-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel Trainer.py
40 lines (26 loc) · 1.25 KB
/
Model Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import cv2
import numpy as np
from PIL import Image #pillow package
import os
path = 'samples' # Path for samples already taken
recognizer = cv2.face.LBPHFaceRecognizer_create() # Local Binary Patterns Histograms
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
#Haar Cascade classifier is an effective object detection approach
def Images_And_Labels(path): # function to fetch the images and labels
imagePaths = [os.path.join(path,f) for f in os.listdir(path)]
faceSamples=[]
ids = []
for imagePath in imagePaths: # to iterate particular image path
gray_img = Image.open(imagePath).convert('L') # convert it to grayscale
img_arr = np.array(gray_img,'uint8') #creating an array
id = int(os.path.split(imagePath)[-1].split(".")[1])
faces = detector.detectMultiScale(img_arr)
for (x,y,w,h) in faces:
faceSamples.append(img_arr[y:y+h,x:x+w])
ids.append(id)
return faceSamples,ids
print ("Training faces. It will take a few seconds. Wait ...")
faces,ids = Images_And_Labels(path)
recognizer.train(faces, np.array(ids))
recognizer.write('trainer/trainer.yml') # Save the trained model as trainer.yml
print("Model trained, Now we can recognize your face.")