|
| 1 | +import csv |
| 2 | +from pathlib import Path |
| 3 | + |
| 4 | +from bw2data.logs import close_log, get_io_logger |
| 5 | +from bw2io.utils import standardize_method_to_len_3 |
| 6 | +from stats_arrays import * |
| 7 | + |
| 8 | +# SKIPPABLE_SECTIONS = { |
| 9 | +# "Airborne emissions", |
| 10 | +# "Economic issues", |
| 11 | +# "Emissions to soil", |
| 12 | +# "Final waste flows", |
| 13 | +# "Quantities", |
| 14 | +# "Raw materials", |
| 15 | +# "Units", |
| 16 | +# "Waterborne emissions", |
| 17 | +# } |
| 18 | + |
| 19 | + |
| 20 | +class EndOfDatasets(Exception): |
| 21 | + pass |
| 22 | + |
| 23 | + |
| 24 | +class SimaProLCIA95ProjectCSVExtractor: |
| 25 | + """ |
| 26 | + Extract data from SimaPro LCIA 9.5 Project CSV file format. |
| 27 | +
|
| 28 | + Differs from `SimaProLCIACSVExtractor` in that this format seems not to use |
| 29 | + `End` at the end of sections. |
| 30 | +
|
| 31 | + Parameters |
| 32 | + ---------- |
| 33 | + filepath: str |
| 34 | + Filepath of the SimaPro LCIACSV file. |
| 35 | + delimiter: str, optional (default: ";") |
| 36 | + Delimiter used in the SimaPro LCIACSV file. |
| 37 | + encoding: str, optional (default: "cp1252") |
| 38 | + Encoding of the SimaPro LCIACSV file. |
| 39 | +
|
| 40 | + Raises |
| 41 | + ------ |
| 42 | + AssertionError |
| 43 | + If the filepath does not exist or the file is not a valid SimaPro |
| 44 | + export file. |
| 45 | +
|
| 46 | + Returns |
| 47 | + ------- |
| 48 | + list |
| 49 | + List of impact categories extracted from the SimaPro file. |
| 50 | + """ |
| 51 | + |
| 52 | + @classmethod |
| 53 | + def extract(cls, filepath: Path, delimiter: str=";", encoding: str="cp1252"): |
| 54 | + filepath = Path(filepath) |
| 55 | + assert filepath.is_file(), f"Can't find file {filepath}" |
| 56 | + log, logfile = get_io_logger("SimaPro-LCIA-extractor") |
| 57 | + |
| 58 | + log.info(f"""Starting SimaPro import: |
| 59 | + Filepath: {filepath} |
| 60 | + Delimiter: {delimiter}""") |
| 61 | + |
| 62 | + strip_delete = lambda obj: obj.strip().replace("\x7f", "") if isinstance(obj, str) else obj |
| 63 | + empty_lines = lambda line: line if any(line) else None |
| 64 | + |
| 65 | + with open(filepath, "r", encoding=encoding) as csv_file: |
| 66 | + reader = csv.reader(csv_file, delimiter=delimiter) |
| 67 | + lines = [ |
| 68 | + [strip_delete(elem) for elem in line] |
| 69 | + for line in reader |
| 70 | + ] |
| 71 | + |
| 72 | + # Check if valid SimaPro file |
| 73 | + assert "SimaPro" in lines[0][0], "File is not valid SimaPro export" |
| 74 | + |
| 75 | + impact_categories, context = [], {} |
| 76 | + sections = cls.clean_sections(cls.split_into_sections(lines)) |
| 77 | + |
| 78 | + for section in sections: |
| 79 | + if section[0][0].startswith("SimaPro"): |
| 80 | + context["simapro version"] = section[0][1] |
| 81 | + elif section[0][0] == 'Name': |
| 82 | + context["method"] = section[0][1] |
| 83 | + elif section[0][0] == 'Comment': |
| 84 | + context["comment"] = "\n".join([line[1] for line in section]) |
| 85 | + elif section[0][0].startswith("Use"): |
| 86 | + context["configuration"] = dict(section) |
| 87 | + elif section[0][0] == 'Impact category': |
| 88 | + impact_categories.append({ |
| 89 | + 'impact category': section[0][1], |
| 90 | + 'unit': section[0][2], |
| 91 | + 'cfs': [cls.parse_cf(line) for line in section[1:]], |
| 92 | + **context |
| 93 | + }) |
| 94 | + elif section[0][0] == 'Normalization-Weighting set': |
| 95 | + continue |
| 96 | + elif section[0][0] == 'Normalization': |
| 97 | + pass |
| 98 | + elif section[0][0] == 'Weighting': |
| 99 | + pass |
| 100 | + |
| 101 | + close_log(log) |
| 102 | + return impact_categories |
| 103 | + |
| 104 | + @classmethod |
| 105 | + def clean_sections(cls, sections: list) -> list: |
| 106 | + """Remove empty sections, and empty lines from sections""" |
| 107 | + return [ |
| 108 | + [line for line in section if line != []] |
| 109 | + for section in sections |
| 110 | + if section != [[]] |
| 111 | + ] |
| 112 | + |
| 113 | + @classmethod |
| 114 | + def split_into_sections(cls, data: list) -> list: |
| 115 | + """Split the SimaPro file into sections using the blank line pattern""" |
| 116 | + split_locations = [2] |
| 117 | + |
| 118 | + for index, line in enumerate(data): |
| 119 | + if line == []: |
| 120 | + split_locations.append(index + 1) |
| 121 | + |
| 122 | + sections = ( |
| 123 | + [data[:split_locations[0]]] |
| 124 | + + [data[split_locations[index]:split_locations[index + 1]] for index in range(len(split_locations) - 1)] |
| 125 | + + [data[split_locations[-1]:]] |
| 126 | + ) |
| 127 | + |
| 128 | + return sections |
| 129 | + |
| 130 | + @classmethod |
| 131 | + def parse_cf(cls, line): |
| 132 | + """Parse line in `Substances` section. |
| 133 | +
|
| 134 | + 0. category |
| 135 | + 1. subcategory |
| 136 | + 2. flow |
| 137 | + 3. CAS number |
| 138 | + 4. CF |
| 139 | + 5. unit |
| 140 | + 6. damage rate |
| 141 | +
|
| 142 | + """ |
| 143 | + return { |
| 144 | + "categories": (line[0], line[1]), |
| 145 | + "name": line[2], |
| 146 | + "CAS number": line[3], |
| 147 | + "amount": float(line[4].replace(",", ".")), |
| 148 | + "unit": line[5], |
| 149 | + "damage_rate": line[6] if len(line) >= 7 else None, |
| 150 | + } |
| 151 | + |
| 152 | + # @classmethod |
| 153 | + # def read_method_data_set(cls, data, index, filepath): |
| 154 | + # """ |
| 155 | + # Read method data set from `data` starting at `index`. |
| 156 | + |
| 157 | + # Parameters |
| 158 | + # ---------- |
| 159 | + # data : list |
| 160 | + # A list of lists containing the data to be processed. |
| 161 | + # index : int |
| 162 | + # The starting index to read method data set from. |
| 163 | + # filepath : str |
| 164 | + # The file path of the method data set. |
| 165 | + |
| 166 | + # Returns |
| 167 | + # ------- |
| 168 | + # list |
| 169 | + # A list of completed method data sets. |
| 170 | + # int |
| 171 | + # The index where the method data set reading ended. |
| 172 | + |
| 173 | + # Raises |
| 174 | + # ------ |
| 175 | + # ValueError |
| 176 | + |
| 177 | + # """ |
| 178 | + # metadata, index = cls.read_metadata(data, index) |
| 179 | + # method_root_name = metadata.pop("Name") |
| 180 | + # description = metadata.pop("Comment") |
| 181 | + # category_data, nw_data, damage_category_data, completed_data = [], [], [], [] |
| 182 | + |
| 183 | + # # `index` is now the `Impact category` line |
| 184 | + # while not data[index] or data[index][0] != "End": |
| 185 | + # if not data[index] or not data[index][0]: |
| 186 | + # index += 1 |
| 187 | + # elif data[index][0] == "Impact category": |
| 188 | + # catdata, index = cls.get_category_data(data, index + 1) |
| 189 | + # category_data.append(catdata) |
| 190 | + # elif data[index][0] == "Normalization-Weighting set": |
| 191 | + # nw_dataset, index = cls.get_normalization_weighting_data( |
| 192 | + # data, index + 1 |
| 193 | + # ) |
| 194 | + # nw_data.append(nw_dataset) |
| 195 | + # elif data[index][0] == "Damage category": |
| 196 | + # catdata, index = cls.get_damage_category_data(data, index + 1) |
| 197 | + # damage_category_data.append(catdata) |
| 198 | + # else: |
| 199 | + # raise ValueError |
| 200 | + |
| 201 | + # for ds in category_data: |
| 202 | + # completed_data.append( |
| 203 | + # { |
| 204 | + # "description": description, |
| 205 | + # "name": (method_root_name, ds[0]), |
| 206 | + # "unit": ds[1], |
| 207 | + # "filename": filepath, |
| 208 | + # "exchanges": ds[2], |
| 209 | + # } |
| 210 | + # ) |
| 211 | + |
| 212 | + # for ds in nw_data: |
| 213 | + # completed_data.append( |
| 214 | + # { |
| 215 | + # "description": description, |
| 216 | + # "name": (method_root_name, ds[0]), |
| 217 | + # "unit": metadata["Weighting unit"], |
| 218 | + # "filename": filepath, |
| 219 | + # "exchanges": cls.get_all_cfs(ds[1], category_data), |
| 220 | + # } |
| 221 | + # ) |
| 222 | + |
| 223 | + # for ds in damage_category_data: |
| 224 | + # completed_data.append( |
| 225 | + # { |
| 226 | + # "description": description, |
| 227 | + # "name": (method_root_name, ds[0]), |
| 228 | + # "unit": ds[1], |
| 229 | + # "filename": filepath, |
| 230 | + # "exchanges": cls.get_damage_exchanges(ds[2], category_data), |
| 231 | + # } |
| 232 | + # ) |
| 233 | + |
| 234 | + # return completed_data, index |
| 235 | + |
| 236 | + # @classmethod |
| 237 | + # def get_all_cfs(cls, nw_data, category_data): |
| 238 | + # """ |
| 239 | + # Get all CFs from `nw_data` and `category_data`. |
| 240 | + |
| 241 | + # Parameters |
| 242 | + # ---------- |
| 243 | + # nw_data : list |
| 244 | + # A list of tuples containing normalization-weighting (NW) set names and scales. |
| 245 | + # category_data : list |
| 246 | + # A list of tuples containing impact category names, units, and CF data. |
| 247 | + # Returns |
| 248 | + # ------- |
| 249 | + # list |
| 250 | + # A list of all CFs. |
| 251 | + # """ |
| 252 | + |
| 253 | + # def rescale(cf, scale): |
| 254 | + # cf["amount"] *= scale |
| 255 | + # return cf |
| 256 | + |
| 257 | + # cfs = [] |
| 258 | + # for nw_name, scale in nw_data: |
| 259 | + # for cat_name, _, cf_data in category_data: |
| 260 | + # if cat_name == nw_name: |
| 261 | + # cfs.extend([rescale(cf, scale) for cf in cf_data]) |
| 262 | + # return cfs |
| 263 | + |
| 264 | + # @classmethod |
| 265 | + # def get_damage_exchanges(cls, damage_data, category_data): |
| 266 | + # """ |
| 267 | + # Calculate the damage exchanges based on damage data and category data. |
| 268 | + |
| 269 | + # Parameters |
| 270 | + # ---------- |
| 271 | + # damage_data : list of tuples |
| 272 | + # A list of tuples containing the name and scale of the damage |
| 273 | + # category_data : list of tuples |
| 274 | + # A list of tuples containing the name, unit, and data of each impact category |
| 275 | + |
| 276 | + # Returns |
| 277 | + # ------- |
| 278 | + # list of dictionaries |
| 279 | + # A list of dictionaries with the calculated damage exchanges of each impact category |
| 280 | + # """ |
| 281 | + |
| 282 | + # def rescale(cf, scale): |
| 283 | + # cf["amount"] *= scale |
| 284 | + # return cf |
| 285 | + |
| 286 | + # cfs = [] |
| 287 | + # for damage_name, scale in damage_data: |
| 288 | + # for cat_name, _, cf_data in category_data: |
| 289 | + # if cat_name == damage_name: |
| 290 | + # # Multiple impact categories might use the same exchanges |
| 291 | + # # So scale and increment the amount if it exists, scale and append if it doesn't |
| 292 | + # for cf in cf_data: |
| 293 | + # c_name, c_categories = cf["name"], cf["categories"] |
| 294 | + # found_cf = False |
| 295 | + # for existing_cf in cfs: |
| 296 | + # if ( |
| 297 | + # existing_cf["name"] == c_name |
| 298 | + # and existing_cf["categories"] == c_categories |
| 299 | + # ): |
| 300 | + # existing_cf["amount"] += cf["amount"] * scale |
| 301 | + # found_cf = True |
| 302 | + # continue |
| 303 | + # if found_cf: |
| 304 | + # continue |
| 305 | + # cfs.extend([rescale(cf, scale) for cf in cf_data]) |
| 306 | + # return cfs |
| 307 | + |
| 308 | + # @classmethod |
| 309 | + # def get_category_data(cls, data, index): |
| 310 | + # """ |
| 311 | + # Parse impact category data and return its name, unit, and data. |
| 312 | + |
| 313 | + # Parameters |
| 314 | + # ---------- |
| 315 | + # data : list of lists |
| 316 | + # A list of lists with the data for all categories |
| 317 | + # index : int |
| 318 | + # The index of the current impact category in the list |
| 319 | + |
| 320 | + # Returns |
| 321 | + # ------- |
| 322 | + # tuple |
| 323 | + # A tuple with the name, unit, and data for the impact category |
| 324 | + # """ |
| 325 | + # cf_data = [] |
| 326 | + # # First line is name and unit |
| 327 | + # name, unit = data[index][:2] |
| 328 | + # index += 2 |
| 329 | + # assert data[index][0] == "Substances" |
| 330 | + # index += 1 |
| 331 | + # while data[index]: |
| 332 | + # cf_data.append(cls.parse_cf(data[index])) |
| 333 | + # index += 1 |
| 334 | + # return (name, unit, cf_data), index |
| 335 | + |
| 336 | + # @classmethod |
| 337 | + # def get_damage_category_data(cls, data, index): |
| 338 | + # """ |
| 339 | + # Parse damage category data and return the name, unit, and data of the category. |
| 340 | + |
| 341 | + # Parameters |
| 342 | + # ---------- |
| 343 | + # data : list of lists |
| 344 | + # A list of lists with the data of the damage categories |
| 345 | + # index : int |
| 346 | + # The index of the current damage category in the list |
| 347 | + |
| 348 | + # Returns |
| 349 | + # ------- |
| 350 | + # tuple |
| 351 | + # A tuple with the name, unit, and data for the damage category |
| 352 | + # """ |
| 353 | + # damage_data = [] |
| 354 | + # # First line is name and unit |
| 355 | + # name, unit = data[index][:2] |
| 356 | + # index += 2 |
| 357 | + # assert data[index][0] == "Impact categories" |
| 358 | + # index += 1 |
| 359 | + # while data[index]: |
| 360 | + # method, scalar = data[index][:2] |
| 361 | + # damage_data.append((method, float(scalar.replace(",", ".")))) |
| 362 | + # index += 1 |
| 363 | + # return (name, unit, damage_data), index |
| 364 | + |
| 365 | + # @classmethod |
| 366 | + # def get_normalization_weighting_data(cls, data, index): |
| 367 | + # # TODO: Only works for weighting data, no addition or normalization |
| 368 | + # nw_data = [] |
| 369 | + # name = data[index][0] |
| 370 | + # index += 2 |
| 371 | + # assert data[index][0] == "Weighting" |
| 372 | + # index += 1 |
| 373 | + # while data[index]: |
| 374 | + # cat, weight = data[index][:2] |
| 375 | + # index += 1 |
| 376 | + # if weight == "0": |
| 377 | + # continue |
| 378 | + # nw_data.append((cat, float(weight.replace(",", ".")))) |
| 379 | + # return (name, nw_data), index |
0 commit comments