-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.labelnumbers.first-edition
1934 lines (1780 loc) · 77 KB
/
main.labelnumbers.first-edition
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\newlabel{analysis-bw-lpo}{11.5.9}
\newlabel{analysis-interval-ctb}{11.5.6}
\newlabel{axiom:funext}{2.9.3}
\newlabel{axiom:univalence}{2.10.3}
\newlabel{Blakers-Massey}{8.10.2}
\newlabel{card:exp}{10.2.6}
\newlabel{card:semiring}{10.2.4}
\newlabel{cha:basics}{2}
\newlabel{cha:category-theory}{9}
\newlabel{cha:equivalences}{4}
\newlabel{cha:hits}{6}
\newlabel{cha:hlevels}{7}
\newlabel{cha:homotopy}{8}
\newlabel{cha:induction}{5}
\newlabel{cha:logic}{3}
\newlabel{cha:preface}{}
\newlabel{cha:real-numbers}{11}
\newlabel{cha:rules}{A}
\newlabel{cha:set-math}{10}
\newlabel{cha:typetheory}{1}
\newlabel{classical-Heine-Borel}{11.5.11}
\newlabel{connectedtotruncated}{7.5.9}
\newlabel{contrfamtotalpostcompequiv}{4.9.3}
\newlabel{cor:Delta0sep}{10.5.9}
\newlabel{cor:freudenthal-equiv}{8.6.14}
\newlabel{cor:hom-fg}{2.4.4}
\newlabel{cor:omega-s1}{8.1.10}
\newlabel{cor:pi1s1}{8.1.11}
\newlabel{cor:pis2-hopf}{8.5.2}
\newlabel{cor:preservation-hlevels-weq}{7.1.5}
\newlabel{cor:sn-connected}{8.2.2}
\newlabel{cor:stability-spheres}{8.6.15}
\newlabel{cor:totrunc-is-connected}{7.5.8}
\newlabel{cor:transport-path-prepost}{2.11.2}
\newlabel{cor:trunc-prod}{7.3.8}
\newlabel{cor:trunc_prod}{7.7.3}
\newlabel{cor:UC}{3.9.2}
\newlabel{cref@analysis-bw-lpo}{[thm][9][11,5]11.5.9}
\newlabel{cref@analysis-interval-ctb}{[thm][6][11,5]11.5.6}
\newlabel{cref@axiom:funext}{[axiom][3][2,9]2.9.3}
\newlabel{cref@axiom:univalence}{[axiom][3][2,10]2.10.3}
\newlabel{cref@Blakers-Massey}{[thm][2][8,10]8.10.2}
\newlabel{cref@card:exp}{[lem][6][10,2]10.2.6}
\newlabel{cref@card:semiring}{[lem][4][10,2]10.2.4}
\newlabel{cref@cha:basics}{[chapter][2][]2}
\newlabel{cref@cha:category-theory}{[chapter][9][]9}
\newlabel{cref@cha:equivalences}{[chapter][4][]4}
\newlabel{cref@cha:hits}{[chapter][6][]6}
\newlabel{cref@cha:hlevels}{[chapter][7][]7}
\newlabel{cref@cha:homotopy}{[chapter][8][]8}
\newlabel{cref@cha:induction}{[chapter][5][]5}
\newlabel{cref@cha:logic}{[chapter][3][]3}
\newlabel{cref@cha:preface}{}
\newlabel{cref@cha:real-numbers}{[chapter][11][]11}
\newlabel{cref@cha:rules}{[appendix][1][2147483647]A}
\newlabel{cref@cha:set-math}{[chapter][10][]10}
\newlabel{cref@cha:typetheory}{[chapter][1][]1}
\newlabel{cref@classical-Heine-Borel}{[thm][11][11,5]11.5.11}
\newlabel{cref@connectedtotruncated}{[cor][9][7,5]7.5.9}
\newlabel{cref@contrfamtotalpostcompequiv}{[cor][3][4,9]4.9.3}
\newlabel{cref@cor:Delta0sep}{[cor][9][10,5]10.5.9}
\newlabel{cref@cor:freudenthal-equiv}{[cor][14][8,6]8.6.14}
\newlabel{cref@cor:hom-fg}{[cor][4][2,4]2.4.4}
\newlabel{cref@cor:omega-s1}{[cor][10][8,1]8.1.10}
\newlabel{cref@cor:pi1s1}{[cor][11][8,1]8.1.11}
\newlabel{cref@cor:pis2-hopf}{[cor][2][8,5]8.5.2}
\newlabel{cref@cor:preservation-hlevels-weq}{[cor][5][7,1]7.1.5}
\newlabel{cref@cor:sn-connected}{[cor][2][8,2]8.2.2}
\newlabel{cref@cor:stability-spheres}{[cor][15][8,6]8.6.15}
\newlabel{cref@cor:totrunc-is-connected}{[cor][8][7,5]7.5.8}
\newlabel{cref@cor:transport-path-prepost}{[lem][2][2,11]2.11.2}
\newlabel{cref@cor:trunc_prod}{[cor][3][7,7]7.7.3}
\newlabel{cref@cor:trunc-prod}{[thm][8][7,3]7.3.8}
\newlabel{cref@cor:UC}{[cor][2][3,9]3.9.2}
\newlabel{cref@ct:2cat}{[ex][5][9]9.5}
\newlabel{cref@ct:adjointification}{[lem][2][9,4]9.4.2}
\newlabel{cref@ct:adjprop2}{[cor][11][9,5]9.5.11}
\newlabel{cref@ct:adjprop}{[lem][2][9,3]9.3.2}
\newlabel{cref@ct:adj-repr}{[lem][10][9,5]9.5.10}
\newlabel{cref@ctb-uniformly-continuous-sup}{[thm][7][11,5]11.5.7}
\newlabel{cref@ct:cat-2cat}{[thm][16][9,4]9.4.16}
\newlabel{cref@ct:category}{[defn][6][9,1]9.1.6}
\newlabel{cref@ct:cat-eq-iso}{[lem][15][9,4]9.4.15}
\newlabel{cref@ct:cat-weq-eq}{[thm][4][9,9]9.9.4}
\newlabel{cref@ct:catweq}{[lem][7][9,4]9.4.7}
\newlabel{cref@ct:chaotic}{[eg][13][9,4]9.4.13}
\newlabel{cref@ct:discrete}{[eg][16][9,1]9.1.16}
\newlabel{cref@ct:eg:set}{[eg][7][9,1]9.1.7}
\newlabel{cref@ct:equiv}{[defn][1][9,4]9.4.1}
\newlabel{cref@ct:eqv-levelwise}{[lem][14][9,4]9.4.14}
\newlabel{cref@ct:esofull-precomp-ff}{[lem][2][9,9]9.9.2}
\newlabel{cref@ct:ex:hocat}{[ex][9][9]9.9}
\newlabel{cref@ct:ffeso}{[lem][5][9,4]9.4.5}
\newlabel{cref@ct:functor-assoc}{[lem][9][9,2]9.2.9}
\newlabel{cref@ct:functor-cat}{[thm][5][9,2]9.2.5}
\newlabel{cref@ct:functor}{[defn][1][9,2]9.2.1}
\newlabel{cref@ct:functorexpadj}{[lem][3][9,5]9.5.3}
\newlabel{cref@ct:functor-precat}{[defn][3][9,2]9.2.3}
\newlabel{cref@ct:fundgpd}{[eg][17][9,1]9.1.17}
\newlabel{cref@ct:galois}{[eg][3][9,6]9.6.3}
\newlabel{cref@ct:gaunt}{[eg][15][9,1]9.1.15}
\newlabel{cref@ct:groupoids}{[ex][6][9]9.6}
\newlabel{cref@ct:hilb}{[eg][7][9,7]9.7.7}
\newlabel{cref@ct:hocat}{[eg][7][9,9]9.9.7}
\newlabel{cref@ct:hoprecat}{[eg][18][9,1]9.1.18}
\newlabel{cref@ct:idtoisocompute}{[equation][10][9,1]9.1.10}
\newlabel{cref@ct:idtoiso}{[lem][4][9,1]9.1.4}
\newlabel{cref@ct:idtoiso-trans}{[lem][9][9,1]9.1.9}
\newlabel{cref@ct:idtounitary}{[lem][3][9,7]9.7.3}
\newlabel{cref@ct:interchange}{[lem][8][9,2]9.2.8}
\newlabel{cref@ct:isocat}{[defn][8][9,4]9.4.8}
\newlabel{cref@ct:isomorphism}{[defn][2][9,1]9.1.2}
\newlabel{cref@ct:isoprecat}{[lem][9][9,4]9.4.9}
\newlabel{cref@ct:isoprop}{[lem][3][9,1]9.1.3}
\newlabel{cref@ct:natiso}{[lem][4][9,2]9.2.4}
\newlabel{cref@ct:nattrans}{[defn][2][9,2]9.2.2}
\newlabel{cref@ct:obj-1type}{[lem][8][9,1]9.1.8}
\newlabel{cref@ct:opposite-category}{[defn][1][9,5]9.5.1}
\newlabel{cref@ct:orders}{[eg][14][9,1]9.1.14}
\newlabel{cref@ct:pentagon}{[lem][10][9,2]9.2.10}
\newlabel{cref@ct:pre2cat}{[ex][4][9]9.4}
\newlabel{cref@ct:precategory}{[defn][1][9,1]9.1.1}
\newlabel{cref@ct:precatset}{[eg][5][9,1]9.1.5}
\newlabel{cref@ct:rel}{[eg][19][9,1]9.1.19}
\newlabel{cref@ct:representable}{[defn][8][9,5]9.5.8}
\newlabel{cref@ct:representable-prop}{[thm][9][9,5]9.5.9}
\newlabel{cref@ct:rezk-fundgpd-trunc1}{[eg][6][9,9]9.9.6}
\newlabel{cref@ct:sig}{[defn][1][9,8]9.8.1}
\newlabel{cref@ct:sip-functor-cat}{[eg][3][9,8]9.8.3}
\newlabel{cref@ct:unitary}{[defn][2][9,7]9.7.2}
\newlabel{cref@ct:units}{[lem][11][9,2]9.2.11}
\newlabel{cref@ct:yoneda-embedding}{[cor][6][9,5]9.5.6}
\newlabel{cref@ct:yoneda-mono}{[cor][7][9,5]9.5.7}
\newlabel{cref@ct:yoneda}{[thm][4][9,5]9.5.4}
\newlabel{cref@dedekind-in-cut-as-le}{[lem][2][11,2]11.2.2}
\newlabel{cref@def:bisimulation}{[defn][4][10,5]10.5.4}
\newlabel{cref@def:hlevel}{[defn][1][7,1]7.1.1}
\newlabel{cref@def:loopspace}{[defn][8][2,1]2.1.8}
\newlabel{cref@defn:1type}{[defn][7][3,1]3.1.7}
\newlabel{cref@defn:accessibility}{[defn][1][10,3]10.3.1}
\newlabel{cref@defn:biinv}{[defn][1][4,3]4.3.1}
\newlabel{cref@defn:card}{[defn][1][10,2]10.2.1}
\newlabel{cref@defn:cauchy-approximation}{[defn][10][11,2]11.2.10}
\newlabel{cref@defn:cauchy-reals}{[defn][2][11,3]11.3.2}
\newlabel{cref@defn:cocone}{[defn][1][6,8]6.8.1}
\newlabel{cref@defn:complete-metric-space}{[defn][2][11,5]11.5.2}
\newlabel{cref@defn:contractible}{[defn][1][3,11]3.11.1}
\newlabel{cref@defn:decidable-equality}{[defn][3][3,4]3.4.3}
\newlabel{cref@defn:dedekind-reals}{[defn][1][11,2]11.2.1}
\newlabel{cref@defn:equivalence}{[defn][1][4,4]4.4.1}
\newlabel{cref@defn:fo-notion-of-structure}{[defn][4][9,8]9.8.4}
\newlabel{cref@defn:homotopy}{[defn][1][2,4]2.4.1}
\newlabel{cref@defn:homotopy-fiber}{[defn][4][4,2]4.2.4}
\newlabel{cref@defn:identity-systems}{[defn][1][5,8]5.8.1}
\newlabel{cref@defn:inductive-cover}{[defn][13][11,5]11.5.13}
\newlabel{cref@defn:inductive-cover-interval-1}{[enumi][5][](v)}
\newlabel{cref@defn:inductive-cover-interval-2}{[enumi][6][](vi)}
\newlabel{cref@defn:ishae}{[defn][1][4,2]4.2.1}
\newlabel{cref@defn:isprop}{[defn][1][3,3]3.3.1}
\newlabel{cref@defn:lcoh-rcoh}{[defn][10][4,2]4.2.10}
\newlabel{cref@defn:linv-rinv}{[defn][7][4,2]4.2.7}
\newlabel{cref@defn:lipschitz}{[defn][14][11,3]11.3.14}
\newlabel{cref@defn:logical-notation}{[defn][1][3,7]3.7.1}
\newlabel{cref@defn:metric-space}{[defn][1][11,5]11.5.1}
\newlabel{cref@defn:modal-image}{[defn][3][7,6]7.6.3}
\newlabel{cref@defn:modality}{[defn][5][7,7]7.7.5}
\newlabel{cref@defn:nalg}{[defn][1][5,4]5.4.1}
\newlabel{cref@defn:nhom}{[defn][2][5,4]5.4.2}
\newlabel{cref@defn:No-codes}{[thm][7][11,6]11.6.7}
\newlabel{cref@defn:RC-approx}{[thm][16][11,3]11.3.16}
\newlabel{cref@defn:reflective-subuniverse}{[defn][1][7,7]7.7.1}
\newlabel{cref@defn:retract}{[defn][2][4,7]4.7.2}
\newlabel{cref@defn:set}{[defn][1][3,1]3.1.1}
\newlabel{cref@defn:setof}{[lem][1][3,5]3.5.1}
\newlabel{cref@defn:surreals}{[defn][1][11,6]11.6.1}
\newlabel{cref@defn:total-bounded-metric-space}{[defn][3][11,5]11.5.3}
\newlabel{cref@defn:total-map}{[defn][5][4,7]4.7.5}
\newlabel{cref@defn:uniformly-continuous}{[defn][5][11,5]11.5.5}
\newlabel{cref@defn:V}{[defn][1][10,5]10.5.1}
\newlabel{cref@defn-Z}{[rmk][7][6,10]6.10.7}
\newlabel{cref@def-of-homotopy-groups}{[defn][1][8,0]8.0.1}
\newlabel{cref@def:pointedmap}{[defn][1][8,4]8.4.1}
\newlabel{cref@def:pointedtype}{[defn][7][2,1]2.1.7}
\newlabel{cref@def:simulation}{[defn][11][10,3]10.3.11}
\newlabel{cref@def:TypeOfElements}{[defn][7][10,5]10.5.7}
\newlabel{cref@def:VVquotient}{[defn][5][6,10]6.10.5}
\newlabel{cref@eg:circle}{[eg][6][8,7]8.7.6}
\newlabel{cref@eg:clvk}{[eg][13][8,7]8.7.13}
\newlabel{cref@eg:cofiber}{[eg][14][8,7]8.7.14}
\newlabel{cref@eg:concatequiv}{[eg][8][2,4]2.4.8}
\newlabel{cref@eg:idequiv}{[eg][7][2,4]2.4.7}
\newlabel{cref@eg:kg1}{[eg][17][8,7]8.7.17}
\newlabel{cref@eg:suspension}{[eg][7][8,7]8.7.7}
\newlabel{cref@eg:torus}{[eg][15][8,7]8.7.15}
\newlabel{cref@eg:unnatural-hit}{[eg][1][6,13]6.13.1}
\newlabel{cref@eg:wedge}{[eg][8][8,7]8.7.8}
\newlabel{cref@Eilenberg-Mac-Lane-Spaces}{[thm][3][8,10]8.10.3}
\newlabel{cref@epis-surj}{[lem][4][10,1]10.1.4}
\newlabel{cref@eq:ac}{[equation][1][3,8]3.8.1}
\newlabel{cref@eq:apd-to-ap}{[equation][7][2,3]2.3.7}
\newlabel{cref@eq:appxrec2}{[equation][24][11,3]11.3.24}
\newlabel{cref@eq:ap-to-apd}{[equation][6][2,3]2.3.6}
\newlabel{cref@eq:bfa-bga2}{[equation][11][8,7]8.7.11}
\newlabel{cref@eq:bfa-bga-comm}{[equation][2][8,7]8.7.2}
\newlabel{cref@eq:bfa-bga}{[equation][1][8,7]8.7.1}
\newlabel{cref@eq:cauchy-approx}{[equation][11][11,2]11.2.11}
\newlabel{cref@eq:cauchy-sequence}{[equation][9][11,2]11.2.9}
\newlabel{cref@eq:class-notation}{[equation][3][10,5]10.5.3}
\newlabel{cref@eq:composeconefunc}{[equation][4][7,4]7.4.4}
\newlabel{cref@eq:composeconeid}{[equation][3][7,4]7.4.3}
\newlabel{cref@eq:concatD}{[equation][3][2,1]2.1.3}
\newlabel{cref@eq:conetrunc}{[equation][11][7,4]7.4.11}
\newlabel{cref@eq:cover-pointwise}{[equation][12][11,5]11.5.12}
\newlabel{cref@eq:cover-pointwise-truncated}{[equation][10][11,5]11.5.10}
\newlabel{cref@eq:ct:gbar}{[equation][12][9,4]9.4.12}
\newlabel{cref@eq:ct:ipctri}{[equation][11][9,4]9.4.11}
\newlabel{cref@eq:ct:isoprecattri}{[equation][10][9,4]9.4.10}
\newlabel{cref@eq:dbl0}{[equation][1][1,10]1.10.1}
\newlabel{cref@eq:dbl-as-rec}{[equation][1][1,9]1.9.1}
\newlabel{cref@eq:dblsuc}{[equation][2][1,10]1.10.2}
\newlabel{cref@eq:decode}{[equation][5][8,7]8.7.5}
\newlabel{cref@eq:defn-pullback}{[equation][11][2,15]2.15.11}
\newlabel{cref@eq:depCauchyappx}{[equation][5][11,3]11.3.5}
\newlabel{cref@eq:dnshift}{[equation][11][3,11]3.11.11}
\newlabel{cref@eq:dpath}{[equation][2][6,2]6.2.2}
\newlabel{cref@eq:english-ac}{[equation][1][3,2]3.2.1}
\newlabel{cref@eq:epis-split}{[equation][3][3,8]3.8.3}
\newlabel{cref@eq:equality-semigroup-mult}{[subsection][2][]2.14.2}
\newlabel{cref@eq:eqv}{[equation][11][2,4]2.4.11}
\newlabel{cref@eq:example-comp}{[equation][6][5,6]5.6.6}
\newlabel{cref@eq:example-constructor}{[equation][4][5,6]5.6.4}
\newlabel{cref@eq:example-indhyp}{[equation][7][5,6]5.6.7}
\newlabel{cref@eq:example-rechyp}{[equation][5][5,6]5.6.5}
\newlabel{cref@eq:expldef}{[equation][1][1,2]1.2.1}
\newlabel{cref@eq:fake-recursor}{[equation][1][5,6]5.6.1}
\newlabel{cref@eq:ffprime-north}{[equation][5][6,5]6.5.5}
\newlabel{cref@eq:flattening-rectnd}{[equation][6][6,12]6.12.6}
\newlabel{cref@eq:fpaut}{[equation][3][3,2]3.2.3}
\newlabel{cref@eq:fpfaut}{[equation][4][3,2]3.2.4}
\newlabel{cref@eq:freudcode}{[equation][6][8,6]8.6.6}
\newlabel{cref@eq:freudcodeN}{[equation][7][8,6]8.6.7}
\newlabel{cref@eq:freudcodeS}{[equation][8][8,6]8.6.8}
\newlabel{cref@eq:freudcompute1}{[equation][11][8,6]8.6.11}
\newlabel{cref@eq:freudcompute2}{[equation][12][8,6]8.6.12}
\newlabel{cref@eq:freudenthal-for-spheres}{[equation][16][8,6]8.6.16}
\newlabel{cref@eq:freudgoal}{[equation][13][8,6]8.6.13}
\newlabel{cref@eq:freudmap}{[equation][9][8,6]8.6.9}
\newlabel{cref@eq:fullprop}{[equation][3][9,9]9.9.3}
\newlabel{cref@eq:happly}{[equation][2][2,9]2.9.2}
\newlabel{cref@eq:injective}{[equation][2][4,6]4.6.2}
\newlabel{cref@eq:inlinj}{[equation][1][2,12]2.12.1}
\newlabel{cref@eq:inlrdj}{[equation][3][2,12]2.12.3}
\newlabel{cref@eq:iscontrf}{[equation][2][4,4]4.4.2}
\newlabel{cref@eq:isequiv-invertible}{[equation][10][2,4]2.4.10}
\newlabel{cref@eq:Jconv}{[equation][1][2,0]2.0.1}
\newlabel{cref@eq:lambda-abstraction}{[equation][1][1,4]1.4.1}
\newlabel{cref@eq:ldn}{[equation][2][3,4]3.4.2}
\newlabel{cref@eq:lem}{[equation][1][3,4]3.4.1}
\newlabel{cref@eq:lpo}{[equation][8][11,5]11.5.8}
\newlabel{cref@eq:mapofspans-htpy}{[equation][9][7,4]7.4.9}
\newlabel{cref@eq:modaltype}{[equation][6][7,7]7.7.6}
\newlabel{cref@eq:NO-codes-transitivity}{[equation][9][11,6]11.6.9}
\newlabel{cref@eq:NO-codes-unstrict}{[equation][8][11,6]11.6.8}
\newlabel{cref@eq:noind1}{[equation][3][11,6]11.6.3}
\newlabel{cref@eq:NO-prec-def}{[equation][15][11,6]11.6.15}
\newlabel{cref@eq:NO-preceq-def}{[equation][14][11,6]11.6.14}
\newlabel{cref@eq:NO-prec-IHL}{[equation][12][11,6]11.6.12}
\newlabel{cref@eq:NO-prec-IHR}{[equation][13][11,6]11.6.13}
\newlabel{cref@eq:NO-prec-outer-IH}{[equation][10][11,6]11.6.10}
\newlabel{cref@eq:path-forall}{[equation][1][2,9]2.9.1}
\newlabel{cref@eq:path-lump}{[equation][10][2,15]2.15.10}
\newlabel{cref@eq:path-prod}{[equation][1][2,6]2.6.1}
\newlabel{cref@eq:path-prod-inverse}{[equation][3][2,6]2.6.3}
\newlabel{cref@eq:path-trunc-map}{[equation][11][7,3]7.3.11}
\newlabel{cref@eq:pi1s1-decode}{[equation][4][8,1]8.1.4}
\newlabel{cref@eq:pi1s1-encode}{[equation][3][8,1]8.1.3}
\newlabel{cref@eq:Pinj}{[equation][2][5,6]5.6.2}
\newlabel{cref@eq:polyfunc}{[equation][6][5,4]5.4.6}
\newlabel{cref@eq:prodeqv}{[equation][1][2,5]2.5.1}
\newlabel{cref@eq:prod-umpd-map}{[equation][4][2,15]2.15.4}
\newlabel{cref@eq:prod-ump-map}{[equation][1][2,15]2.15.1}
\newlabel{cref@eq:prod-ump-rt1}{[equation][3][2,15]2.15.3}
\newlabel{cref@eq:prod-ump-rt2}{[equation][8][2,15]2.15.8}
\newlabel{cref@eq:prop-up}{[equation][4][3,5]3.5.4}
\newlabel{cref@eq:qinvtype}{[equation][5][2,4]2.4.5}
\newlabel{cref@eq:quotient-when-canonical}{[equation][9][6,10]6.10.9}
\newlabel{cref@eq:RCappx1}{[equation][17][11,3]11.3.17}
\newlabel{cref@eq:RCappx2}{[equation][18][11,3]11.3.18}
\newlabel{cref@eq:RCappx3}{[equation][19][11,3]11.3.19}
\newlabel{cref@eq:RCappx4}{[equation][20][11,3]11.3.20}
\newlabel{cref@eq:RCappx-rtri-rll1}{[equation][29][11,3]11.3.29}
\newlabel{cref@eq:RCappx-rtri-rll2}{[equation][30][11,3]11.3.30}
\newlabel{cref@eq:RCappx-rtri-rll3}{[equation][31][11,3]11.3.31}
\newlabel{cref@eq:RCappx-rtri-rlr1}{[equation][27][11,3]11.3.27}
\newlabel{cref@eq:RCappx-rtri-rlr2}{[equation][28][11,3]11.3.28}
\newlabel{cref@eq:RCappx-rtri-rrl1}{[equation][25][11,3]11.3.25}
\newlabel{cref@eq:RCappx-rtri-rrl2}{[equation][26][11,3]11.3.26}
\newlabel{cref@eq:RC-cauchy}{[equation][3][11,3]11.3.3}
\newlabel{cref@eq:RC-path}{[equation][4][11,3]11.3.4}
\newlabel{cref@eq:rcsimind1}{[equation][6][11,3]11.3.6}
\newlabel{cref@eq:rcsimind2}{[equation][7][11,3]11.3.7}
\newlabel{cref@eq:RC-sim-ltri}{[equation][23][11,3]11.3.23}
\newlabel{cref@eq:RC-sim-recursion-extra}{[equation][13][11,3]11.3.13}
\newlabel{cref@eq:RC-sim-rtri}{[equation][22][11,3]11.3.22}
\newlabel{cref@eq:RD-linear-order}{[equation][3][11,2]11.2.3}
\newlabel{cref@eq:S1recindbase}{[equation][6][6,2]6.2.6}
\newlabel{cref@eq:S1recindloop}{[equation][7][6,2]6.2.7}
\newlabel{cref@eq:set-up}{[equation][3][3,5]3.5.3}
\newlabel{cref@eq:sigma-lump}{[equation][9][2,15]2.15.9}
\newlabel{cref@eq:sigma-ump-map}{[equation][6][2,15]2.15.6}
\newlabel{cref@eq:Snsusp}{[equation][2][6,5]6.5.2}
\newlabel{cref@eq:subset}{[equation][2][3,5]3.5.2}
\newlabel{cref@eq:suc-injective}{[equation][3][2,13]2.13.3}
\newlabel{cref@eq:sumcodefam}{[equation][4][2,12]2.12.4}
\newlabel{cref@eq:tautology1}{[equation][1][1,11]1.11.1}
\newlabel{cref@eq:tautology2}{[equation][2][1,11]1.11.2}
\newlabel{cref@eq:transport-arrow}{[equation][4][2,9]2.9.4}
\newlabel{cref@eq:transport-arrow-families}{[equation][5][2,9]2.9.5}
\newlabel{cref@eq:transport-semigroup-assoc}{[equation][3][2,14]2.14.3}
\newlabel{cref@eq:transport-semigroup-step1}{[equation][2][2,14]2.14.2}
\newlabel{cref@eq:trunc-htpy}{[equation][6][7,3]7.3.6}
\newlabel{cref@eq:trunc-nat}{[equation][4][7,3]7.3.4}
\newlabel{cref@eq:uatofeps}{[equation][7][4,9]4.9.7}
\newlabel{cref@eq:uatofesp}{[equation][6][4,9]4.9.6}
\newlabel{cref@eq:uidtoeqv}{[equation][2][2,10]2.10.2}
\newlabel{cref@eq:untruncated-linearity}{[equation][2][11,4]11.4.2}
\newlabel{cref@equ:prequired}{[equation][8][5,4]5.4.8}
\newlabel{cref@eq:V-path}{[equation][2][10,5]10.5.2}
\newlabel{cref@eq:yoneda}{[equation][5][9,5]9.5.5}
\newlabel{cref@eq:zero-not-succ}{[equation][2][2,13]2.13.2}
\newlabel{cref@ex:acconn}{[ex][10][7]7.10}
\newlabel{cref@ex:ackermann}{[ex][10][1]1.10}
\newlabel{cref@ex:acnm}{[ex][8][7]7.8}
\newlabel{cref@ex:acnm-surjset}{[ex][9][7]7.9}
\newlabel{cref@ex:ap-path-inversion}{[ex][6][8]8.6}
\newlabel{cref@ex:ap-sigma}{[ex][7][2]2.7}
\newlabel{cref@ex:basics:concat}{[ex][1][2]2.1}
\newlabel{cref@ex:bool}{[ex][4][5]5.4}
\newlabel{cref@ex:brck-qinv}{[ex][8][3]3.8}
\newlabel{cref@ex:choice-function}{[ex][10][10]10.10}
\newlabel{cref@ex:composition}{[ex][1][1]1.1}
\newlabel{cref@ex:connectivity-inductively}{[ex][6][7]7.6}
\newlabel{cref@ex:coprod-ump}{[ex][9][2]2.9}
\newlabel{cref@ex:cumhierhit}{[ex][11][10]10.11}
\newlabel{cref@ex:decidable-choice}{[ex][19][3]3.19}
\newlabel{cref@ex:disjoint-or}{[ex][7][3]3.7}
\newlabel{cref@ex:equality-reflection}{[ex][14][2]2.14}
\newlabel{cref@ex:equiv-concat}{[ex][6][2]2.6}
\newlabel{cref@ex:eqvboolbool}{[ex][13][2]2.13}
\newlabel{cref@ex:fin}{[ex][9][1]1.9}
\newlabel{cref@ex:finite-cover-lebesgue-number}{[ex][12][11]11.12}
\newlabel{cref@ex:free-monoid}{[ex][8][6]6.8}
\newlabel{cref@ex:HopfJr}{[ex][8][8]8.8}
\newlabel{cref@ex:impred-brck}{[ex][15][3]3.15}
\newlabel{cref@ex:isset-coprod}{[ex][2][3]3.2}
\newlabel{cref@ex:isset-sigma}{[ex][3][3]3.3}
\newlabel{cref@ex:lem-brck}{[ex][14][3]3.14}
\newlabel{cref@ex:lem-impred}{[ex][10][3]3.10}
\newlabel{cref@ex:lem-ldn}{[ex][18][3]3.18}
\newlabel{cref@ex:lem-mereprop}{[ex][6][3]3.6}
\newlabel{cref@ex:lemnm}{[ex][7][7]7.7}
\newlabel{cref@ex:loop2}{[ex][8][5]5.8}
\newlabel{cref@ex:loop}{[ex][7][5]5.7}
\newlabel{cref@ex:mean-value-theorem}{[ex][13][11]11.13}
\newlabel{cref@ex:metric-completion}{[ex][9][11]11.9}
\newlabel{cref@ex:neg-ldn}{[ex][11][1]1.11}
\newlabel{cref@ex:ninf-ord}{[ex][8][10]10.8}
\newlabel{cref@ex:not-not-lem}{[ex][13][1]1.13}
\newlabel{cref@ex:npaths}{[ex][4][2]2.4}
\newlabel{cref@ex:nspheres}{[ex][4][6]6.4}
\newlabel{cref@ex:ntype-from-nconn-const}{[ex][5][7]7.5}
\newlabel{cref@ex:ntypes-closed-under-wtypes}{[ex][3][7]7.3}
\newlabel{cref@ex:omit-contr2}{[ex][20][3]3.20}
\newlabel{cref@ex:one-function-two-recurrences}{[ex][3][5]5.3}
\newlabel{cref@ex:pm-to-ml}{[ex][7][1]1.7}
\newlabel{cref@ex:pointed-equivalences}{[ex][7][8]8.7}
\newlabel{cref@ex:prod-via-bool}{[ex][6][1]1.6}
\newlabel{cref@ex:prop-endocontr}{[ex][4][3]3.4}
\newlabel{cref@ex:prop-inhabcontr}{[ex][5][3]3.5}
\newlabel{cref@ex:prop-ord}{[ex][7][10]10.7}
\newlabel{cref@ex:prop-trunc-ind}{[ex][17][3]3.17}
\newlabel{cref@ex:pullback}{[ex][11][2]2.11}
\newlabel{cref@ex:pullback-pasting}{[ex][12][2]2.12}
\newlabel{cref@ex:qinv-autohtpy-no-univalence}{[ex][3][4]4.3}
\newlabel{cref@ex:RD-extended-reals}{[ex][2][11]11.2}
\newlabel{cref@ex:RD-interval-arithmetic}{[ex][4][11]11.4}
\newlabel{cref@ex:RD-lower-cuts}{[ex][3][11]11.3}
\newlabel{cref@ex:RD-lt-vs-le}{[ex][5][11]11.5}
\newlabel{cref@ex:reals-apart-neq-MP}{[ex][10][11]11.10}
\newlabel{cref@ex:reals-apart-zero-divisors}{[ex][11][11]11.11}
\newlabel{cref@ex:reals-non-constant-into-Z}{[ex][6][11]11.6}
\newlabel{cref@ex:rezk-vankampen}{[ex][11][9]9.11}
\newlabel{cref@ex:s2-colim-unit}{[ex][2][7]7.2}
\newlabel{cref@ex:same-recurrence-not-defeq}{[ex][2][5]5.2}
\newlabel{cref@ex:sigma-assoc}{[ex][10][2]2.10}
\newlabel{cref@ex:stack}{[ex][12][9]9.12}
\newlabel{cref@ex:subtFromPathInd}{[ex][15][1]1.15}
\newlabel{cref@ex:sum-via-bool}{[ex][5][1]1.5}
\newlabel{cref@ex:SuperHopf}{[ex][9][8]8.9}
\newlabel{cref@ex:suspS1}{[ex][2][6]6.2}
\newlabel{cref@ex:tautologies}{[ex][12][1]1.12}
\newlabel{cref@ex:torus}{[ex][1][6]6.1}
\newlabel{cref@ex:torus-s1-times-s1}{[ex][3][6]6.3}
\newlabel{cref@ex:traditional-archimedean}{[ex][7][11]11.7}
\newlabel{cref@ex:unique-fiber}{[ex][5][8]8.5}
\newlabel{cref@ex:unnatural-endomorphisms}{[ex][9][6]6.9}
\newlabel{cref@ex:unstable-octahedron}{[ex][4][4]4.4}
\newlabel{cref@ex:vksuspnopt}{[ex][11][8]8.11}
\newlabel{cref@ex:vksusppt}{[ex][10][8]8.10}
\newlabel{cref@ex:well-pointed}{[ex][3][10]10.3}
\newlabel{cref@ex:without-K}{[ex][14][1]1.14}
\newlabel{cref@fibwise-fiber-total-fiber-equiv}{[thm][6][4,7]4.7.6}
\newlabel{cref@fig:hub-and-spokes}{[figure][3][6]6.3}
\newlabel{cref@fig:spokes-no-hub}{[figure][4][6]6.4}
\newlabel{cref@fig:spokes-no-hub-ii}{[figure][5][6]6.5}
\newlabel{cref@fig:topS1ind}{[figure][1][6]6.1}
\newlabel{cref@fig:ttS1ind}{[figure][2][6]6.2}
\newlabel{cref@fig:winding}{[figure][1][8]8.1}
\newlabel{cref@inductive-cover-classical}{[thm][16][11,5]11.5.16}
\newlabel{cref@interval-Heine-Borel}{[cor][15][11,5]11.5.15}
\newlabel{cref@item:apfunctor-compose}{[enumi][3][](iii)}
\newlabel{cref@item:apfunctor-ct}{[enumi][1][](i)}
\newlabel{cref@item:apfunctor-opp}{[enumi][2][](ii)}
\newlabel{cref@item:autohtpy1}{[enumi][1][](i)}
\newlabel{cref@item:autohtpy2}{[enumi][2][](ii)}
\newlabel{cref@item:autohtpy3}{[enumi][3][](iii)}
\newlabel{cref@item:be1}{[enumi][1][](i)}
\newlabel{cref@item:be2}{[enumi][2][](ii)}
\newlabel{cref@item:be3}{[enumi][3][](iii)}
\newlabel{cref@item:beb1}{[enumi][1][](i)}
\newlabel{cref@item:beb2}{[enumi][2][](ii)}
\newlabel{cref@item:beb3}{[enumi][3][](iii)}
\newlabel{cref@item:cle-inj}{[enumi][1][](i)}
\newlabel{cref@item:cle-surj}{[enumi][2][](ii)}
\newlabel{cref@item:conntest1}{[enumi][1][](i)}
\newlabel{cref@item:conntest2}{[enumi][2][](ii)}
\newlabel{cref@item:conntest3}{[enumi][3][](iii)}
\newlabel{cref@item:contr}{[enumi][1][](i)}
\newlabel{cref@item:contr-eqv-unit}{[enumi][3][](iii)}
\newlabel{cref@item:contr-inhabited-prop}{[enumi][2][](ii)}
\newlabel{cref@item:conway1}{[enumi][1][](i)}
\newlabel{cref@item:conway2}{[enumi][2][](ii)}
\newlabel{cref@item:ct:ar1}{[enumi][1][](i)}
\newlabel{cref@item:ct:ar2}{[enumi][2][](ii)}
\newlabel{cref@item:ct:ffeso1}{[enumi][1][](i)}
\newlabel{cref@item:ct:ffeso2}{[enumi][2][](ii)}
\newlabel{cref@item:ct:ipc1}{[enumi][1][](i)}
\newlabel{cref@item:ct:ipc2}{[enumi][2][](ii)}
\newlabel{cref@item:ct:ipc3}{[enumi][3][](iii)}
\newlabel{cref@item:decode-encode-loop-iii}{[enumi][3][](iii)}
\newlabel{cref@item:decode-encode-loop-iv}{[enumi][4][](iv)}
\newlabel{cref@item:ed1}{[enumi][1][](i)}
\newlabel{cref@item:ed2}{[enumi][2][](ii)}
\newlabel{cref@item:ed3}{[enumi][3][](iii)}
\newlabel{cref@item:ed4}{[enumi][4][](iv)}
\newlabel{cref@item:eqvprop2}{[enumi][2][](ii)}
\newlabel{cref@item:eqvprop3}{[enumi][3][](iii)}
\newlabel{cref@item:eqvprop5}{[enumi][5][](v)}
\newlabel{cref@item:fibseq1}{[enumi][1][](i)}
\newlabel{cref@item:fibseq2}{[enumi][2][](ii)}
\newlabel{cref@item:fibseq3}{[enumi][3][](iii)}
\newlabel{cref@item:identity-systems1}{[enumi][1][](i)}
\newlabel{cref@item:identity-systems2}{[enumi][2][](ii)}
\newlabel{cref@item:identity-systems3}{[enumi][3][](iii)}
\newlabel{cref@item:identity-systems4}{[enumi][4][](iv)}
\newlabel{cref@item:mchr1}{[enumi][1][](i)}
\newlabel{cref@item:mchr2}{[enumi][2][](ii)}
\newlabel{cref@item:MLis1}{[enumi][1][](i)}
\newlabel{cref@item:MLis2}{[enumi][2][](ii)}
\newlabel{cref@item:MLis3}{[enumi][3][](iii)}
\newlabel{cref@item:MLis4}{[enumi][4][](iv)}
\newlabel{cref@item:MLis5}{[enumi][5][](v)}
\newlabel{cref@item:modal1}{[enumi][1][](i)}
\newlabel{cref@item:modal2}{[enumi][2][](ii)}
\newlabel{cref@item:modal3}{[enumi][3][](iii)}
\newlabel{cref@item:modal4}{[enumi][4][](iv)}
\newlabel{cref@item:mono1}{[enumi][1][](i)}
\newlabel{cref@item:mono2}{[enumi][3][](iii)}
\newlabel{cref@item:mono3}{[enumi][4][](iv)}
\newlabel{cref@item:mono4}{[enumi][2][](ii)}
\newlabel{cref@item:NO-le-refl}{[enumi][1][](i)}
\newlabel{cref@item:NO-lt-opt}{[enumi][2][](ii)}
\newlabel{cref@item:NO-rec-last}{[enumi][5][](v)}
\newlabel{cref@item:NO-rec-primary}{[enumi][1][](i)}
\newlabel{cref@item:omg1}{[enumi][1][](i)}
\newlabel{cref@item:omg4}{[enumi][4][](iv)}
\newlabel{cref@item:omitcontr1}{[enumi][1][](i)}
\newlabel{cref@item:omitcontr2}{[enumi][2][](ii)}
\newlabel{cref@item:orth-fact-2}{[enumi][2][](ii)}
\newlabel{cref@item:RCltopen1}{[enumi][1][](i)}
\newlabel{cref@item:RCltopen2}{[enumi][2][](ii)}
\newlabel{cref@item:rcrec3}{[enumi][3][](iii)}
\newlabel{cref@item:RC-sim-triangle}{[equation][35][11,3]11.3.35}
\newlabel{cref@item:reg1}{[enumi][1][](i)}
\newlabel{cref@item:reg2}{[enumi][2][](ii)}
\newlabel{cref@item:reg3}{[enumi][3][](iii)}
\newlabel{cref@item:rel1}{[enumi][1][](i)}
\newlabel{cref@item:rel2}{[enumi][2][](ii)}
\newlabel{cref@item:rel3}{[enumi][3][](iii)}
\newlabel{cref@item:sesinj}{[enumi][1][](i)}
\newlabel{cref@item:sesiso}{[enumi][3][](iii)}
\newlabel{cref@item:sessurj}{[enumi][2][](ii)}
\newlabel{cref@item:sigcmp}{[enumi][4][](iv)}
\newlabel{cref@item:sigid}{[enumi][3][](iii)}
\newlabel{cref@item:sim1}{[enumi][1][](i)}
\newlabel{cref@item:sim2}{[enumi][2][](ii)}
\newlabel{cref@item:wh0}{[enumi][1][](i)}
\newlabel{cref@item:whitehead01}{[enumi][1][](i)}
\newlabel{cref@item:whitehead02}{[enumi][2][](ii)}
\newlabel{cref@item:whk}{[enumi][2][](ii)}
\newlabel{cref@item:wop1}{[enumi][1][](i)}
\newlabel{cref@item:wop2}{[enumi][2][](ii)}
\newlabel{cref@lem:ap-functor}{[lem][2][2,2]2.2.2}
\newlabel{cref@lem:autohtpy}{[lem][2][4,1]4.1.2}
\newlabel{cref@lem:BisimEqualsId}{[lem][5][10,5]10.5.5}
\newlabel{cref@lem:coh-equiv}{[lem][2][4,2]4.2.2}
\newlabel{cref@lem:coh-hfib}{[lem][11][4,2]4.2.11}
\newlabel{cref@lem:coh-hprop}{[lem][12][4,2]4.2.12}
\newlabel{cref@lem:concat}{[lem][2][2,1]2.1.2}
\newlabel{cref@lem:connected-map-equiv-truncation}{[lem][14][7,5]7.5.14}
\newlabel{cref@lem:cuts-preserve-admissibility}{[lem][15][11,2]11.2.15}
\newlabel{cref@lem:equiv-iff-hprop}{[lem][3][3,3]3.3.3}
\newlabel{cref@lem:fibration-over-pushout}{[lem][3][8,5]8.5.3}
\newlabel{cref@lem:fullsep}{[lem][10][10,5]10.5.10}
\newlabel{cref@lem:func_retract_to_fiber_retract}{[lem][3][4,7]4.7.3}
\newlabel{cref@lem:hfiber_wrt_pullback}{[lem][8][7,6]7.6.8}
\newlabel{cref@lem:hfib}{[lem][5][4,2]4.2.5}
\newlabel{cref@lem:hlevel-if-inhab-hlevel}{[lem][8][7,2]7.2.8}
\newlabel{cref@lem:homotopy-induction-times-3}{[lem][4][5,5]5.5.4}
\newlabel{cref@lem:homotopy-props}{[lem][2][2,4]2.4.2}
\newlabel{cref@lem:hopf-construction}{[lem][7][8,5]8.5.7}
\newlabel{cref@lem:hspace-S1}{[lem][8][8,5]8.5.8}
\newlabel{cref@lem:htpy-natural}{[lem][3][2,4]2.4.3}
\newlabel{cref@lem:images_are_coequalizers}{[thm][5][10,1]10.1.5}
\newlabel{cref@lem:inv-hprop}{[lem][9][4,2]4.2.9}
\newlabel{cref@lem:mapdep}{[lem][4][2,3]2.3.4}
\newlabel{cref@lem:map}{[lem][1][2,2]2.2.1}
\newlabel{cref@lem:MonicSetPresent}{[lem][6][10,5]10.5.6}
\newlabel{cref@lem:nconnected_postcomp}{[lem][6][7,5]7.5.6}
\newlabel{cref@lem:nconnected_postcomp_variation}{[lem][12][7,5]7.5.12}
\newlabel{cref@lem:nconnected_to_leveln_to_equiv}{[lem][10][7,5]7.5.10}
\newlabel{cref@lem:normal-forms}{[lem][3][2147483647,1,4]A.4.3}
\newlabel{cref@lem:opp}{[lem][1][2,1]2.1.1}
\newlabel{cref@lem:pb_of_coeq_is_coeq}{[lem][6][10,1]10.1.6}
\newlabel{cref@lem:pik-nconnected}{[lem][2][8,3]8.3.2}
\newlabel{cref@lem:qinv-autohtpy}{[lem][1][4,1]4.1.1}
\newlabel{cref@lem:quotient-when-canonical-representatives}{[lem][8][6,10]6.10.8}
\newlabel{cref@lem:s1-decode-encode}{[lem][7][8,1]8.1.7}
\newlabel{cref@lem:s1-encode-decode}{[lem][8][8,1]8.1.8}
\newlabel{cref@lem:sets_exact}{[lem][8][10,1]10.1.8}
\newlabel{cref@lem:susp-loop-adj}{[lem][4][6,5]6.5.4}
\newlabel{cref@lem:transport}{[lem][1][2,3]2.3.1}
\newlabel{cref@lem:transport-s1-code}{[lem][2][8,1]8.1.2}
\newlabel{cref@lem:truncation-le}{[lem][15][7,3]7.3.15}
\newlabel{cref@lem:untruncated-linearity-reals-coincide}{[lem][1][11,4]11.4.1}
\newlabel{cref@mult-from-square}{[equation][45][11,3]11.3.45}
\newlabel{cref@notnotstable-equality-to-set}{[cor][3][7,2]7.2.3}
\newlabel{cref@ordered-field}{[defn][7][11,2]11.2.7}
\newlabel{cref@prop:factor_equiv_fiber}{[lem][5][7,6]7.6.5}
\newlabel{cref@prop:kernels_are_effective}{[thm][9][10,1]10.1.9}
\newlabel{cref@prop:lv_n_deptype_sec_equiv_by_precomp}{[thm][7][7,7]7.7.7}
\newlabel{cref@prop:nat-is-set}{[thm][6][7,2]7.2.6}
\newlabel{cref@prop:nconnected_tested_by_lv_n_dependent types}{[lem][7][7,5]7.5.7}
\newlabel{cref@prop:nconn_fiber_to_total}{[lem][13][7,5]7.5.13}
\newlabel{cref@prop:to_image_is_connected}{[lem][4][7,6]7.6.4}
\newlabel{cref@prop:trunc_of_prop_is_set}{[lem][13][10,1]10.1.13}
\newlabel{cref@RC-archimedean-ordered-field}{[thm][48][11,3]11.3.48}
\newlabel{cref@RC-archimedean}{[thm][41][11,3]11.3.41}
\newlabel{cref@RC-binary-nonexpanding-extension}{[lem][40][11,3]11.3.40}
\newlabel{cref@RC-continuous-eq}{[lem][39][11,3]11.3.39}
\newlabel{cref@RC-extend-Q-Lipschitz}{[lem][15][11,3]11.3.15}
\newlabel{cref@RC-initial-Cauchy-complete}{[thm][50][11,3]11.3.50}
\newlabel{cref@RC-lim-factor}{[lem][11][11,3]11.3.11}
\newlabel{cref@RC-lim-onto}{[lem][10][11,3]11.3.10}
\newlabel{cref@RC-Lipschitz-on-interval}{[ex][8][11]11.8}
\newlabel{cref@RC-sim-eqv-le}{[thm][44][11,3]11.3.44}
\newlabel{cref@RC-sim-rounded}{[equation][21][11,3]11.3.21}
\newlabel{cref@RC-squaring}{[thm][46][11,3]11.3.46}
\newlabel{cref@RD-archimedean-ordered-field}{[thm][8][11,2]11.2.8}
\newlabel{cref@RD-archimedean}{[thm][6][11,2]11.2.6}
\newlabel{cref@RD-cauchy-complete}{[thm][12][11,2]11.2.12}
\newlabel{cref@RD-dedekind-complete}{[cor][16][11,2]11.2.16}
\newlabel{cref@RD-final-field}{[thm][14][11,2]11.2.14}
\newlabel{cref@RD-inverse-apart-0}{[thm][4][11,2]11.2.4}
\newlabel{cref@reals-formal-topology-locally-compact}{[lem][14][11,5]11.5.14}
\newlabel{cref@reflectcommutespushout}{[thm][12][7,4]7.4.12}
\newlabel{cref@rmk:connectedness-indexing}{[rmk][3][7,5]7.5.3}
\newlabel{cref@rmk:defid}{[rmk][1][6,2]6.2.1}
\newlabel{cref@rmk:infty-group}{[rmk][2][6,11]6.11.2}
\newlabel{cref@rmk:introducing-new-concepts}{[rmk][1][1,5]1.5.1}
\newlabel{cref@rmk:naive}{[rmk][3][8,7]8.7.3}
\newlabel{cref@rmk:spokes-no-hub}{[rmk][1][6,7]6.7.1}
\newlabel{cref@rmk:true-neq-false}{[rmk][6][2,12]2.12.6}
\newlabel{cref@rmk:varies-along}{[rmk][4][6,2]6.2.4}
\newlabel{cref@S1-universal-cover}{[defn][1][8,1]8.1.1}
\newlabel{cref@sec:adjunctions}{[section][3][]9.3}
\newlabel{cref@sec:algebr-struct-cauchy}{[subsection][3][]11.3.3}
\newlabel{cref@sec:algebr-struct-dedek}{[subsection][1][]11.2.1}
\newlabel{cref@sec:appetizer-univalence}{[section][2][]5.2}
\newlabel{cref@sec:axiom-choice}{[section][8][]3.8}
\newlabel{cref@sec:axioms}{[section][1][]1.1}
\newlabel{cref@sec:basics-equivalences}{[section][4][]2.4}
\newlabel{cref@sec:basics-sets}{[section][1][]3.1}
\newlabel{cref@sec:better-vankampen}{[subsection][2][]8.7.2}
\newlabel{cref@sec:biinv}{[section][3][]4.3}
\newlabel{cref@sec:bool-nat}{[section][1][]5.1}
\newlabel{cref@sec:cardinals}{[section][2][]10.2}
\newlabel{cref@sec:cats}{[section][1][]9.1}
\newlabel{cref@sec:cauchy-reals-cauchy-complete}{[subsection][4][]11.3.4}
\newlabel{cref@sec:cauchy-reals}{[section][3][]11.3}
\newlabel{cref@sec:cell-complexes}{[section][6][]6.6}
\newlabel{cref@sec:circle}{[section][4][]6.4}
\newlabel{cref@sec:colimits}{[section][8][]6.8}
\newlabel{cref@sec:compactness-interval}{[section][5][]11.5}
\newlabel{cref@sec:comp-cauchy-dedek}{[section][4][]11.4}
\newlabel{cref@sec:computational}{[section][5][]2.5}
\newlabel{cref@sec:compute-cartprod}{[section][6][]2.6}
\newlabel{cref@sec:compute-coprod}{[section][12][]2.12}
\newlabel{cref@sec:compute-nat}{[section][13][]2.13}
\newlabel{cref@sec:compute-paths}{[section][11][]2.11}
\newlabel{cref@sec:compute-pi}{[section][9][]2.9}
\newlabel{cref@sec:compute-sigma}{[section][7][]2.7}
\newlabel{cref@sec:compute-unit}{[section][8][]2.8}
\newlabel{cref@sec:compute-universe}{[section][10][]2.10}
\newlabel{cref@sec:concluding-remarks}{[section][5][]4.5}
\newlabel{cref@sec:connectivity}{[section][5][]7.5}
\newlabel{cref@sec:conn-susp}{[section][2][]8.2}
\newlabel{cref@sec:constr-cauchy-reals}{[subsection][1][]11.3.1}
\newlabel{cref@sec:contractibility}{[section][11][]3.11}
\newlabel{cref@sec:contrf}{[section][4][]4.4}
\newlabel{cref@sec:coproduct-types}{[section][7][]1.7}
\newlabel{cref@sec:cumulative-hierarchy}{[section][5][]10.5}
\newlabel{cref@sec:dagger-categories}{[section][7][]9.7}
\newlabel{cref@sec:dedekind-reals}{[section][2][]11.2}
\newlabel{cref@sec:dependent-paths}{[section][2][]6.2}
\newlabel{cref@sec:disequality}{[subsection][3][]1.12.3}
\newlabel{cref@sec:equality-of-structures}{[section][14][]2.14}
\newlabel{cref@sec:equality}{[section][1][]2.1}
\newlabel{cref@sec:equivalences}{[section][4][]9.4}
\newlabel{cref@sec:equiv-closures}{[section][7][]4.7}
\newlabel{cref@sec:fiberwise-equivalences}{[section][7][]4.7}
\newlabel{cref@sec:fib-over-pushout}{[subsection][1][]8.5.1}
\newlabel{cref@sec:fibrations}{[section][3][]2.3}
\newlabel{cref@sec:field-rati-numb}{[section][1][]11.1}
\newlabel{cref@sec:finite-product-types}{[section][5][]1.5}
\newlabel{cref@sec:flattening}{[section][12][]6.12}
\newlabel{cref@sec:formal-prelim}{[appendix][1][2147483647]A}
\newlabel{cref@sec:free-algebras}{[section][11][]6.11}
\newlabel{cref@sec:freudenthal}{[section][6][]8.6}
\newlabel{cref@sec:function-types}{[section][2][]1.2}
\newlabel{cref@sec:functors}{[section][2][]2.2}
\newlabel{cref@sec:general-encode-decode}{[section][9][]8.9}
\newlabel{cref@sec:generalizations}{[section][7][]5.7}
\newlabel{cref@sec:hae}{[section][2][]4.2}
\newlabel{cref@sec:hedberg}{[section][2][]7.2}
\newlabel{cref@sec:hittruncations}{[section][9][]6.9}
\newlabel{cref@sec:hopf}{[section][5][]8.5}
\newlabel{cref@sec:hott-features}{[section][3][2147483647]A.3}
\newlabel{cref@sec:htpy-inductive}{[section][5][]5.5}
\newlabel{cref@sec:hubs-spokes}{[section][7][]6.7}
\newlabel{cref@sec:identity-systems}{[section][8][]5.8}
\newlabel{cref@sec:identity-types}{[section][12][]1.12}
\newlabel{cref@sec:image-factorization}{[section][6][]7.6}
\newlabel{cref@sec:image}{[subsection][2][]10.1.2}
\newlabel{cref@sec:inductive-types}{[section][9][]1.9}
\newlabel{cref@sec:induct-recurs-cauchy}{[subsection][2][]11.3.2}
\newlabel{cref@sec:initial-alg}{[section][4][]5.4}
\newlabel{cref@sec:interval}{[section][3][]6.3}
\newlabel{cref@sec:intro-hits}{[section][1][]6.1}
\newlabel{cref@sec:intuitionism}{[section][4][]3.4}
\newlabel{cref@sec:long-exact-sequence-homotopy-groups}{[section][4][]8.4}
\newlabel{cref@sec:modalities}{[section][7][]7.7}
\newlabel{cref@sec:mono-surj}{[section][6][]4.6}
\newlabel{cref@sec:more-formal-pi}{[subsection][4][2147483647]A.2.4}
\newlabel{cref@sec:more-formal-sigma}{[subsection][5][2147483647]A.2.5}
\newlabel{cref@sec:moreresults}{[section][10][]8.10}
\newlabel{cref@sec:naive-vankampen}{[subsection][1][]8.7.1}
\newlabel{cref@sec:naturality}{[section][13][]6.13}
\newlabel{cref@sec:n-types}{[section][1][]7.1}
\newlabel{cref@sec:object-classification}{[section][8][]4.8}
\newlabel{cref@sec:ordinals}{[section][3][]10.3}
\newlabel{cref@sec:pat}{[section][11][]1.11}
\newlabel{cref@sec:pattern-matching}{[section][10][]1.10}
\newlabel{cref@sec:pi1s1-classical-proof}{[subsection][2][]8.1.2}
\newlabel{cref@sec:pi1s1-idsys}{[subsection][6][]8.1.6}
\newlabel{cref@sec:pi1s1-initial-thoughts}{[subsection][1][]8.1.1}
\newlabel{cref@sec:pi1-s1-intro}{[section][1][]8.1}
\newlabel{cref@sec:pi1s1-universal-cover}{[subsection][3][]8.1.3}
\newlabel{cref@sec:pik-le-n}{[section][3][]8.3}
\newlabel{cref@sec:pi-types}{[section][4][]1.4}
\newlabel{cref@sec:piw-pretopos}{[section][1][]10.1}
\newlabel{cref@sec:pushouts}{[section][4][]7.4}
\newlabel{cref@sec:quasi-inverses}{[section][1][]4.1}
\newlabel{cref@sec:RD-cauchy-complete}{[subsection][2][]11.2.2}
\newlabel{cref@sec:RD-dedekind-complete}{[subsection][3][]11.2.3}
\newlabel{cref@sec:rezk}{[section][9][]9.9}
\newlabel{cref@sec:set-quotients}{[section][10][]6.10}
\newlabel{cref@sec:sigma-types}{[section][6][]1.6}
\newlabel{cref@sec:sip}{[section][8][]9.8}
\newlabel{cref@sec:strict-categories}{[section][6][]9.6}
\newlabel{cref@sec:strictly-positive}{[section][6][]5.6}
\newlabel{cref@sec:surreals}{[section][6][]11.6}
\newlabel{cref@sec:suspension}{[section][5][]6.5}
\newlabel{cref@sec:syntax-informally}{[section][1][2147483647]A.1}
\newlabel{cref@sec:syntax-more-formally}{[section][2][2147483647]A.2}
\newlabel{cref@sec:transfors}{[section][2][]9.2}
\newlabel{cref@sec:truncations}{[section][3][]7.3}
\newlabel{cref@sec:type-booleans}{[section][8][]1.8}
\newlabel{cref@sec:types-vs-sets}{[section][1][]1.1}
\newlabel{cref@sec:unique-choice}{[section][9][]3.9}
\newlabel{cref@sec:univalence-implies-funext}{[section][9][]4.9}
\newlabel{cref@sec:universal-properties}{[section][15][]2.15}
\newlabel{cref@sec:universes}{[section][3][]1.3}
\newlabel{cref@sec:van-kampen}{[section][7][]8.7}
\newlabel{cref@sec:wellorderings}{[section][4][]10.4}
\newlabel{cref@sec:whitehead}{[section][8][]8.8}
\newlabel{cref@sec:w-types}{[section][3][]5.3}
\newlabel{cref@sec:yoneda}{[section][5][]9.5}
\newlabel{cref@subsec:emacinsets}{[subsection][5][]10.1.5}
\newlabel{cref@subsec:general-remarks}{[cor][7][2147483647,1,4]A.4.7}
\newlabel{cref@subsec:hprops}{[section][3][]3.3}
\newlabel{cref@subsec:limits-sets}{[subsection][1][]10.1.1}
\newlabel{cref@subsec:logic-hprop}{[section][6][]3.6}
\newlabel{cref@subsec:pat?}{[section][2][]3.2}
\newlabel{cref@subsec:pi1s1-encode-decode}{[subsection][4][]8.1.4}
\newlabel{cref@subsec:pi1s1-homotopy-theory}{[subsection][5][]8.1.5}
\newlabel{cref@subsec:piw}{[subsection][4][]10.1.4}
\newlabel{cref@subsec:prop-subsets}{[section][5][]3.5}
\newlabel{cref@subsec:prop-trunc}{[section][7][]3.7}
\newlabel{cref@subsec:quotients}{[subsection][3][]10.1.3}
\newlabel{cref@subsec:when-trunc}{[section][10][]3.10}
\newlabel{cref@tab:homotopy-groups-of-spheres}{[table][1][8]8.1}
\newlabel{cref@tab:pov}{[table][1][0]1}
\newlabel{cref@tab:theorems}{[table][2][8]8.2}
\newlabel{cref@thm:1surj_to_surj_to_pem}{[thm][14][10,1]10.1.14}
\newlabel{cref@thm:ac-epis-split}{[lem][2][3,8]3.8.2}
\newlabel{cref@thm:allbool-trueorfalse}{[thm][1][1,8]1.8.1}
\newlabel{cref@thm:ap2}{[lem][4][6,4]6.4.4}
\newlabel{cref@thm:apd2}{[lem][6][6,4]6.4.6}
\newlabel{cref@thm:apd-const}{[lem][8][2,3]2.3.8}
\newlabel{cref@thm:ap-prod}{[thm][5][2,6]2.6.5}
\newlabel{cref@thm:ap-sigma-rect-path-pair}{[lem][7][6,12]6.12.7}
\newlabel{cref@thm:ap-transport}{[lem][11][2,3]2.3.11}
\newlabel{cref@thm:Cauchy-reals-are-a-set}{[thm][9][11,3]11.3.9}
\newlabel{cref@thm:conemap-funct}{[lem][10][7,4]7.4.10}
\newlabel{cref@thm:connected-pointed}{[lem][11][7,5]7.5.11}
\newlabel{cref@thm:conn-pik}{[cor][8][8,4]8.4.8}
\newlabel{cref@thm:conn-trunc-variable-ind}{[lem][1][8,6]8.6.1}
\newlabel{cref@thm:contr-contr}{[cor][5][3,11]3.11.5}
\newlabel{cref@thm:contr-forall}{[lem][6][3,11]3.11.6}
\newlabel{cref@thm:contr-hae}{[thm][6][4,2]4.2.6}
\newlabel{cref@thm:contr-hprop}{[lem][4][4,4]4.4.4}
\newlabel{cref@thm:contr-paths}{[lem][8][3,11]3.11.8}
\newlabel{cref@thm:contr-unit}{[lem][3][3,11]3.11.3}
\newlabel{cref@thm:conversion-preserves-typing}{[thm][1][2147483647,1,4]A.4.1}
\newlabel{cref@thm:covering-spaces}{[thm][4][8,10]8.10.4}
\newlabel{cref@thm:dpath-arrow}{[lem][6][2,9]2.9.6}
\newlabel{cref@thm:dpath-forall}{[lem][7][2,9]2.9.7}
\newlabel{cref@thm:dpath-path}{[thm][5][2,11]2.11.5}
\newlabel{cref@thm:EckmannHilton}{[thm][6][2,1]2.1.6}
\newlabel{cref@thm:encode-total-equiv}{[cor][13][8,1]8.1.13}
\newlabel{cref@thm:equiv-biinv-isequiv}{[cor][3][4,3]4.3.3}
\newlabel{cref@thm:equiv-compose-equiv}{[lem][8][4,2]4.2.8}
\newlabel{cref@thm:equiv-contr-hae}{[thm][5][4,4]4.4.5}
\newlabel{cref@thm:equiv-eqrel}{[lem][12][2,4]2.4.12}
\newlabel{cref@thm:equiv-induction}{[cor][5][5,8]5.8.5}
\newlabel{cref@thm:equiv-inhabcod}{[cor][6][4,4]4.4.6}
\newlabel{cref@thm:equiv-iso-adj}{[thm][3][4,2]4.2.3}
\newlabel{cref@thm:eta-sigma}{[cor][3][2,7]2.7.3}
\newlabel{cref@thm:ETCS}{[thm][15][10,1]10.1.15}
\newlabel{cref@thm:fiber-of-a-fibration}{[lem][1][4,8]4.8.1}
\newlabel{cref@thm:fiber-of-the-fiber}{[lem][4][8,4]8.4.4}
\newlabel{cref@thm:flattening}{[lem][2][6,12]6.12.2}
\newlabel{cref@thm:flattening-rect}{[lem][4][6,12]6.12.4}
\newlabel{cref@thm:flattening-rectnd-beta-ppt}{[lem][8][6,12]6.12.8}
\newlabel{cref@thm:flattening-rectnd}{[lem][5][6,12]6.12.5}
\newlabel{cref@thm:freegroup-nonset}{[rmk][8][6,11]6.11.8}
\newlabel{cref@thm:free-monoid}{[lem][5][6,11]6.11.5}
\newlabel{cref@thm:freudcode}{[defn][5][8,6]8.6.5}
\newlabel{cref@thm:freudenthal}{[thm][4][8,6]8.6.4}
\newlabel{cref@thm:freudlemma}{[lem][10][8,6]8.6.10}
\newlabel{cref@thm:hae-hprop}{[thm][13][4,2]4.2.13}
\newlabel{cref@thm:hedberg}{[thm][5][7,2]7.2.5}
\newlabel{cref@thm:hlevel-cumulative}{[thm][7][7,1]7.1.7}
\newlabel{cref@thm:hlevel-loops}{[thm][7][7,2]7.2.7}
\newlabel{cref@thm:hleveln-of-hlevelSn}{[thm][11][7,1]7.1.11}
\newlabel{cref@thm:hlevel-prod}{[thm][9][7,1]7.1.9}
\newlabel{cref@thm:h-level-retracts}{[thm][4][7,1]7.1.4}
\newlabel{cref@thm:homotopy-groups}{[eg][4][6,11]6.11.4}
\newlabel{cref@thm:h-set-refrel-in-paths-sets}{[thm][2][7,2]7.2.2}
\newlabel{cref@thm:h-set-uip-K}{[thm][1][7,2]7.2.1}
\newlabel{cref@thm:htpy-induction}{[cor][6][5,8]5.8.6}
\newlabel{cref@thm:identity-systems}{[thm][2][5,8]5.8.2}
\newlabel{cref@thm:inhabprop-eqvunit}{[lem][2][3,3]3.3.2}
\newlabel{cref@thm:injsurj}{[lem][9][10,2]10.2.9}
\newlabel{cref@thm:interval-funext}{[lem][2][6,3]6.3.2}
\newlabel{cref@thm:isaprop-isofhlevel}{[thm][10][7,1]7.1.10}
\newlabel{cref@thm:isntype-mono}{[thm][6][7,1]7.1.6}
\newlabel{cref@thm:isprop-biinv}{[thm][2][4,3]4.3.2}
\newlabel{cref@thm:isprop-forall}{[eg][2][3,6]3.6.2}
\newlabel{cref@thm:isprop-iscontr}{[lem][4][3,11]3.11.4}
\newlabel{cref@thm:isprop-isprop}{[lem][5][3,3]3.3.5}
\newlabel{cref@thm:isprop-isset}{[lem][5][3,3]3.3.5}
\newlabel{cref@thm:isset-forall}{[eg][6][3,1]3.1.6}
\newlabel{cref@thm:isset-is1type}{[lem][8][3,1]3.1.8}
\newlabel{cref@thm:isset-prod}{[eg][5][3,1]3.1.5}
\newlabel{cref@thm:kbar}{[lem][9][8,7]8.7.9}
\newlabel{cref@thm:lequiv-contr-hae}{[thm][3][4,4]4.4.3}
\newlabel{cref@thm:les}{[thm][6][8,4]8.4.6}
\newlabel{cref@thm:loop-nontrivial}{[lem][1][6,4]6.4.1}
\newlabel{cref@thm:looptothe}{[cor][13][6,10]6.10.13}
\newlabel{cref@thm:minusoneconn-surjective}{[lem][2][7,5]7.5.2}
\newlabel{cref@thm:ML-identity-systems}{[thm][4][5,8]5.8.4}
\newlabel{cref@thm:modal-char}{[thm][4][7,7]7.7.4}
\newlabel{cref@thm:modal-mono}{[lem][2][7,6]7.6.2}
\newlabel{cref@thm:mono}{[lem][1][10,1]10.1.1}
\newlabel{cref@thm:mono-surj-equiv}{[thm][3][4,6]4.6.3}
\newlabel{cref@thm:naive-van-kampen}{[thm][4][8,7]8.7.4}
\newlabel{cref@thm:nat-hinitial}{[thm][5][5,4]5.4.5}
\newlabel{cref@thm:nat-set}{[eg][4][3,1]3.1.4}
\newlabel{cref@thm:nat-uniq}{[thm][1][5,1]5.1.1}
\newlabel{cref@thm:nat-wf}{[eg][5][10,3]10.3.5}
\newlabel{cref@thm:nconn-to-ntype-const}{[cor][9][7,5]7.5.9}
\newlabel{cref@thm:nobject-classifier-appetizer}{[thm][3][4,8]4.8.3}
\newlabel{cref@thm:NO-encode-decode}{[thm][16][11,6]11.6.16}
\newlabel{cref@thm:no-higher-ac}{[lem][5][3,8]3.8.5}
\newlabel{cref@thm:NO-refl-opt}{[thm][4][11,6]11.6.4}
\newlabel{cref@thm:NO-set}{[cor][5][11,6]11.6.5}
\newlabel{cref@thm:NO-simplicity}{[thm][2][11,6]11.6.2}
\newlabel{cref@thm:not-dneg}{[thm][2][3,2]3.2.2}
\newlabel{cref@thm:not-lem}{[cor][7][3,2]3.2.7}
\newlabel{cref@thm:NO-unstrict-transitive}{[cor][17][11,6]11.6.17}
\newlabel{cref@thm:ntype-nloop}{[thm][9][7,2]7.2.9}
\newlabel{cref@thm:ntypes-sigma}{[thm][8][7,1]7.1.8}
\newlabel{cref@thm:object-classifier}{[thm][4][4,8]4.8.4}
\newlabel{cref@thm:omg}{[lem][4][2,1]2.1.4}
\newlabel{cref@thm:omit-contr}{[lem][9][3,11]3.11.9}
\newlabel{cref@thm:ordord}{[thm][20][10,3]10.3.20}
\newlabel{cref@thm:ordsucc}{[lem][21][10,3]10.3.21}
\newlabel{cref@thm:ordunion}{[lem][22][10,3]10.3.22}
\newlabel{cref@thm:orth-fact}{[thm][6][7,6]7.6.6}
\newlabel{cref@thm:path-coprod}{[thm][5][2,12]2.12.5}
\newlabel{cref@thm:path-lifting}{[lem][2][2,3]2.3.2}
\newlabel{cref@thm:path-nat}{[thm][1][2,13]2.13.1}
\newlabel{cref@thm:path-prod}{[thm][2][2,6]2.6.2}
\newlabel{cref@thm:path-sigma}{[thm][2][2,7]2.7.2}