
% Max Drawdown
function [maxDD, data] = maxDrawdown(obj)
maxUp = zeros(1,length(obj.operate));
maxDown = zeros(1,length(obj.operate));
for i = 1:length(obj.operate)
maxUp(i) = obj.operate(i).maxUp;
maxDown(i) = obj.operate(i).maxDown;
end
drawdowns = maxUp - maxDown;
[maxDD, ind] = max(drawdowns);
data = obj.operate(ind).buyTime;
end
% function esp = esperanca(obj)
% PP = percProfitable(obj);
% pw = PP/100;
% pl = 1-pw;
% [~, avgWIN, avgLOSS, ~] = avgNetWinLossTrades(obj);
% esp = pw * avgWIN - pl* abs(avgLOSS);
% end
function sr = sharpeRatio(obj)
% esp = esperanca(obj);
[profits, ~, ~,~] = getProfit(obj);
sr = mean(profits)/std(profits);
end
% Evaluate Profit Percentual%
function relatorio(obj)
papel = obj.finData.name{1};
fprintf('Papel usado: \t\t\t%s\n',papel)
gran = obj.finData.gran;
fprintf('Granularidade: \t\t\t%s\n',gran)
date1 = datestr(obj.finData.point{obj.initTime}.date);
date2 = datestr(obj.finData.point{obj.time}.date);
fprintf('Data de inicio: \t\t%s\nData de termino: \t\t%s\n',date1,date2)
[NP, GP, GL] = netGrossProfitLoss(obj);
fprintf('Total Net Profit: \t\t%f \nGross Profit: \t\t\t%f \nGross Loss: \t\t\t%f\n',...
NP,GP,GL)
% Evaluate Profit Factor
PF = profitFactor(obj);
% Total Number of trades
NOT = numOfTrades(obj);
fprintf('Profit Factor: \t\t\t%f\nTotal Number of trades: \t%f\n',...
PF,NOT)
% Percent Profitable
PP = percProfitable(obj);
% Winning trades
% Losing trades
[WT, LT] = winLostTrades(obj);
fprintf('Percent Profitable: \t\t%f\nWinning trades: \t\t\t%f\n',...
PP,WT)
[avgNET, avgWIN, avgLOSS, ratio] = avgNetWinLossTrades(obj);
fprintf('Losing trades: \t\t\t%f\nAvg. Trade Net Profit: \t\t\t%f\n',...
LT,avgNET)
fprintf('Avg. Winning Trade: \t\t%f\nAvg. Losing Trade: \t\t%f\n',...
avgWIN,avgLOSS)
% Largest winning trade
% Largest Losing trade
[LW, LL] = largestWinLoss(obj);
fprintf('Ratio Avg. Win/Avg. Loss: \t\t%f\nLargest winning trade: \t\t%f\n',...
ratio,LW)
% Maximum consecutive winning trades
% Maximum consecutive losing trades
[MW, ML] = consecWLTrades(obj);
fprintf('Largest Losing trade: \t\t%f\nMax. consecutive winning trades: \t\t%d\n',...
LL,MW)
% Avg bars in total trades
% Avg bars in Winning trades
% Avg bars in Losing trades
[avgTotT, avgWT, avgLT] = avgBars(obj);
fprintf('Max. consecutive losing trades: \t\t%f\nAvg. bars in total trades: \t\t%f\n',...
ML,avgTotT)
fprintf('Avg. bars in Winning trades: \t\t%f\nAvg. bars in Losing trades: \t\t%f\n',...
avgWT,avgLT)
% Max Drawdown
% [maxDD, data] = maxDrawdown(obj);
% fprintf('Max Drawdown: \t\t%f\n Date of Max Drawdown: \t\t%f\n',...
% maxDD,data)
% Sharpe Ratio
sharpe = sharpeRatio(obj);
fprintf('Sharpe Ratio: \t\t%f\n',sharpe)
BH = buyHold(obj);
fprintf('Estrategia Buy and Hold no mesmo periodo: \t\t%f\n',BH)
% relatorio = 0;
[~] = moneyEvol(obj);
end
function vec = relatorio1(obj)
vec = cell(25, 1);
vec{1} = obj.finData.name{1};
vec{2} = obj.finData.gran;
vec{3} = datestr(obj.finData.point{obj.initTime}.date);
vec{4} = datestr(obj.finData.point{obj.time}.date);
[vec{5}, vec{6}, vec{7}] = netGrossProfitLoss(obj);
vec{8} = profitFactor(obj);
% Total Number of trades
vec{9} = numOfTrades(obj);
vec{10} = percProfitable(obj);
% Winning trades
% Losing trades
[vec{11}, vec{12}] = winLostTrades(obj);
[vec{13}, vec{14}, vec{15}, vec{16}] = avgNetWinLossTrades(obj);
% Largest winning trade
% Largest Losing trade
[vec{17}, vec{18}] = largestWinLoss(obj);
% Maximum consecutive winning trades
% Maximum consecutive losing trades
[vec{19}, vec{20}] = consecWLTrades(obj);
% Avg bars in total trades
% Avg bars in Winning trades
% Avg bars in Losing trades
[vec{21}, vec{22}, vec{23}] = avgBars(obj);
% Max Drawdown
% [maxDD, data] = maxDrawdown(obj);
% fprintf('Max Drawdown: \t\t%f\n Date of Max Drawdown: \t\t%f\n',...
% maxDD,data)
% relatorio = 0;
% Sharpe Ratio
vec{24} = sharpeRatio(obj);
vec{25} = buyHold(obj);
end
end
methods (Static)
function flag = sellStratParab(finP, oper, ~)
% Parametros:
% Stop Loss
flag = ~(finP.low < oper.stopLoss);
if flag
if finP.high*oper.lim > oper.stopLoss
oper.stopLoss = finP.high*oper.lim;
end
if finP.close < oper.stopLoss
flag = 0;
end
end
end
function flag = sellStratB(finP, oper, ~)
% Parametros:
% Stop Loss
LOSS = 165;
% Stop Gain
GAIN = 25;
% Estrategia de Venda:
% Caso close ultrapasse o stopLoss, venda
flag1 = oper.buyPoint.close > finP.low + LOSS;
% Caso close ultrapasse o stopGain, venda
flag2 = oper.buyPoint.close < finP.high - GAIN;
% Venda apenas se ocorrer uma das duas hipoteses
flag = ~(flag1||flag2);
end
function flag = sellBvale1m(finP, oper, ~)
% Parametros:
% Stop Loss
LOSS = 0.0077;
% Stop Gain
GAIN = 35e-4;
% Estrategia de Venda:
% Caso close ultrapasse o stopLoss, venda
flag1 = oper.buyPoint.close > finP.low + finP.low*LOSS;
% Caso close ultrapasse o stopGain, venda
flag2 = oper.buyPoint.close < finP.high - finP.low*GAIN;
% Venda apenas se ocorrer uma das duas hipoteses
flag = ~(flag1||flag2);
end
function flag = buyStratB(~, ~, s)
% Parametros:
% -
% Estrategia de Compra:
% [trend, ~, ~] = hilo(finData, N);
% Caso o ocorra uma tendencia de subida, compra.
if s(3,2) > s(3, 1)
flag = 1;
else
flag = 0;
end
end
function flag = sellHILO(~, ~, s)
% Estrategia de Compra:
% [trend, ~, ~] = hilo(finData, N);
% Caso o ocorra uma tendencia de subida, compra.
if s(3,2) < s(3,1)
flag = 0;
else
flag = 1;
end
end
function flag = buyHILO(~, ~, s)
% Parametros:
% -
% Estrategia de Compra:
% [trend, ~, ~] = hilo(finData, N);
% Caso o ocorra uma tendencia de subida, compra.
if s(3,2) > s(3,1)
flag = 1;
else
flag = 0;
end
end
function flag = sellBol(~, ~, s)
%
% [~, ~, ~, norm] = bollingerb(finData, N);
if s(1,2) > 11;
flag = 0;
else
flag = 1;
end
end
function flag = buyBol(~, ~, s)
%
% [~, ~, ~, norm] = bollingerb(finData, N);
if s(1,2) < 3;
flag = 1;
else
flag = 0;
end
end
end
end