-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathErasure.agda
1231 lines (1120 loc) · 60 KB
/
Erasure.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
open import WorldSystem
import ErasureSet
module Erasure {QW : WorldSystem}{E : ErasureSet.ErasureSet {QW}} where
open WorldSystem.WorldSystem QW
open ErasureSet {QW}
open ErasureSet.ErasureSet E
open import Basics
open import OPE
open import Star
open import Dir
open import Tm {Q Real}
open import Env
open import Subst {Q Real}
open import Par {Q Real}
open import Dev {Q Real}
open import Typing {QW}
open import Preservation {QW}
open import Er
------------------------------------------------------------------------------
----- Defining equivalent terms and contexts, and helpers --------------------
------------------------------------------------------------------------------
data Equiv {n d}(S T : Tm n d) : Set where
_~>>*<<~_ : {R : Tm n d} -> S ~>>* R -> T ~>>* R -> Equiv S T
infix 10 _~>>*<<~_
-- Lift to contexts
data Equiv! : forall {n}(Ga1 Ga2 : Cx n) -> Set where
[] : Equiv! [] []
CxEqv : forall {n Ga1 Ga2 w1 w2 S1 S2}
-> Equiv! {n} Ga1 Ga2 -> Equiv S1 S2
-> Equiv! (Ga1 -, (w1 , S1)) (Ga2 -, (w2 , S2))
~>>*ToEquiv : forall {n d}{s t : Tm n d} -> s ~>>* t -> Equiv s t
~>>*ToEquiv s~>t = s~>t ~>>*<<~ []
!~>>*ToEquiv : forall {n}{Ga Ga' : Cx n} -> Ga !~>>* Ga' -> Equiv! Ga Ga'
!~>>*ToEquiv {Ga = []}{[]} <> = []
!~>>*ToEquiv {Ga = Ga -, (u , S)} {Ga' -, (v , T)} (Ga~>Ga' , u=v , S~>T)
= CxEqv (!~>>*ToEquiv Ga~>Ga') (~>>*ToEquiv S~>T)
equivRefl : forall {n d}{S : Tm n d} -> Equiv S S
equivRefl = ~>>*ToEquiv []
equiv!Refl : forall {n}{Ga : Cx n} -> Equiv! Ga Ga
equiv!Refl = !~>>*ToEquiv (!~>>*refl _)
piSplitEquiv : forall {n q r S T S' T'}
-> Equiv {n} (pi q S T) (pi r S' T')
-> Equiv S S' * Equiv T T'
piSplitEquiv ([] ~>>*<<~ ST2R)
with piInvRed ST2R
... | S' , T' , refl , SS' , TT' = [] ~>>*<<~ SS' , [] ~>>*<<~ TT'
piSplitEquiv ((pi q S1S1' T1T1' ,- ST1'R) ~>>*<<~ ST2R)
with piSplitEquiv (ST1'R ~>>*<<~ ST2R)
... | S1'R ~>>*<<~ S2R , T1'R ~>>*<<~ T2R = (S1S1' ,- S1'R) ~>>*<<~ S2R , (T1T1' ,- T1'R) ~>>*<<~ T2R
piEquivSameQ : forall {n q r S T S' T'}
-> Equiv {n} (pi q S T) (pi r S' T')
-> q == r
piEquivSameQ (STR ~>>*<<~ ST'R)
with piInvRed STR | piInvRed ST'R
... | _ , _ , refl , _ , _ | _ , _ , refl , _ , _ = refl
piEquivSameW : forall {n q r S T S' T'}
-> Equiv {n} (pi q S T) (pi r S' T')
-> forall {w qw} -> q # w ~ qw
-> forall {rw} -> r # w ~ rw
-> qw == rw
piEquivSameW eqv qw rw rewrite piEquivSameQ eqv = #functional qw rw
thinEquiv : forall {n m}(th : n <= m)
-> forall {d S T} -> Equiv {n}{d} S T
-> Equiv (Th.act th S) (Th.act th T)
thinEquiv th (SR ~>>*<<~ TR) = parsThin th SR ~>>*<<~ parsThin th TR
substEquiv : forall {n S S'} -> Equiv {n} S S'
-> forall {d T}{T' : Tm _ d} -> Equiv T T'
-> forall s
-> Equiv (Sb.act (si -, (s :: S)) T) (Sb.act (si -, (s :: S')) T')
substEquiv (SR ~>>*<<~ S'R) (TR ~>>*<<~ T'R) s
= substStab [] SR TR ~>>*<<~ substStab [] S'R T'R
cxEquiv : forall {n}{Ga1 Ga2 : Cx n} -> Equiv! Ga1 Ga2
-> forall i -> Equiv (cxTy Ga1 i) (cxTy Ga2 i)
cxEquiv (CxEqv Ga1eqvGa2 S1eqvS2) ze = thinEquiv (o' oi) S1eqvS2
cxEquiv (CxEqv Ga1eqvGa2 S1eqvS2) (su i) = thinEquiv (o' oi) (cxEquiv Ga1eqvGa2 i)
-- We care about the number of context entries in worlds which do not get erased.
-- This enables us to have a de Bruijn representation of erased terms which, by
-- construction, has the property that every variable mentioned is either bound or
-- in the context at an unerased world.
data Unerased : {m : Nat} -> Cx m -> Nat -> Set where
[] : Unerased [] ze
kee : forall {m Ga n w}{S : Tm m chk} -> Unerased Ga n -> er? w == keep -> Unerased (Ga -, (w , S)) (su n)
del : forall {m Ga n w}{S : Tm m chk} -> Unerased Ga n -> er? w == delete -> Unerased (Ga -, (w , S)) n
-- de Bruijn indices in the erased term thin to give the index of the variable in the original context
unerThin : forall {n}{Ga : Cx n}{m} -> Unerased Ga m -> m <= n
unerThin [] = oz
unerThin (kee uner _) = os (unerThin uner)
unerThin (del uner _) = o' (unerThin uner)
-- indices of variables that are not erased indeed have a index in the shorter
-- context of just those variables which are not erased.
eraseVar : forall {n} -> {Ga : Cx n}
-> forall {m} -> Unerased Ga m
-> (i : Fin n) -> er? (cxW Ga i) == keep
-> Fin m
eraseVar (kee left keew) ze keepi = ze
eraseVar (del left delw) ze keepi = naughty (erXorKp delw keepi)
eraseVar (kee left x) (su i) keepi = su (eraseVar left i keepi)
eraseVar (del left x) (su i) keepi = eraseVar left i keepi
-- unerThin hits only variables that are not erased
unerThinKeep : forall {n}{Ga : Cx n}{m}
-> (uner : Unerased Ga m)(i : Fin m)
-> er? (cxW Ga (thin (unerThin uner) i)) == keep
unerThinKeep [] ()
unerThinKeep (del uner de) i = unerThinKeep uner i
unerThinKeep (kee uner ke) ze = ke
unerThinKeep (kee uner ke) (su i) = unerThinKeep uner i
-- erasing a variable and thinning it back into
-- the original context are inverses
thinErase : forall {n} -> {Ga : Cx n}
-> forall {m} -> (uner : Unerased Ga m)
-> (i : Fin n) -> (keepi : er? (cxW Ga i) == keep)
-> thin (unerThin uner) (eraseVar uner i keepi) == i
thinErase [] () keepi
thinErase (kee uner ke) ze keepi = refl
thinErase (kee uner ke) (su i) keepi = cong su (thinErase uner i keepi)
thinErase (del uner de) ze keepi = naughty (erXorKp de keepi)
thinErase (del uner de) (su i) keepi = cong su (thinErase uner i keepi)
eraseThin : forall {n} -> {Ga : Cx n}
-> forall {m} -> (uner : Unerased Ga m)
-> (i : Fin m)
-> eraseVar uner (thin (unerThin uner) i) (unerThinKeep uner i) == i
eraseThin [] ()
eraseThin (kee uner ke) ze = refl
eraseThin (kee uner ke) (su i) = cong su (eraseThin uner i)
eraseThin (del uner de) i = eraseThin uner i
------------------------------------------------------------------------------
----- The judgements are extended with an erasure output ---------------------
------------------------------------------------------------------------------
data CHKEr {n}(Ga : Cx n){m}(uner : Unerased Ga m)(w : W)(keepW : er? w == keep) : Tm n chk -> Tm n chk -> Er m -> Set
data SYNEr {n}(Ga : Cx n){m}(uner : Unerased Ga m)(w : W)(keepW : er? w == keep) : Tm n syn -> Tm n chk -> Er m -> Set
data CHKEr {n} Ga {m} uner w keepW where
pre : forall {T T' t t'} ->
T ~>> T' -> CHKEr Ga uner w keepW T' t t' ->
CHKEr Ga uner w keepW T t t'
star : tyW w -> CHKEr Ga uner w keepW star star star
piEE : forall {q quw S T T'} ->
tyW w -> snd (q &unst& inl <>) # w ~ quw ->
(erQUW : er? quw == delete) -> (erSQUW : er? (st-act quw) == delete) ->
CHK Ga (st-act quw) star S ->
CHKEr (Ga -, (quw , S)) (del uner erQUW) w keepW star T T' ->
CHKEr Ga uner w keepW star (pi q S T) T'
piArr : forall {q quw S S' T T'} ->
tyW w -> snd (q &unst& inl <>) # w ~ quw ->
(erQUW : er? quw == delete) -> (keepSQUW : er? (st-act quw) == keep) ->
CHKEr Ga uner (st-act quw) keepSQUW star S S' ->
CHKEr (Ga -, (quw , S)) (del uner erQUW) w keepW star T T' ->
CHKEr Ga uner w keepW star (pi q S T) (arr S' T')
piE : forall {q quw S T T'} ->
tyW w -> snd (q &unst& inl <>) # w ~ quw ->
(keepQUW : er? quw == keep) -> (erSQUW : er? (st-act quw) == delete) ->
CHK Ga (st-act quw) star S ->
CHKEr (Ga -, (quw , S)) (kee uner keepQUW) w keepW star T T' ->
CHKEr Ga uner w keepW star (pi q S T) (erpi T')
pi : forall {q quw S S' T T'} ->
tyW w -> snd (q &unst& inl <>) # w ~ quw ->
(keepQUW : er? quw == keep) -> (keepSQUW : er? (st-act quw) == keep) ->
CHKEr Ga uner (st-act quw) keepSQUW star S S' ->
CHKEr (Ga -, (quw , S)) (kee uner keepQUW) w keepW star T T' ->
CHKEr Ga uner w keepW star (pi q S T) (pi S' T')
lamE : forall {q qw S T t t'} ->
q # w ~ qw ->
(erQW : er? qw == delete) ->
CHKEr (Ga -, (qw , S)) (del uner erQW) w keepW T t t' ->
CHKEr Ga uner w keepW (pi q S T) (lam t) t'
lam : forall {q qw S T t t'} ->
q # w ~ qw ->
(keepQW : er? qw == keep) ->
CHKEr (Ga -, (qw , S)) (kee uner keepQW) w keepW T t t' ->
CHKEr Ga uner w keepW (pi q S T) (lam t) (lam t')
[_] : forall {e S T e'} ->
SYNEr Ga uner w keepW e S e' -> S == T ->
CHKEr Ga uner w keepW T [ e ] e'
data SYNEr {n} Ga {m} uner w keepW where
post : forall {e S S' e'} ->
SYNEr Ga uner w keepW e S e' -> S ~>> S' ->
SYNEr Ga uner w keepW e S' e'
var : forall i ->
(u<w : cxW Ga i << w) ->
SYNEr Ga uner w keepW (var i) (cxTy Ga i) (var (eraseVar uner i (downsetKeep u<w keepW)))
appE : forall {q qw f s S T f'} ->
SYNEr Ga uner w keepW f (pi q S T) f' ->
q # w ~ qw ->
(erQW : er? qw == delete) ->
CHK Ga qw S s ->
SYNEr Ga uner w keepW (f $ s) (Sb.act (si -, (s :: S)) T) f'
_$~_^_~$_ : forall {q qw f s S T f' s'} ->
SYNEr Ga uner w keepW f (pi q S T) f' ->
q # w ~ qw ->
(keepQW : er? qw == keep) ->
CHKEr Ga uner qw keepQW S s s' ->
SYNEr Ga uner w keepW (f $ s) (Sb.act (si -, (s :: S)) T) (f' $ s')
_:~:_ : forall {t T t'} ->
CHK Ga (st-act w) star T ->
CHKEr Ga uner w keepW T t t' ->
SYNEr Ga uner w keepW (t :: T) T t'
-- We have elaborated the rules, so if a CHKEr holds, then the corresponding CHK does
-- and similarly for SYN
forgetCHKEr : forall {n Ga m uner w keepW T t t'}
-> CHKEr {n} Ga {m} uner w keepW T t t'
-> CHK Ga w T t
forgetSYNEr : forall {n Ga m uner w keepW e S e'}
-> SYNEr {n} Ga {m} uner w keepW e S e'
-> SYN Ga w e S
forgetCHKEr (pre S~>T Ttt') = pre S~>T (forgetCHKEr Ttt')
forgetCHKEr (star tyW) = star tyW
forgetCHKEr (piEE tyW quw deQUW deSQUW *S *TT') = pi tyW quw *S (forgetCHKEr *TT')
forgetCHKEr (piArr tyW quw deQUW keSQUW *SS' *TT') = pi tyW quw (forgetCHKEr *SS') (forgetCHKEr *TT')
forgetCHKEr (piE tyW quw keQUW deSQUW *S *TT') = pi tyW quw *S (forgetCHKEr *TT')
forgetCHKEr (pi tyW quw keQUW keSQUW *SS' *TT') = pi tyW quw (forgetCHKEr *SS') (forgetCHKEr *TT')
forgetCHKEr (lamE qw erQW Ttt') = lam qw (forgetCHKEr Ttt')
forgetCHKEr (lam qw keQW Ttt') = lam qw (forgetCHKEr Ttt')
forgetCHKEr ([ eSe' ] S=T) = [ forgetSYNEr eSe' ] S=T
forgetSYNEr (post eSe' S~>T) = post (forgetSYNEr eSe') S~>T
forgetSYNEr (var i u<w) = var i u<w
forgetSYNEr (appE fSTf' qw erQW Ss) = forgetSYNEr fSTf' $~ qw ~$ Ss
forgetSYNEr (fSTf' $~ qw ^ keQW ~$ Sss') = forgetSYNEr fSTf' $~ qw ~$ forgetCHKEr Sss'
forgetSYNEr (*T :~: Ttt') = *T :~: forgetCHKEr Ttt'
------------------------------------------------------------------------------
----- Every typing derivation elaborates to one with erasure -----------------
------------------------------------------------------------------------------
-- also, all contexts have a certain number of variables in worlds which are not erased
eraseCx : forall {n} -> (Ga : Cx n) -> Sg _ (Unerased Ga)
eraseCx [] = ze , []
eraseCx (Ga -, (w , S)) with eraseCx Ga
... | n , erGa with caseEr w (\ke -> kee erGa ke) (\de -> del erGa de)
... | keep , f , g = su n , g
... | delete , f , g = n , g
eraseCHK : forall {n Ga m}
-> (uner : Unerased Ga m)
-> forall {w} keepW {T t}
-> CHK {n} Ga w T t
-> Sg _ (CHKEr Ga uner w keepW T t)
eraseSYN : forall {n Ga m}
-> (uner : Unerased Ga m)
-> forall {w} keepW {e S}
-> SYN {n} Ga w e S
-> Sg _ (SYNEr Ga uner w keepW e S)
eraseCHK uner keepW (pre S~>T Tt) with eraseCHK uner keepW Tt
... | t' , p = t' , pre S~>T p
eraseCHK uner keepW (star tyW) = star , star tyW
eraseCHK uner keepW (pi {quw = quw'} tyW quw *S *T)
with caseEr (st-act quw') (\ke -> eraseCHK uner ke *S) (\de -> <>)
| caseEr quw' (\ke -> eraseCHK (kee uner ke) keepW *T)
(\de -> eraseCHK (del uner de) keepW *T)
... | keep , keepSQUW , S' , *SS' | keep , keepQUW , T' , *TT' = pi S' T' , pi tyW quw keepQUW keepSQUW *SS' *TT'
... | keep , keepSQUW , S' , *SS' | delete , delQUW , T' , *TT' = arr S' T' , piArr tyW quw delQUW keepSQUW *SS' *TT'
... | delete , delSQUW , <> | keep , keepQUW , T' , *TT' = erpi T' , piE tyW quw keepQUW delSQUW *S *TT'
... | delete , delSQUW , <> | delete , delQUW , T' , *TT' = T' , piEE tyW quw delQUW delSQUW *S *TT'
eraseCHK uner keepW (lam {qw = qw'} qw Tt)
with caseEr qw' (\ke -> eraseCHK (kee uner ke) keepW Tt)
(\de -> eraseCHK (del uner de) keepW Tt)
... | keep , keepQW , t' , Ttt' = lam t' , lam qw keepQW Ttt'
... | delete , delQW , t' , Ttt' = t' , lamE qw delQW Ttt'
eraseCHK uner keepW ([ eS ] S=T) with eraseSYN uner keepW eS
... | e' , eSe' = e' , [ eSe' ] S=T
eraseSYN uner keepW (post eS S~>T) with eraseSYN uner keepW eS
... | e' , eSe' = e' , post eSe' S~>T
eraseSYN uner keepW (var i p) = var _ , var i p
eraseSYN uner keepW (_$~_~$_ {qw = qw'} fST qw Ss)
with eraseSYN uner keepW fST
| caseEr qw' (\ke -> eraseCHK uner ke Ss) (\de -> <>)
... | f' , fSTf' | keep , keeQW , s' , Sss' = f' $ s' , fSTf' $~ qw ^ keeQW ~$ Sss'
... | f' , fSTf' | delete , delQW , <> = f' , appE fSTf' qw delQW Ss
eraseSYN uner keepW (*T :~: Tt) with eraseCHK uner keepW Tt
... | t' , Ttt' = t' , *T :~: Ttt'
------------------------------------------------------------------------------
----- Erasures are unique ----------------------------------------------------
------------------------------------------------------------------------------
-- We wish to show erasures are unique and depend only on the
-- original term and the fact it is well typed (but not the proof).
-- We allow the context and input type (if any) to vary to equivalent
-- ones and also show the output type (if any) varys only to an
-- equivalent one.
-- Equivalent for types means convertible.
-- We have a choice for contexts: we need the two to be the same length
-- and the types appearing to be pairwise equivalent.
-- However, should we require the worlds to be pairwise equal?
-- If we do, the uniqueness result is easier to state, since we can
-- just show the two erasures (both of the type Cx m for some m) are equal.
-- (and in this case, we don't need unerThin and friends)
-- If we don't (which is the choice we make here), the erasures live in
-- different contexts (since the number of worlds in the context that are
-- erased may differ), and so the de Bruijn indices for the same variable differ.
-- Thus, we need to view the terms in the original context, which we do by
-- thinning with unerThin.
-- We will show that thinning is injective, which we need for going under
-- a erased binder (adding an o' to a thinning) when proving erasures
-- are unique
piInj : forall {n}{A C : Er n}{B D} -> Er.pi A B == pi C D -> A == C * B == D
piInj refl = refl , refl
erpiInj : forall {n}{B D : Er (su n)} -> Er.Er.erpi B == erpi D -> B == D
erpiInj refl = refl
arrInj : forall {n}{A B C D : Er n} -> arr A B == arr C D -> A == C * B == D
arrInj refl = refl , refl
lamInj : forall {n}{s t : Er (su n)} -> Er.Er.lam s == lam t -> s == t
lamInj refl = refl
varInj : forall {n}{x y : Fin n} -> Er.var x == var y -> x == y
varInj refl = refl
appInj : forall {n}{e s f t : Er n} -> Er._$_ e s == f $ t -> e == f * s == t
appInj refl = refl , refl
-- if thinEr th1 s == thinEr th2 t, then all the pieces of s and t
-- are equal under the appropriate thinning
data ViewThEr {n m}(th1 th2 : n <= m) : Er n -> Er n -> Set where
star : ViewThEr th1 th2 star star
pi : forall {A C} -> thinEr th1 A == thinEr th2 C
-> forall {B D} -> thinEr (os th1) B == thinEr (os th2) D
-> ViewThEr th1 th2 (pi A B) (pi C D)
erpi : forall {B D} -> thinEr (os th1) B == thinEr (os th2) D
-> ViewThEr th1 th2 (erpi B) (erpi D)
arr : forall {A C} -> thinEr th1 A == thinEr th2 C
-> forall {B D} -> thinEr th1 B == thinEr th2 D
-> ViewThEr th1 th2 (arr A B) (arr C D)
lam : forall {s t} -> thinEr (os th1) s == thinEr (os th2) t -> ViewThEr th1 th2 (lam s) (lam t)
var : forall {x y} -> thin th1 x == thin th2 y -> ViewThEr th1 th2 (var x) (var y)
_$_ : forall {e f} -> thinEr th1 e == thinEr th2 f
-> forall {s t} -> thinEr th1 s == thinEr th2 t
-> ViewThEr th1 th2 (e $ s) (f $ t)
viewThEr : forall {n m}{th1 th2 : n <= m}{t1 t2}
-> thinEr th1 t1 == thinEr th2 t2
-> ViewThEr th1 th2 t1 t2
viewThEr {t1 = star} {star} refl = star
viewThEr {t1 = star} {pi _ _} ()
viewThEr {t1 = star} {erpi _} ()
viewThEr {t1 = star} {arr _ _} ()
viewThEr {t1 = star} {lam _} ()
viewThEr {t1 = star} {var x} ()
viewThEr {t1 = star} {_ $ _} ()
viewThEr {t1 = pi _ _} {star} ()
viewThEr {t1 = pi A B} {pi C D} p with piInj p
... | thA=thC , thB=thD = pi thA=thC thB=thD
viewThEr {t1 = pi _ _} {erpi _} ()
viewThEr {t1 = pi _ _} {arr _ _} ()
viewThEr {t1 = pi _ _} {lam _} ()
viewThEr {t1 = pi _ _} {var x} ()
viewThEr {t1 = pi _ _} {_ $ _} ()
viewThEr {t1 = erpi _} {star} ()
viewThEr {t1 = erpi _} {pi _ _} ()
viewThEr {t1 = erpi B} {erpi D} p = erpi (erpiInj p)
viewThEr {t1 = erpi _} {arr _ _} ()
viewThEr {t1 = erpi _} {lam _} ()
viewThEr {t1 = erpi _} {var x} ()
viewThEr {t1 = erpi _} {_ $ _} ()
viewThEr {t1 = arr _ _} {star} ()
viewThEr {t1 = arr _ _} {pi _ _} ()
viewThEr {t1 = arr _ _} {erpi _} ()
viewThEr {t1 = arr A B} {arr C D} p with arrInj p
... | thA=thC , thB=thD = arr thA=thC thB=thD
viewThEr {t1 = arr _ _} {lam _} ()
viewThEr {t1 = arr _ _} {var x} ()
viewThEr {t1 = arr _ _} {_ $ _} ()
viewThEr {t1 = lam _} {star} ()
viewThEr {t1 = lam _} {pi _ _} ()
viewThEr {t1 = lam _} {erpi _} ()
viewThEr {t1 = lam _} {arr _ _} ()
viewThEr {t1 = lam s} {lam t} p = lam (lamInj p)
viewThEr {t1 = lam _} {var x} ()
viewThEr {t1 = lam _} {_ $ _} ()
viewThEr {t1 = var x} {star} ()
viewThEr {t1 = var x} {pi _ _} ()
viewThEr {t1 = var x} {erpi _} ()
viewThEr {t1 = var x} {arr _ _} ()
viewThEr {t1 = var x} {lam _} ()
viewThEr {t1 = var x} {var y} p = var (varInj p)
viewThEr {t1 = var x} {_ $ _} ()
viewThEr {t1 = _ $ _} {star} ()
viewThEr {t1 = _ $ _} {pi _ _} ()
viewThEr {t1 = _ $ _} {erpi _} ()
viewThEr {t1 = _ $ _} {arr _ _} ()
viewThEr {t1 = _ $ _} {lam _} ()
viewThEr {t1 = _ $ _} {var x} ()
viewThEr {t1 = e $ s} {f $ t} p with appInj p
... | the=thf , ths=tht = the=thf $ ths=tht
thinErFunct : forall {n m l}(th : m <= l)(ph : n <= m)
-> forall t -> thinEr (th -<- ph) t == thinEr th (thinEr ph t)
thinErFunct th ph star = refl
thinErFunct th ph (pi S T)
rewrite thinErFunct th ph S | thinErFunct (os th) (os ph) T = refl
thinErFunct th ph (erpi T)
rewrite thinErFunct (os th) (os ph) T = refl
thinErFunct th ph (arr S T)
rewrite thinErFunct th ph S | thinErFunct th ph T = refl
thinErFunct th ph (lam t)
rewrite thinErFunct (os th) (os ph) t = refl
thinErFunct th ph (var x) = cong var (sym (thinCo th ph x))
thinErFunct th ph (f $ s)
rewrite thinErFunct th ph f | thinErFunct th ph s = refl
thinErInj : forall {n m}{th : n <= m}
-> forall {s t} -> thinEr th s == thinEr th t
-> s == t
thinErInj {th = th} p with viewThEr p
... | star = refl
... | pi thA=thC thB=thD rewrite thinErInj thA=thC | thinErInj thB=thD = refl
... | erpi thB=thD rewrite thinErInj thB=thD = refl
... | arr thA=thC thB=thD rewrite thinErInj thA=thC | thinErInj thB=thD = refl
... | lam ths=tht rewrite thinErInj ths=tht = refl
... | var thx=thy rewrite thinInj th thx=thy = refl
... | the=thf $ ths=tht rewrite thinErInj the=thf | thinErInj ths=tht = refl
thino' : forall {n m}{th1 th2 : n <= m}{t1 t2}
-> thinEr (o' th1) t1 == thinEr (o' th2) t2
-> thinEr th1 t1 == thinEr th2 t2
thino' {th1 = th1}{th2}{t1}{t2} p
rewrite cong o' (sym (oi-<-Q th1)) | thinErFunct (o' oi) th1 t1
| cong o' (sym (oi-<-Q th2)) | thinErFunct (o' oi) th2 t2
= thinErInj p
-- Unerased Ga m is unique (if it exists)
unerasedUniq : forall {n Ga m1 m2}
-> (uner1 : Unerased {n} Ga m1)
-> (uner2 : Unerased Ga m2)
-> _==_ (m1 , uner1) (m2 , uner2)
unerasedUniq [] [] = refl
unerasedUniq (kee uner1 ke1) (kee uner2 ke2)
with unerasedUniq uner1 uner2 | uip ke1 ke2
... | refl | refl = refl
unerasedUniq (kee uner1 ke1) (del uner2 de2) = naughty (erXorKp de2 ke1)
unerasedUniq (del uner1 de1) (kee uner2 ke2) = naughty (erXorKp de1 ke2)
unerasedUniq (del uner1 de1) (del uner2 de2)
with unerasedUniq uner1 uner2 | uip de1 de2
... | refl | refl = refl
-- Erasures of terms are unique
eraseUniqCHK : forall {n Ga1 Ga2} -> Equiv! Ga1 Ga2
-> forall {m} -> (unerGa1 : Unerased Ga1 m) -> (unerGa2 : Unerased Ga2 m)
-> forall {S T} -> Equiv S T
-> forall {w}{t : Tm n chk}
-> forall {keepW1 t1} -> (St : CHKEr Ga1 unerGa1 w keepW1 S t t1)
-> forall {keepW2 t2} -> (Tt : CHKEr Ga2 unerGa2 w keepW2 T t t2)
-> thinEr (unerThin unerGa1) t1 == thinEr (unerThin unerGa2) t2
eraseUniqSYN : forall {n Ga1 Ga2} -> Equiv! Ga1 Ga2
-> forall {m} -> (unerGa1 : Unerased Ga1 m) -> (unerGa2 : Unerased Ga2 m)
-> forall {w}{e : Tm n syn}
-> forall {keepW1 S e1} -> (eS : SYNEr Ga1 unerGa1 w keepW1 e S e1)
-> forall {keepW2 T e2} -> (eT : SYNEr Ga2 unerGa2 w keepW2 e T e2)
-> Equiv S T * thinEr (unerThin unerGa1) e1 == thinEr (unerThin unerGa2) e2
eraseUniqCHK Ga1eqvGa2 uner1 uner2 (SR ~>>*<<~ TR) (pre S'S St) Tt
with confluence SR (S'S ,- [])
... | R' , RR' , S'R' = eraseUniqCHK Ga1eqvGa2 uner1 uner2 (S'R' ~>>*<<~ (TR ++ RR')) St Tt
eraseUniqCHK Ga1eqvGa2 uner1 uner2 (SR ~>>*<<~ TR) St (pre T'T Tt)
with confluence TR (T'T ,- [])
... | R' , RR' , T'R' = eraseUniqCHK Ga1eqvGa2 uner1 uner2 (SR ++ RR' ~>>*<<~ T'R') St Tt
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT (star tyW1) (star tyW2)
= refl
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(piEE tyW1 quw1 erQUW1 erSQUW1 *S1 *TT'1)
(piEE tyW2 quw2 erQUW2 erSQUW2 *S2 *TT'2)
= thino' (eraseUniqCHK (CxEqv Ga1eqvGa2 equivRefl)
(del uner1 erQUW1) (del uner2 erQUW2)
equivRefl *TT'1 *TT'2)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(piEE _ quw1 _ erSQUW _ _) (piArr _ quw2 _ keepSQUW _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erSQUW keepSQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(piEE _ quw1 erQUW _ _ _) (piE _ quw2 keepQUW _ _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erQUW keepQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(piEE _ quw1 erQUW _ _ _) (pi _ quw2 keepQUW _ _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erQUW keepQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(piArr _ quw1 _ keepSQUW _ _) (piEE _ quw2 _ erSQUW _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erSQUW keepSQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 ABeqvCD
(piArr _ quw1 erQUW1 keepSQUW1 *AA' *BB') (piArr _ quw2 erQUW2 keepSQUW2 *CC' *DD')
rewrite #functional quw1 quw2
| eraseUniqCHK Ga1eqvGa2 uner1 uner2 equivRefl *AA' *CC'
| thino' (eraseUniqCHK (CxEqv Ga1eqvGa2 equivRefl)
(del uner1 erQUW1) (del uner2 erQUW2)
equivRefl *BB' *DD')
= refl
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(piArr _ quw1 _ keepSQUW _ _) (piE _ quw2 _ erSQUW _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erSQUW keepSQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(piArr _ quw1 erQUW _ _ _) (pi _ quw2 keepQUW _ _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erQUW keepQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(piE _ quw1 keepQUW _ _ _) (piEE _ quw2 erQUW _ _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erQUW keepQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(piE _ quw1 _ erSQUW _ _) (piArr _ quw2 _ keepSQUW _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erSQUW keepSQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(piE _ quw1 keepQUW1 erSQUW1 *A *BB') (piE _ quw2 keepQUW2 erSQUW2 *C *DD')
rewrite eraseUniqCHK (CxEqv Ga1eqvGa2 equivRefl)
(kee uner1 keepQUW1) (kee uner2 keepQUW2)
equivRefl *BB' *DD'
= refl
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(piE _ quw1 _ erSQUW _ _) (pi _ quw2 _ keepSQUW _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erSQUW keepSQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(pi _ quw1 keepQUW _ _ _) (piEE _ quw2 erQUW _ _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erQUW keepQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(pi _ quw1 keepQUW _ _ _) (piArr _ quw2 erQUW _ _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erQUW keepQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(pi _ quw1 _ keepSQUW _ _) (piE _ quw2 _ erSQUW _ _)
rewrite #functional quw1 quw2 = naughty (erXorKp erSQUW keepSQUW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(pi _ quw1 keepQUW1 keepSQUW1 *AA' *BB') (pi _ quw2 keepQUW2 keepSQUW2 *CC' *DD')
rewrite #functional quw1 quw2
| eraseUniqCHK Ga1eqvGa2 uner1 uner2 equivRefl *AA' *CC'
| eraseUniqCHK (CxEqv Ga1eqvGa2 equivRefl)
(kee uner1 keepQUW1) (kee uner2 keepQUW2)
equivRefl *BB' *DD'
= refl
eraseUniqCHK Ga1eqvGa2 uner1 uner2 ASeqvBT
(lamE qw1 erQW1 Stt') (lamE qw2 erQW2 Ttt')
with piSplitEquiv ASeqvBT
... | A~>C ~>>*<<~ B~>C , SeqvT
= thino' (eraseUniqCHK (CxEqv Ga1eqvGa2 (A~>C ~>>*<<~ B~>C))
(del uner1 erQW1) (del uner2 erQW2) SeqvT Stt' Ttt')
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(lamE qw1 erQW _) (lam qw2 keepQW _)
rewrite piEquivSameW SeqvT qw1 qw2
= naughty (erXorKp erQW keepQW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
(lam qw1 keepQW _) (lamE qw2 erQW _)
rewrite piEquivSameW SeqvT qw1 qw2
= naughty (erXorKp erQW keepQW)
eraseUniqCHK Ga1eqvGa2 uner1 uner2 ASeqvBT
(lam qw1 keepQW1 Stt') (lam qw2 keepQW2 Ttt')
with piSplitEquiv ASeqvBT
... | A~>C ~>>*<<~ B~>C , SeqvT
= cong lam
(eraseUniqCHK (CxEqv Ga1eqvGa2 (A~>C ~>>*<<~ B~>C))
(kee uner1 keepQW1) (kee uner2 keepQW2) SeqvT Stt' Ttt')
eraseUniqCHK Ga1eqvGa2 uner1 uner2 SeqvT
([ eSe' ] _) ([ eTe' ] _)
= snd (eraseUniqSYN Ga1eqvGa2 uner1 uner2 eSe' eTe')
eraseUniqSYN Ga1eqvGa2 uner1 uner2 (post eS SS') eT
with eraseUniqSYN Ga1eqvGa2 uner1 uner2 eS eT
... | SR ~>>*<<~ TR , eUniq with confluence (SS' ,- []) SR
... | R' , SR' , RR' = (SR' ~>>*<<~ TR ++ RR') , eUniq
eraseUniqSYN Ga1eqvGa2 uner1 uner2 eS (post eT TT')
with eraseUniqSYN Ga1eqvGa2 uner1 uner2 eS eT
... | SR ~>>*<<~ TR , eUniq with confluence (TT' ,- []) TR
... | R' , TR' , RR' = (SR ++ RR' ~>>*<<~ TR') , eUniq
eraseUniqSYN Ga1eqvGa2 uner1 uner2 {keepW1 = keepW1} (var i u<w1) {keepW2} (var .i u<w2)
rewrite thinErase uner1 i (downsetKeep u<w1 keepW1)
| thinErase uner2 i (downsetKeep u<w2 keepW2)
= cxEquiv Ga1eqvGa2 i , refl
eraseUniqSYN Ga1eqvGa2 uner1 uner2 (appE fAB qw1 erQW1 As) (appE fCD qw2 erQW2 Cs)
with eraseUniqSYN Ga1eqvGa2 uner1 uner2 fAB fCD
... | ABeqvCD , f1=f2
with piSplitEquiv ABeqvCD
... | AeqvC , BeqvD = substEquiv AeqvC BeqvD _ , f1=f2
eraseUniqSYN Ga1eqvGa2 uner1 uner2 (appE fAB qw1 erQW1 As) (fCD $~ qw2 ^ keepQW2 ~$ Cs)
with eraseUniqSYN Ga1eqvGa2 uner1 uner2 fAB fCD
... | ABeqvCD , f1=f2 rewrite piEquivSameW ABeqvCD qw1 qw2 = naughty (erXorKp erQW1 keepQW2)
eraseUniqSYN Ga1eqvGa2 uner1 uner2 (fAB $~ qw1 ^ keepQW1 ~$ As) (appE fCD qw2 erQW2 Cs)
with eraseUniqSYN Ga1eqvGa2 uner1 uner2 fAB fCD
... | ABeqvCD , f1=f2 rewrite piEquivSameW ABeqvCD qw1 qw2 = naughty (erXorKp erQW2 keepQW1)
eraseUniqSYN Ga1eqvGa2 uner1 uner2 (fAB $~ qw1 ^ keepQW1 ~$ As) (fCD $~ qw2 ^ keepQW2 ~$ Cs)
with eraseUniqSYN Ga1eqvGa2 uner1 uner2 fAB fCD
... | ABeqvCD , f'uniq rewrite piEquivSameW ABeqvCD qw1 qw2
with piSplitEquiv ABeqvCD
... | AeqvC , BeqvD
with eraseUniqCHK Ga1eqvGa2 uner1 uner2 AeqvC As Cs
... | s'uniq rewrite f'uniq | s'uniq
= substEquiv AeqvC BeqvD _ , refl
eraseUniqSYN Ga1eqvGa2 uner1 uner2 (*T :~: Tss') (*T' :~: Ttt')
= equivRefl , eraseUniqCHK Ga1eqvGa2 uner1 uner2 equivRefl Tss' Ttt'
------------------------------------------------------------------------------
----- Computing just the context and type preserves the erasure --------------
------------------------------------------------------------------------------
!~>>*SameUnerThin : forall {n}{Ga Ga' : Cx n}
-> Ga !~>>* Ga'
-> forall {l}(uner : Unerased Ga l)(uner' : Unerased Ga' l)
-> unerThin uner == unerThin uner'
!~>>*SameUnerThin {Ga = []} {[]} <> [] [] = refl
!~>>*SameUnerThin {Ga = Ga -, (u , S)} {Ga' -, (v , T)} (Ga~>Ga' , u=v , S~>T) (kee uner keU) (kee uner' keV)
= cong os (!~>>*SameUnerThin Ga~>Ga' uner uner')
!~>>*SameUnerThin {Ga = Ga -, (u , S)} {Ga' -, (v , T)} (Ga~>Ga' , refl , S~>T) (kee uner keU) (del uner' deV)
= naughty (erXorKp deV keU)
!~>>*SameUnerThin {Ga = Ga -, (u , S)} {Ga' -, (v , T)} (Ga~>Ga' , refl , S~>T) (del uner deU) (kee uner' keV)
= naughty (erXorKp deU keV)
!~>>*SameUnerThin {Ga = Ga -, (u , S)} {Ga' -, (v , T)} (Ga~>Ga' , u=v , S~>T) (del uner deU) (del uner' deV)
= cong o' (!~>>*SameUnerThin Ga~>Ga' uner uner')
presCHKErCxTy : forall {n}{Ga Ga' : Cx n}
-> Ga !~>>* Ga'
-> forall {l}{uner : Unerased Ga l}{uner'}{w keepW}{T T'}
-> T ~>>* T'
-> forall {t s}
-> CHKEr Ga uner w keepW T t s
-> CHKEr Ga' uner' w keepW T' t s
presCHKErCxTy Ga~>Ga' {uner = uner}{uner'}{keepW = keepW} T~>T' Tts
with eraseCHK uner' keepW (presCHK Ga~>Ga' T~>T' (parRefl _) (forgetCHKEr Tts))
... | s' , T'ts'
with eraseUniqCHK (!~>>*ToEquiv Ga~>Ga') uner uner' (~>>*ToEquiv T~>T') Tts T'ts'
... | thins=thins'
rewrite !~>>*SameUnerThin Ga~>Ga' uner uner'
| thinErInj thins=thins'
= T'ts'
------------------------------------------------------------------------------
----- Thinnings preserve erasure judgements ----------------------------------
------------------------------------------------------------------------------
-- As we are working with de Bruijn, the erasures will not be equal on the nose,
-- since the indices will mean something different. Thus we prove that
-- thinnings commute with erasures in the appropriate sense.
-- Thinnings of whole contexts give rise to thinnings of erased contexts
thinUnerased : forall {n m}(th : n <= m)
-> forall {Ga De} -> (thC : ThinC th Ga De)
-> forall {l}(unerGa : Unerased Ga l)
-> forall {k}(unerDe : Unerased De k)
-> l <= k
thinUnerased oz {[]} {[]} thC [] [] = oz
thinUnerased (os th) {Ga -, _} {De -, _} (thC , _ , _) (kee unerGa _) (kee unerDe _)
= os (thinUnerased th thC unerGa unerDe)
thinUnerased (os th) {Ga -, _} {De -, _} (thC , _ , _) (del unerGa _) (del unerDe _)
= thinUnerased th thC unerGa unerDe
thinUnerased (os th) {Ga -, _} {De -, _} (thC , refl , _) (kee unerGa ke) (del unerDe de)
= naughty (erXorKp de ke)
thinUnerased (os th) {Ga -, _} {De -, _} (thC , refl , _) (del unerGa de) (kee unerDe ke)
= naughty (erXorKp de ke)
thinUnerased (o' th) {Ga} {De -, _} thC unerGa (kee unerDe _) = o' (thinUnerased th thC unerGa unerDe)
thinUnerased (o' th) {Ga} {De -, _} thC unerGa (del unerDe _) = thinUnerased th thC unerGa unerDe
-- The thinnings fit in the obvious commutative square
thinUnerasedCo : forall {n m}(th : n <= m)
-> forall {Ga De} -> (thC : ThinC th Ga De)
-> forall {l}(unerGa : Unerased Ga l)
-> forall {k}(unerDe : Unerased De k)
-> (th -<- unerThin unerGa) == ((unerThin unerDe) -<- (thinUnerased th thC unerGa unerDe))
thinUnerasedCo oz thC [] [] = refl
thinUnerasedCo (os th) (thC , _ , _) (kee unerGa _) (kee unerDe _) = cong os (thinUnerasedCo th thC unerGa unerDe)
thinUnerasedCo (os th) (thC , refl , _) (kee unerGa ke) (del unerDe de) = naughty (erXorKp de ke)
thinUnerasedCo (os th) (thC , refl , _) (del unerGa de) (kee unerDe ke) = naughty (erXorKp de ke)
thinUnerasedCo (os th) (thC , _ , _) (del unerGa _) (del unerDe _) = cong o' (thinUnerasedCo th thC unerGa unerDe)
thinUnerasedCo (o' th) thC unerGa (kee unerDe _) = cong o' (thinUnerasedCo th thC unerGa unerDe)
thinUnerasedCo (o' th) thC unerGa (del unerDe _) = cong o' (thinUnerasedCo th thC unerGa unerDe)
-- thinUnerased preserves identity thinnings
thinUnerasedId : forall {n Ga l}(unerGa : Unerased {n} Ga l)
-> thinUnerased oi (idThinC Ga) unerGa unerGa == oi
thinUnerasedId [] = refl
thinUnerasedId (kee unerGa keW) = cong os (thinUnerasedId unerGa)
thinUnerasedId (del unerGa deW) = thinUnerasedId unerGa
-- helper for thinSYNEr var case
eraseVarThinUnerasedCo : forall {n m}(th : n <= m)
-> forall {Ga De} -> (thC : ThinC th Ga De)
-> forall {l}(unerGa : Unerased Ga l)
-> forall {k}(unerDe : Unerased De k)
-> forall i -> (keepGa : er? (cxW Ga i) == keep)(keepDe : er? (cxW De (thin th i)) == keep)
-> thin (thinUnerased th thC unerGa unerDe) (eraseVar unerGa i keepGa)
== eraseVar unerDe (thin th i) keepDe
eraseVarThinUnerasedCo th thC unerGa unerDe i keepGa keepDe = thinInj (unerThin unerDe) help
where help : thin (unerThin unerDe)
(thin (thinUnerased th thC unerGa unerDe)
(eraseVar unerGa i keepGa))
== thin (unerThin unerDe)
(eraseVar unerDe (thin th i) keepDe)
help rewrite thinCo (unerThin unerDe)
(thinUnerased th thC unerGa unerDe)
(eraseVar unerGa i keepGa)
| sym (thinUnerasedCo th thC unerGa unerDe)
| sym (thinCo th
(unerThin unerGa)
(eraseVar unerGa i keepGa))
| thinErase unerGa i keepGa
| thinErase unerDe (thin th i) keepDe
= refl
-- thinnings preserve erasures
thinCHKEr : forall {n m}(th : n <= m)
-> forall {Ga De} -> (thC : ThinC th Ga De)
-> forall {l}(unerGa : Unerased Ga l)
-> forall {k}(unerDe : Unerased De k)
-> forall {w keepW T t t'}
-> CHKEr Ga unerGa w keepW T t t'
-> CHKEr De unerDe
w keepW (Th.act th T) (Th.act th t)
(thinEr (thinUnerased th thC unerGa unerDe) t')
thinSYNEr : forall {n m}(th : n <= m)
-> forall {Ga De} -> (thC : ThinC th Ga De)
-> forall {l}(unerGa : Unerased Ga l)
-> forall {k}(unerDe : Unerased De k)
-> forall {w keepW e S e'}
-> SYNEr Ga unerGa w keepW e S e'
-> SYNEr De unerDe
w keepW (Th.act th e) (Th.act th S)
(thinEr (thinUnerased th thC unerGa unerDe) e')
thinCHKEr th thC unerGa unerDe (pre S~>T Ttt') = pre (parThin th S~>T) (thinCHKEr th thC unerGa unerDe Ttt')
thinCHKEr th thC unerGa unerDe (star tyW) = star tyW
thinCHKEr th thC unerGa unerDe (piEE tyW quw erQUW erSQUW *S *TT')
= piEE tyW quw erQUW erSQUW
(thinCHK th thC *S)
(thinCHKEr (os th) (thC , refl , refl) (del unerGa erQUW) (del unerDe erQUW) *TT')
thinCHKEr th thC unerGa unerDe (piArr tyW quw erQUW keepSQUW *SS' *TT')
= piArr tyW quw erQUW keepSQUW
(thinCHKEr th thC unerGa unerDe *SS')
(thinCHKEr (os th) (thC , refl , refl) (del unerGa erQUW) (del unerDe erQUW) *TT')
thinCHKEr th thC unerGa unerDe (piE tyW quw keepQUW erSQUW *S *TT')
= piE tyW quw keepQUW erSQUW
(thinCHK th thC *S)
(thinCHKEr (os th) (thC , refl , refl) (kee unerGa keepQUW) (kee unerDe keepQUW) *TT')
thinCHKEr th thC unerGa unerDe (pi tyW quw keepQUW keepSQUW *SS' *TT')
= pi tyW quw keepQUW keepSQUW
(thinCHKEr th thC unerGa unerDe *SS')
(thinCHKEr (os th) (thC , refl , refl) (kee unerGa keepQUW) (kee unerDe keepQUW) *TT')
thinCHKEr th thC unerGa unerDe (lamE qw erQW Ttt')
= lamE qw erQW (thinCHKEr (os th) (thC , refl , refl) (del unerGa erQW) (del unerDe erQW) Ttt')
thinCHKEr th thC unerGa unerDe (lam qw keepQW Ttt')
= lam qw keepQW (thinCHKEr (os th) (thC , refl , refl) (kee unerGa keepQW) (kee unerDe keepQW) Ttt')
thinCHKEr th thC unerGa unerDe ([ eSe' ] refl ) = [ thinSYNEr th thC unerGa unerDe eSe' ] refl
thinSYNEr th thC unerGa unerDe (post eSe' S~>T) = post (thinSYNEr th thC unerGa unerDe eSe') (parThin th S~>T)
thinSYNEr th {Ga}{De} thC unerGa unerDe {w}{keepW} (var i u<w)
rewrite cxTyThin th _ _ thC i
| eraseVarThinUnerasedCo th thC unerGa unerDe i
(downsetKeep u<w keepW)
(downsetKeep (subst (_<< w) (cxWThin th _ _ thC i) u<w) keepW)
= var (thin th i) (subst (_<< w) (cxWThin th _ _ thC i) u<w)
thinSYNEr th thC unerGa unerDe (appE {s = s}{S}{T} fSTf' qw erQW Ss)
with appE (thinSYNEr th thC unerGa unerDe fSTf') qw erQW (thinCHK th thC Ss)
... | h rewrite ActCo.actCo SUBSTTHINSUBST (si -, Th.act th (s :: S)) (os th) T
| ActCo.actCo THINSUBSTSUBST th (si -, (s :: S)) T
| thin/idQ th = h
thinSYNEr th thC unerGa unerDe (_$~_^_~$_ {s = s}{S}{T} fSTf' qw keepQW Sss')
with thinSYNEr th thC unerGa unerDe fSTf' $~ qw ^ keepQW ~$ thinCHKEr th thC unerGa unerDe Sss'
... | h rewrite ActCo.actCo SUBSTTHINSUBST (si -, Th.act th (s :: S)) (os th) T
| ActCo.actCo THINSUBSTSUBST th (si -, (s :: S)) T
| thin/idQ th = h
thinSYNEr th thC unerGa unerDe (*S :~: Stt') = thinCHK th thC *S :~: thinCHKEr th thC unerGa unerDe Stt'
------------------------------------------------------------------------------
----- Subsumption and Erasure -----------------------------------------------
------------------------------------------------------------------------------
subsumeUnerThin : forall {n}(Ga : Cx n){m}(De : CxHole n m){v}(def : CxHoleDef De v)
{w}(v<w : v << w)(keepW : er? w == keep)
{l}(unerV : Unerased (Ga < v >< De ^ def) l)
(unerW : Unerased (Ga < w >< De ^ subsumeCxHoleDef def v<w) l)
-> unerThin unerV == unerThin unerW
subsumeUnerThin Ga (De -, (_ , _)) (def , _) v<w keepW (kee unerV keqv) (kee unerW keqw)
= cong os (subsumeUnerThin Ga De def v<w keepW unerV unerW)
subsumeUnerThin Ga (De -, ((_ , q) , _)) (def , (qv' , qv)) v<w keepW (kee unerV keqv) (del unerW deqw)
= naughty (erXorKp deqw (noStraddle v<w keepW q qv keqv))
subsumeUnerThin Ga (De -, (_ , _)) (def , qv' , qv) v<w keepW (del unerV deqv) (kee unerW keqw)
= naughty (erXorKp (upsetEr (op qv v<w) deqv) keqw)
subsumeUnerThin Ga (De -, (_ , _)) (def , _) v<w keepW (del unerV deqv) (del unerW deqw)
= cong o' (subsumeUnerThin Ga De def v<w keepW unerV unerW)
subsumeUnerThin [] [] <> v<w keepW [] [] = refl
subsumeUnerThin (Ga -, _) [] <> v<w keepW (kee unerV kew1) (kee unerW kew2)
= cong os (subsumeUnerThin Ga [] <> v<w keepW unerV unerW)
subsumeUnerThin (Ga -, _) [] <> v<w keepW (kee unerV kew1) (del unerW dew2) = naughty (erXorKp dew2 kew1)
subsumeUnerThin (Ga -, _) [] <> v<w keepW (del unerV dew1) (kee unerW kew2) = naughty (erXorKp dew1 kew2)
subsumeUnerThin (Ga -, _) [] <> v<w keepW (del unerV dew1) (del unerW dew2)
= cong o' (subsumeUnerThin Ga [] <> v<w keepW unerV unerW)
subsumeVarEr' : forall {n}(Ga : Cx n){m}(De : CxHole n m){v}(def : CxHoleDef De v)
{l}(unerV : Unerased (Ga < v >< De ^ def) l)
{w}(v<w : v << w)(keepW : er? w == keep)
(unerW : Unerased (Ga < w >< De ^ subsumeCxHoleDef def v<w) l)
i
(keV : er? (cxW (Ga < v >< De ^ def) i) == keep)
(keW : er? (cxW (Ga < w >< De ^ subsumeCxHoleDef def v<w) i) == keep)
-> eraseVar unerV i keV == eraseVar unerW i keW
subsumeVarEr' Ga De def unerV v<w keepW unerW i keV keW
with thinErase unerV i keV | thinErase unerW i keW
... | p | q rewrite subsumeUnerThin Ga De def v<w keepW unerV unerW
= thinInj (unerThin unerW) (trans p (sym q))
subsumeCHKEr' : forall {n}(Ga : Cx n){m}(De : CxHole n m){v}(def : CxHoleDef De v)
{l}(unerV : Unerased (Ga < v >< De ^ def) l)
(q : Q'){qv'}(qv : q #' v ~ qv'){keepQV}
{w}(v<w : v << w) keepW
(unerW : Unerased (Ga < w >< De ^ subsumeCxHoleDef def v<w) l)
{T t t'}
-> CHKEr (Ga < v >< De ^ def) unerV qv' keepQV T t t'
-> CHKEr (Ga < w >< De ^ subsumeCxHoleDef def v<w)
unerW (defUpset?Act q qv v<w)
(noStraddle? v<w keepW q qv keepQV)
T t t'
subsumeSYNEr' : forall {n}(Ga : Cx n){m}(De : CxHole n m){v}(def : CxHoleDef De v)
{l}(unerV : Unerased (Ga < v >< De ^ def) l)
(q : Q'){qv'}(qv : q #' v ~ qv'){keepQV}
{w}(v<w : v << w) keepW
(unerW : Unerased (Ga < w >< De ^ subsumeCxHoleDef def v<w) l)
{e S e'}
-> SYNEr (Ga < v >< De ^ def) unerV qv' keepQV e S e'
-> SYNEr (Ga < w >< De ^ subsumeCxHoleDef def v<w)
unerW (defUpset?Act q qv v<w)
(noStraddle? v<w keepW q qv keepQV)
e S e'
subsumeCHKEr' Ga De def unerV q qv v<w keepW unerW (pre S~>T Ttt')
= pre S~>T (subsumeCHKEr' Ga De def unerV q qv v<w keepW unerW Ttt')
subsumeCHKEr' Ga De def unerV q qv v<w keepW unerW (star tyQV) = star (tyWUpset (op? q qv v<w) tyQV)
subsumeCHKEr' Ga De def unerV q qv v<w keepW unerW (piEE {r} tyQV ru-qv deRUQV deSRUQV *S *TT')
= let ruq-v = &unst&-actionL r q ru-qv qv
ruqv<ruqw = op ruq-v v<w
*Sw : CHK (Ga < _ >< De ^ _)
(defUpsetAct (starSg&-pf ruq-v) v<w)
star _
*Sw = subsumeCHK' Ga De def (inr (starSg& (r &unst& q))) (starSg&-pf ruq-v) v<w *S
worlds-same : defUpsetAct (starSg&-pf ruq-v) v<w
== st-act (defUpsetAct ruq-v v<w)
worlds-same = #functional
(defUpsetPf (starSg&-pf (&unst&-actionL r q ru-qv qv)) v<w)
(starSg&-pf (defUpsetPf ruq-v v<w))
in piEE (tyWUpset (op? q qv v<w) tyQV)
(defUpset-comm-unst-act ru-qv qv v<w)
(upsetEr ruqv<ruqw deRUQV)
(upsetEr (st-op ruqv<ruqw) deSRUQV)
(subst (\w' -> CHK (Ga < _ >< De ^ subsumeCxHoleDef def v<w) w' star _) worlds-same *Sw)
(subsumeCHKEr' Ga (De -, _) (def , _ , ruq-v) _ q qv v<w keepW _ *TT')
subsumeCHKEr' Ga De def unerV q qv v<w keepW unerW (piArr {r} tyQV ru-qv deRUQV keSRUQV *SS' *TT')
= let ruq-v = &unst&-actionL r q ru-qv qv
ruqv<ruqw = op ruq-v v<w
keSRUQW = noStraddle v<w keepW (starSg& (r &unst& q)) (starSg&-pf ruq-v) keSRUQV
*SS'w : CHKEr (Ga < _ >< De ^ _) unerW
(defUpsetAct (starSg&-pf ruq-v) v<w)
keSRUQW star _ _
*SS'w = subsumeCHKEr' Ga De def unerV
(inr (starSg& (r &unst& q)))
(starSg&-pf ruq-v)
v<w keepW unerW *SS'
worlds-same : defUpsetAct (starSg&-pf ruq-v) v<w
== st-act (defUpsetAct ruq-v v<w)
worlds-same = #functional
(defUpsetPf (starSg&-pf (&unst&-actionL r q ru-qv qv)) v<w)
(starSg&-pf (defUpsetPf ruq-v v<w))
in piArr (tyWUpset (op? q qv v<w) tyQV)
(defUpset-comm-unst-act ru-qv qv v<w)
(upsetEr ruqv<ruqw deRUQV)
(trans (cong er? (defUpsetCommStarAct ruq-v v<w)) keSRUQW)
(subst (\wke -> CHKEr (Ga < _ >< De ^ subsumeCxHoleDef def v<w) unerW (fst wke) (snd wke) star _ _)
(Sg= worlds-same (uip _ _))
*SS'w)
(subsumeCHKEr' Ga (De -, _) (def , _ , ruq-v) _ q qv v<w keepW _ *TT')
subsumeCHKEr' Ga De def unerV q qv v<w keepW unerW (piE {r} tyQV ru-qv keRUQV deSRUQV *S *TT')
= let ruq-v = &unst&-actionL r q ru-qv qv
ruqv<ruqw = op ruq-v v<w
*Sw : CHK (Ga < _ >< De ^ _)
(defUpsetAct (starSg&-pf ruq-v) v<w)
star _
*Sw = subsumeCHK' Ga De def (inr (starSg& (r &unst& q))) (starSg&-pf ruq-v) v<w *S
worlds-same : defUpsetAct (starSg&-pf ruq-v) v<w
== st-act (defUpsetAct ruq-v v<w)
worlds-same = #functional
(defUpsetPf (starSg&-pf (&unst&-actionL r q ru-qv qv)) v<w)
(starSg&-pf (defUpsetPf ruq-v v<w))
in piE (tyWUpset (op? q qv v<w) tyQV)
(defUpset-comm-unst-act ru-qv qv v<w)
(noStraddle v<w keepW (snd (r &unst& q)) ruq-v keRUQV)
(upsetEr (st-op ruqv<ruqw) deSRUQV)
(subst (\w' -> CHK (Ga < _ >< De ^ subsumeCxHoleDef def v<w) w' star _) worlds-same *Sw)
(subsumeCHKEr' Ga (De -, _) (def , _ , ruq-v) _ q qv v<w keepW _ *TT')
subsumeCHKEr' Ga De def unerV q qv v<w keepW unerW (pi {r} tyQV ru-qv keRUQV keSRUQV *SS' *TT')
= let ruq-v = &unst&-actionL r q ru-qv qv
ruqv<ruqw = op ruq-v v<w
keSRUQW = noStraddle v<w keepW (starSg& (r &unst& q)) (starSg&-pf ruq-v) keSRUQV
*SS'w : CHKEr (Ga < _ >< De ^ _) unerW
(defUpsetAct (starSg&-pf ruq-v) v<w)
keSRUQW star _ _
*SS'w = subsumeCHKEr' Ga De def unerV
(inr (starSg& (r &unst& q)))
(starSg&-pf ruq-v)
v<w keepW unerW *SS'
worlds-same : defUpsetAct (starSg&-pf ruq-v) v<w
== st-act (defUpsetAct ruq-v v<w)
worlds-same = #functional
(defUpsetPf (starSg&-pf (&unst&-actionL r q ru-qv qv)) v<w)
(starSg&-pf (defUpsetPf ruq-v v<w))
in pi (tyWUpset (op? q qv v<w) tyQV)
(defUpset-comm-unst-act ru-qv qv v<w)
(noStraddle v<w keepW (snd (r &unst& q)) ruq-v keRUQV)
(trans (cong er? (defUpsetCommStarAct ruq-v v<w)) keSRUQW)
(subst (\wke -> CHKEr (Ga < _ >< De ^ subsumeCxHoleDef def v<w) unerW (fst wke) (snd wke) star _ _)
(Sg= worlds-same (uip _ _))
*SS'w)
(subsumeCHKEr' Ga (De -, _) (def , _ , ruq-v) _ q qv v<w keepW _ *TT')
subsumeCHKEr' Ga De def unerV q qv v<w keepW unerW (lamE {r} rqv deRQV Ttt')
= lamE (defUpsetCommAct' r q _ qv rqv v<w)
(upsetEr (op (isActionR' r q _ qv rqv) v<w) deRQV)
(subsumeCHKEr' Ga (De -, _) (def , _ , isActionR' r q _ qv rqv) _ q qv v<w keepW _ Ttt')
subsumeCHKEr' Ga De def unerV q qv v<w keepW unerW (lam {r} rqv keRQV Ttt')
= lam (defUpsetCommAct' r q _ qv rqv v<w)
(noStraddle? v<w keepW (inr (r &' q)) (isActionR' r q _ qv rqv) keRQV)
(subsumeCHKEr' Ga (De -, _) (def , _ , isActionR' r q _ qv rqv) _ q qv v<w keepW _ Ttt')
subsumeCHKEr' Ga De def unerV q qv v<w keepW unerW ([ eSe' ] S=T)
= [ subsumeSYNEr' Ga De def unerV q qv v<w keepW unerW eSe' ] S=T
subsumeSYNEr' Ga De def unerV q qv v<w keepW unerW (post eSe' S~>T)
= post (subsumeSYNEr' Ga De def unerV q qv v<w keepW unerW eSe') S~>T
subsumeSYNEr' Ga De def unerV q qv {keepQV} v<w keepW unerW (var i u<qv)
rewrite subsumeTy Ga De def v<w i
| subsumeVarEr' Ga De def unerV v<w keepW unerW i
(downsetKeep u<qv keepQV)
(downsetKeep (subsumeW Ga De def v<w i q qv u<qv) (noStraddle? v<w keepW q qv keepQV))
= var i (subsumeW Ga De def v<w i q qv u<qv)
subsumeSYNEr' Ga De def unerV q qv v<w keepW unerW (appE {r} fSTf' rqv deRQV Ss)
= appE (subsumeSYNEr' Ga De def unerV q qv v<w keepW unerW fSTf')
(defUpsetCommAct' r q _ qv rqv v<w) (upsetEr (op (isActionR' r q _ qv rqv) v<w) deRQV)
(subsumeCHK' Ga De def (inr (r &' q)) (isActionR' r q _ qv rqv) v<w Ss)
subsumeSYNEr' Ga De def unerV q qv v<w keepW unerW (_$~_^_~$_ {r} fSTf' rqv keRQV Sss')
= subsumeSYNEr' Ga De def unerV q qv v<w keepW unerW fSTf'
$~ defUpsetCommAct' r q _ qv rqv v<w
^ noStraddle? v<w keepW (inr (r &' q)) (isActionR' r q _ qv rqv) keRQV ~$
subsumeCHKEr' Ga De def unerV (inr (r &' q)) (isActionR' r q _ qv rqv) v<w keepW unerW Sss'
subsumeSYNEr' Ga De def unerV q qv v<w keepW unerW (*S :~: Sss')
with subsumeCHK' Ga De def (inr (st &' q)) (isActionR' st q _ qv (st-pr _)) v<w *S
... | *Sw rewrite sym (st-functional (defUpsetCommAct' st q _ qv (st-pr _) v<w))
= *Sw :~: subsumeCHKEr' Ga De def unerV q qv v<w keepW unerW Sss'
subsumeCHKEr : forall {n}{Ga : Cx n}{m}(uner : Unerased Ga m)
{v w}(v<w : v << w)
keepW {keepV T t t'}
-> CHKEr Ga uner v keepV T t t'
-> CHKEr Ga uner w keepW T t t'
subsumeCHKEr {Ga = Ga} uner v<w keepW Ttt'
= subsumeCHKEr' Ga [] <> uner (inl <>) refl v<w keepW uner Ttt'
subsumeSYNEr : forall {n}{Ga : Cx n}{m}(uner : Unerased Ga m)
{v w}(v<w : v << w)
keepW {keepV e S e'}
-> SYNEr Ga uner v keepV e S e'
-> SYNEr Ga uner w keepW e S e'
subsumeSYNEr {Ga = Ga} uner v<w keepW Ttt'
= subsumeSYNEr' Ga [] <> uner (inl <>) refl v<w keepW uner Ttt'
------------------------------------------------------------------------------