-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTyping.agda
799 lines (710 loc) · 34.3 KB
/
Typing.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
open import WorldSystem
module Typing {QW : WorldSystem} where
open WorldSystem.WorldSystem QW
open import Basics
open import Star
open import OPE
open import Dir
open import Tm {Q Real}
open import Env
open import Subst {Q Real}
open import Par {Q Real}
data Cx : Nat -> Set where
[] : Cx ze
_-,_ : forall {n} -> Cx n -> W * Tm n chk -> Cx (su n)
cxWTy : forall {n} -> Cx n -> Fin n -> W * Tm n chk
cxWTy (Ga -, (w , S)) ze = w , Th.act (o' oi) S
cxWTy (Ga -, _) (su i) with cxWTy Ga i
... | w , S = w , Th.act (o' oi) S
cxW : forall {n} -> Cx n -> Fin n -> W
cxW Ga i = fst (cxWTy Ga i)
cxTy : forall {n} -> Cx n -> Fin n -> Tm n chk
cxTy Ga i = snd (cxWTy Ga i)
data CHK {n}(Ga : Cx n)(w : W) : Tm n chk -> Tm n chk -> Set
data SYN {n}(Ga : Cx n)(w : W) : Tm n syn -> Tm n chk -> Set
data CHK {n} Ga w where
pre : forall {T T' t} ->
T ~>> T' -> CHK Ga w T' t ->
CHK Ga w T t
star : tyW w -> CHK Ga w star star
pi : forall {q quw S T} ->
tyW w -> snd (q &unst& inl <>) # w ~ quw -> --q ## unst w ~ quw ->
CHK Ga (st-act quw) star S -> CHK (Ga -, (quw , S)) w star T ->
CHK Ga w star (pi q S T)
lam : forall {q qw S T t} ->
q # w ~ qw ->
CHK (Ga -, (qw , S)) w T t ->
CHK Ga w (pi q S T) (lam t)
[_] : forall {e S T} ->
SYN Ga w e S -> S == T ->
CHK Ga w T [ e ]
data SYN {n} Ga w where
post : forall {e S S'} ->
SYN Ga w e S -> S ~>> S' ->
SYN Ga w e S'
var : forall i ->
cxW Ga i << w ->
SYN Ga w (var i) (cxTy Ga i)
_$~_~$_ : forall {q qw f s S T} ->
SYN Ga w f (pi q S T) ->
q # w ~ qw ->
CHK Ga qw S s ->
SYN Ga w (f $ s) (Sb.act (si -, (s :: S)) T)
_:~:_ : forall {t T} ->
CHK Ga (st-act w) star T ->
CHK Ga w T t ->
SYN Ga w (t :: T) T
data VALID : {n : Nat} -> Cx n -> Set where
emp : VALID []
ext : forall {n Ga w}{S : Tm n chk} -> VALID Ga -> CHK Ga (st-act w) star S -> VALID (Ga -, (w , S))
------------------------------------------------------------------------------
----- Thinnings preserve judgements ------------------------------------------
------------------------------------------------------------------------------
ThinC : forall {n m} -> n <= m -> Cx n -> Cx m -> Set
ThinC oz [] [] = One
ThinC (os th) (Ga -, (u , S)) (De -, (v , S')) = ThinC th Ga De * u == v * (Th.act th S == S')
ThinC (o' th) Ga (De -, _) = ThinC th Ga De
ThinWithTypes : forall {n m}(th : n <= m)
(Ga : Cx n)(De : Cx m) -> ThinC th Ga De ->
Set
ThinWithTypes oz [] [] <> = One
ThinWithTypes (os th) (Ga -, (_ , _)) (De -, (_ , _)) (thC , _ , _) = ThinWithTypes th Ga De thC
ThinWithTypes (o' th) Ga (De -, (w , S)) thC = ThinWithTypes th Ga De thC * CHK De (st-act w) star S
idThinC : forall {n}(Ga : Cx n) -> ThinC oi Ga Ga
idThinC [] = <>
idThinC (Ga -, (w , S)) = idThinC Ga , refl , ActId.actId THINID S
cxWThin : forall {n m}(th : n <= m)(Ga : Cx n)(De : Cx m) ->
ThinC th Ga De -> (i : Fin n) ->
cxW Ga i == cxW De (thin th i)
cxWThin oz Ga De p ()
cxWThin (os th) (Ga -, (u , _)) (De -, (v , _)) (thGaDe , u=v , _) ze = u=v
cxWThin (os th) (Ga -, _) (De -, _) (thGaDe , _ , _) (su i) = cxWThin th Ga De thGaDe i
cxWThin (o' th) Ga (De -, _) p i = cxWThin th Ga De p i
cxTyThin : forall {n m}(th : n <= m)(Ga : Cx n)(De : Cx m) ->
ThinC th Ga De -> (i : Fin n) ->
Th.act th (cxTy Ga i) == cxTy De (thin th i)
cxTyThin oz Ga De thGaDe ()
cxTyThin (os th) (Ga -, (_ , S)) (De -, (_ , S')) (thGaDe , _ , thSS') ze
rewrite sym thSS'
| ActCo.actCo THINTHINTHIN (o' oi) th S
| ActCo.actCo THINTHINTHIN (os th) (o' oi) S
| oi-<-Q th
| th -<-oiQ
= refl
cxTyThin (os th) (Ga -, _) (De -, _) (thGaDe , _ , _) (su i)
with cxTyThin th Ga De thGaDe i
... | q rewrite sym q
| ActCo.actCo THINTHINTHIN (o' oi) th (cxTy Ga i)
| ActCo.actCo THINTHINTHIN (os th) (o' oi) (cxTy Ga i)
| oi-<-Q th
| th -<-oiQ
= refl
cxTyThin (o' th) Ga (De -, _) thGaDe i with cxTyThin th Ga De thGaDe i
... | q rewrite sym q
| ActCo.actCo THINTHINTHIN (o' oi) th (cxTy Ga i)
| oi-<-Q th
= refl
thinVALID : forall {n m}(th : n <= m)
{Ga : Cx n}{De : Cx m} ->
(thC : ThinC th Ga De) -> ThinWithTypes th Ga De thC ->
VALID Ga -> VALID De
thinCHK : forall {n m}(th : n <= m)
{Ga : Cx n}{De : Cx m} -> ThinC th Ga De ->
forall {w T t} -> CHK Ga w T t ->
CHK De w (Th.act th T) (Th.act th t)
thinSYN : forall {n m}(th : n <= m)
{Ga : Cx n}{De : Cx m} -> ThinC th Ga De ->
forall {w e S} -> SYN Ga w e S ->
SYN De w (Th.act th e) (Th.act th S)
thinVALID oz {.[]} {[]} thC thT emp = emp
thinVALID (os th) {Ga -, (_ , _)} {De -, (_ , _)} (thC , refl , refl) thT (ext valid *S)
= ext (thinVALID th thC thT valid) (thinCHK th thC *S)
thinVALID (o' th) {Ga} {De -, (w , S)} thC (thT , *S) valid = ext (thinVALID th thC thT valid) *S
thinCHK th thC (pre TT' Tt) = pre (parThin th TT') (thinCHK th thC Tt)
thinCHK th thC (star p) = star p
thinCHK th thC (pi tyW quw *S *T) = pi tyW quw
(thinCHK th thC *S)
(thinCHK (os th) (thC , refl , refl) *T)
thinCHK th thC (lam qw Tt) = lam qw (thinCHK (os th) (thC , refl , refl) Tt)
thinCHK th thC ([ eS ] refl) = [ thinSYN th thC eS ] refl
thinSYN th thC (post eS SS') = post (thinSYN th thC eS) (parThin th SS')
thinSYN th thC (var i p) rewrite cxTyThin th _ _ thC i
| cxWThin th _ _ thC i
= var (thin th i) p
thinSYN th thC (_$~_~$_ {s = s}{S}{T} fST qw Ss) with thinSYN th thC fST $~ qw ~$ thinCHK th thC Ss
... | h
rewrite ActCo.actCo SUBSTTHINSUBST (si -, Th.act th (s :: S)) (os th) T
| ActCo.actCo THINSUBSTSUBST th (si -, (s :: S)) T
| thin/idQ th = h
thinSYN th thC (T :~: t) = thinCHK th thC T :~: thinCHK th thC t
------------------------------------------------------------------------------
----- Strengthenings preserve judgements -------------------------------------
------------------------------------------------------------------------------
{-
This section is only necessary due to the way we formulate a substitution by
splitting in into a context morphism and a proof that it actually is a
substitution.
If we formulated a substitution directly, we could avoid all mention of
strengthening.
-}
-- first, synthesising a type for a thinned term in a thinned context
-- will always give a thinned types
SYNpresThin : {n m : Nat}(th : n <= m)(Ga : Cx n)(De : Cx m)
-> ThinC th Ga De
-> (e' : Tm n syn){e : Tm m syn} -> e == Th.act th e'
-> {w : W}{S : Tm m chk}
-> SYN De w e S
-> Sg (Tm n chk) \S' -> S == Th.act th S'
SYNpresThin th Ga De thC e' the (post eT T~>S)
with SYNpresThin th Ga De thC e' the eT
... | strT , prT
with redPresThin th strT prT T~>S
... | strS , prS , strT~>strS = strS , prS
SYNpresThin th Ga De thC e' p (var i x)
with thinUnderVar th e' p
... | j , refl , refl
= cxTy Ga j , sym (cxTyThin th Ga De thC j)
SYNpresThin th Ga De thC e' p (fST $~ qw ~$ Ss)
with thinUnderApp th e' p
... | strf , strs , refl , refl , refl
with SYNpresThin th Ga De thC strf refl fST
... | strST , prST
with thinUnderPi th strST prST
... | strS , strT , refl , refl , refl
rewrite ActCo.actCo SUBSTTHINSUBST (si -, (Th.act th strs :: Th.act th strS)) (os th) strT
| sym (thin/idQ th)
| sym (ActCo.actCo THINSUBSTSUBST th (si -, (strs :: strS)) strT)
= Sb.act (si -, (strs :: strS)) strT , refl
SYNpresThin th Ga De thC e' p (*T :~: Tt)
with thinUnderAnn th e' p
... | strt , strT , refl , refl , refl
= strT , refl
-- I need the extra T', t' arguments and equalities to be able
-- to pattern match on the derivation
strengthenCHK : {n m : Nat}(th : n <= m)(Ga : Cx n)(De : Cx m)
-> ThinC th Ga De
-> {w : W}{T : Tm m chk}{t : Tm m chk}
-> CHK De w T t
-> {T' : Tm n chk}{t' : Tm n chk}
-> T == Th.act th T' -> t == Th.act th t'
-> CHK Ga w T' t'
strengthenSYN : {n m : Nat}(th : n <= m)(Ga : Cx n)(De : Cx m)
-> ThinC th Ga De
-> {w : W}{e : Tm m syn}{S : Tm m chk}
-> SYN De w e S
-> {e' : Tm n syn}{S' : Tm n chk}
-> e == Th.act th e' -> S == Th.act th S'
-> SYN Ga w e' S'
strengthenCHK th Ga De thC (pre T~>S St) {T'}{t'} p q
with redPresThin th T' p T~>S
... | strS , prS , T'~>strS with strengthenCHK th Ga De thC St {strS} {t'} prS q
... | bb = pre T'~>strS bb
strengthenCHK th Ga De thC (star tyW) {T'} {t'} p q
with thinUnderStar th T' p | thinUnderStar th t' q
... | refl | refl = star tyW
strengthenCHK th Ga De thC (pi tyW quw *S *T) {T'} {t'} p q
with thinUnderStar th T' p | thinUnderPi th t' q
... | refl | strS , strT , refl , refl , refl
= pi tyW quw (strengthenCHK th Ga De thC *S refl refl)
(strengthenCHK _ (Ga -, (_ , strS)) _ (thC , refl , refl) *T refl refl)
strengthenCHK th Ga De thC (lam qw Tt) {T'} {t'} p q
with thinUnderPi th T' p | thinUnderLam th t' q
... | strS , strT , refl , refl , refl | strt , refl , refl
= lam qw (strengthenCHK (os th) (Ga -, (_ , _)) (De -, (_ , _)) (thC , refl , refl) Tt refl refl)
strengthenCHK th Ga De thC ([ eS ] r) {T'} {t'} p q
with thinUnderEmb th t' q
... | stre , refl , refl
= [ strengthenSYN th Ga De thC eS {stre}{T'} refl (trans r p) ] refl
strengthenSYN th Ga De thC (post eT TS) {e'}{S'} p refl
with SYNpresThin th Ga De thC e' p eT
... | strT , refl
with thinReflectRed th strT S' TS
... | strT~>S' = post (strengthenSYN th Ga De thC eT {S' = strT} p refl) strT~>S'
strengthenSYN th Ga De thC (var i r) {e'} {S'} p q
with thinUnderVar th e' p
... | j , refl , refl
rewrite sym (cxTyThin th Ga De thC j)
| sym (thinActInj th (cxTy Ga j) S' q)
| sym (cxWThin th Ga De thC j)
= var j r
strengthenSYN th Ga De thC (fST $~ qw ~$ Ss) {e'} {S'} p q
with thinUnderApp th e' p
... | strf , strs , refl , refl , refl
with SYNpresThin th Ga De thC strf refl fST
... | strST , prST
with thinUnderPi th strST prST
... | strS , strT , refl , refl , refl
rewrite ActCo.actCo SUBSTTHINSUBST (si -, (Th.act th strs :: Th.act th strS)) (os th) strT
| sym (thin/idQ th)
| sym (ActCo.actCo THINSUBSTSUBST th (si -, (strs :: strS)) strT)
| sym (thinActInj th (Sb.act (si -, (strs :: strS)) strT) S' q)
= strengthenSYN th Ga De thC fST {strf}{pi _ strS strT} refl refl
$~ qw ~$
strengthenCHK th Ga De thC Ss {strS}{strs} refl refl
strengthenSYN th Ga De thC (*T :~: Tt) {e'} {S'} p q
with thinUnderAnn th e' p
... | strt , strT , refl , refl , refl
rewrite thinActInj th strT S' q
= strengthenCHK th Ga De thC *T {star} {S'} refl refl
:~: strengthenCHK th Ga De thC Tt {S'}{strt} refl refl
strengthenVALID : forall {n m}(th : n <= m)
{Ga : Cx n}{De : Cx m} ->
ThinC th Ga De ->
VALID De -> VALID Ga
strengthenVALID oz {[]}{[]} thC valid = valid
strengthenVALID (os th) {Ga -, (u , S)}{De -, (v , T)} (thC , refl , refl) (ext valid *T)
= ext (strengthenVALID th thC valid) (strengthenCHK th Ga De thC *T refl refl)
strengthenVALID (o' th) {De = De -, (v , T)} thC (ext valid *T) = strengthenVALID th thC valid
------------------------------------------------------------------------------
----- Lowering the context ---------------------------------------------------
------------------------------------------------------------------------------
-- Lift << to contexts
_!<<_ : forall {n} -> Cx n -> Cx n -> Set
[] !<< [] = One
(Ga -, (u , S)) !<< (De -, (v , T)) = (Ga !<< De) * u << v * S == T
!<<refl : forall {n}{Ga : Cx n} -> Ga !<< Ga
!<<refl {_} {[]} = <>
!<<refl {._} {Ga -, (w , T)} = !<<refl , <<refl , refl
lowerCxWTy : forall {n}{Ga De : Cx n} ->
De !<< Ga ->
forall i ->
cxW De i << cxW Ga i * cxTy Ga i == cxTy De i
lowerCxWTy {_} {[]} {[]} <> i = <<refl , refl
lowerCxWTy {_} {Ga -, (u , S)} {De -, (v , T)} (De<Ga , u<v , refl) ze = u<v , refl
lowerCxWTy {_} {Ga -, (u , S)} {De -, (v , T)} (De<Ga , _) (su i) with lowerCxWTy De<Ga i
... | u<v , S=T rewrite S=T = u<v , refl
lowerCxW : forall {n}{Ga De : Cx n} ->
De !<< Ga ->
forall i ->
cxW De i << cxW Ga i
lowerCxW De<Ga i = fst (lowerCxWTy De<Ga i)
lowerCxTy : forall {n}{Ga De : Cx n} ->
De !<< Ga ->
forall i ->
cxTy Ga i == cxTy De i
lowerCxTy De<Ga i = snd (lowerCxWTy De<Ga i)
-- If something is true in a context with higher worlds (more restrictive use of variables)
-- then it is true in a lower context
lowerCxCHK : forall {n}{Ga De : Cx n} ->
De !<< Ga ->
forall {w T t} ->
CHK Ga w T t ->
CHK De w T t
lowerCxSYN : forall {n}{Ga De : Cx n} ->
De !<< Ga ->
forall {w e S} ->
SYN Ga w e S ->
SYN De w e S
lowerCxCHK De<Ga (pre TT' Tt) = pre TT' (lowerCxCHK De<Ga Tt)
lowerCxCHK De<Ga (star tyW) = star tyW
lowerCxCHK De<Ga (pi tyW quw *S *T) = pi tyW quw (lowerCxCHK De<Ga *S)
(lowerCxCHK (De<Ga , <<refl , refl) *T)
lowerCxCHK De<Ga (lam qw Tt) = lam qw (lowerCxCHK (De<Ga , <<refl , refl) Tt)
lowerCxCHK De<Ga ([ eS ] S=T) = [ lowerCxSYN De<Ga eS ] S=T
lowerCxSYN De<Ga (post eS' S'S) = post (lowerCxSYN De<Ga eS') S'S
lowerCxSYN De<Ga (var i p) rewrite lowerCxTy De<Ga i = var i (<<trans (lowerCxW De<Ga i) p)
lowerCxSYN De<Ga (fST $~ qw ~$ Ss) = lowerCxSYN De<Ga fST $~ qw ~$ lowerCxCHK De<Ga Ss
lowerCxSYN De<Ga (*S :~: Ss) = lowerCxCHK De<Ga *S :~: lowerCxCHK De<Ga Ss
------------------------------------------------------------------------------
----- Subsumption ------------------------------------------------------------
------------------------------------------------------------------------------
-- We recall here the note in WorldSystem.agda about the difference between
-- the paper and the code regarding the formulation of quantifiers
-- CxHole must be backwards style --- i.e. keep "local" end accessible
-- since when we go under a binder, we extend the CxHole!
-- We will lift to the free monoid, since for subsumption we need both the case
-- where judgement world has quantifier applied and is just a plain world
Q' : Set
Q' = One + Q Real
-- We won't inline this definition, since this one enforces Sort = Real
-- and we rely on this to use forall q, rather than q : Q' in many places
_#'_ : Q' -> W -> Maybe W
_#'_ = _#?_
infixr 40 _#'_
-- NOTE: naming scheme
-- we will often use qw : q #' w ~ qw'
-- We won't add this to WorldSystem as it is not that general: could have q : Q' also
_&'_ : Q Real -> Q' -> Q Real
q &' (inl <>) = q
q &' (inr r) = q & r
infixr 50 _&'_
data CxHole (n : Nat) : Nat -> Set where
-- indices are "start" and "end" (not "length")
[] : CxHole n n
_-,_ : forall {m} -> CxHole n m -> Sg Sort Q * Tm m chk -> CxHole n (su m)
-- note that this is actually proposition
-- i.e. we won't get different outcomes from Ga < v >< De ^ p depending on p
CxHoleDef : forall {n m} -> CxHole n m -> W -> Set
CxHoleDef [] w = One
CxHoleDef (De -, ((_ , q) , S)) w = CxHoleDef De w * Sg W \qw -> q # w ~ qw
subsumeCxHoleDef : forall {n m}{De : CxHole n m}{u v} -> CxHoleDef De u -> u << v -> CxHoleDef De v
subsumeCxHoleDef {De = []} <> uv = <>
subsumeCxHoleDef {De = De -, (q , S)} (p , qu' , qu) uv = subsumeCxHoleDef p uv , defUpset qu uv
-- Not really fish, but I can't think of a better name...
-- Should only be used locally, so doesn't matter much!
_<_><_^_ : forall {n m} -> (Ga : Cx n) -> (w : W) -> (De : CxHole n m) -> CxHoleDef De w -> Cx m
Ga < w >< [] ^ <> = Ga
--Ga < w >< De -, q ~ S ^ (p , defqw) = (Ga < w >< De ^ p) -, defAct q w defqw ~ S
Ga < w >< De -, (q , S) ^ (p , qw' , qw) = (Ga < w >< De ^ p) -, (qw' , S)
-- We won't add this to WorldSystem as it is not that general: could have q : Q' also
isActionR' : forall q r w {rw qrw} -> r #' w ~ rw -> q # rw ~ qrw -> (q &' r) # w ~ qrw
isActionR' q (inl <>) w refl qw = qw
isActionR' q (inr r) w rw qrw = isActionR rw qrw
-- We won't add this to WorldSystem as it is not that general: could have q : Q' also
defUpsetCommAct' : forall q r v
{rv'}(rv : r #' v ~ rv')
{qrv'}(qrv : q # rv' ~ qrv')
{w}
(v<w : v << w)
-> q # defUpset?Act r rv v<w ~ defUpsetAct (isActionR' q r v rv qrv) v<w
defUpsetCommAct' q (inl <>) v rv qrv v<w = defUpsetPf (isActionR' q (inl <>) v rv qrv) v<w
defUpsetCommAct' q (inr r) v rv qrv v<w = defUpsetCommAct rv qrv v<w
-- we won't put this in WorldSystem as it is not very general -- could have s rather than inl <>
&unst&-actionL : forall q r {rv' qurv'} -> snd (q &unst& inl <>) # rv' ~ qurv'
-> forall {v} -> r #? v ~ rv'
-> snd (q &unst& r) # v ~ qurv'
&unst&-actionL q r {rv'} q-rv {v} r-v rewrite &unst&-action q (inl <>) rv' | &unst&-action q r v | r-v
= q-rv
defUpset-comm-unst-act : forall {r qv' ruqv'} -> (ru-qv : snd (r &unst& inl <>) # qv' ~ ruqv')
-> forall {q v} -> (qv : q #' v ~ qv')
-> forall {w} -> (vw : v << w)
-> snd (r &unst& inl <>) # defUpset?Act q qv vw
~ defUpsetAct (&unst&-actionL r q ru-qv qv) vw
defUpset-comm-unst-act {r}{_}{ruqv} ru-qv {q}{v} qv {w} vw
= let a : snd (r &unst& q) # w ~ defUpsetAct ru-qv (op? q qv vw)
a = &unst&-actionL r q (defUpsetPf ru-qv (op? q qv vw)) (defUpset?Pf q qv vw)
b : snd (r &unst& q) # w ~ defUpsetAct (&unst&-actionL r q ru-qv qv) vw
b = defUpsetPf (&unst&-actionL r q ru-qv qv) vw
c : defUpsetAct ru-qv (op? q qv vw) == defUpsetAct (&unst&-actionL r q ru-qv qv) vw
c = #functional a b
d : snd (r &unst& inl <>) # (defUpset?Act q qv vw) ~ defUpsetAct ru-qv (op? q qv vw)
d = defUpsetPf ru-qv (op? q qv vw)
in trans d (cong Just c)
subsumeTy : forall {n m v w}
(Ga : Cx n)(De : CxHole n m)(def : CxHoleDef De v)
-> (v<w : v << w)
-> (i : Fin m)
-> cxTy (Ga < v >< De ^ def) i == cxTy (Ga < w >< De ^ subsumeCxHoleDef def v<w) i
subsumeTy Ga [] def vw i = refl
subsumeTy Ga (De -, (_ , T)) def vw ze = refl
subsumeTy Ga (De -, _) (def , _) vw (su i) rewrite subsumeTy Ga De def vw i = refl
subsumeW : forall {n m v w}
(Ga : Cx n)(De : CxHole n m)(def : CxHoleDef De v)
-> (v<w : v << w)
-> (i : Fin m)(q : Q'){qv' : W}
-> (qv : q #' v ~ qv')
-> cxW (Ga < v >< De ^ def) i << qv'
-> cxW (Ga < w >< De ^ subsumeCxHoleDef def v<w) i << defUpset?Act q qv v<w
subsumeW Ga [] def v<w i q qv u<qv = <<trans u<qv (op? q qv v<w)
subsumeW Ga (De -, ((_ , r) , _)) (_ , rv' , rv) v<w ze q qv rv<qv = dominateUpset r q rv qv rv<qv v<w
subsumeW Ga (De -, _) (def , _) v<w (su i) q qv u<qv = subsumeW Ga De def v<w i q qv u<qv
subsumeVar' : forall {n m v w}
(Ga : Cx n)(De : CxHole n m)(def : CxHoleDef De v)
(q : Q'){qv' : W}
(qv : q #' v ~ qv')
(v<w : v << w)
-> (i : Fin m)(p : cxW (Ga < v >< De ^ def) i << qv')
-> SYN (Ga < w >< De ^ subsumeCxHoleDef def v<w)
(defUpset?Act q qv v<w)
(var i)
(cxTy (Ga < w >< De ^ subsumeCxHoleDef def v<w) i)
subsumeVar' Ga De p q qv vw i u<qv = var i (subsumeW Ga De p vw i q qv u<qv)
subsumeVALID' : forall {n m v w}
(Ga : Cx n)(De : CxHole n m)(def : CxHoleDef De v)
(v<w : v << w)
-> VALID (Ga < v >< De ^ def)
-> VALID (Ga < w >< De ^ subsumeCxHoleDef def v<w)
subsumeCHK' : forall {n m v w}
(Ga : Cx n)(De : CxHole n m)(def : CxHoleDef De v)
(q : Q')
{qv'}(qv : q #' v ~ qv')
(v<w : v << w)
{T t : Tm m chk}
-> CHK (Ga < v >< De ^ def) qv' T t
-> CHK (Ga < w >< De ^ subsumeCxHoleDef def v<w) (defUpset?Act q qv v<w) T t
subsumeSYN' : forall {n m v w}
(Ga : Cx n)(De : CxHole n m)(def : CxHoleDef De v)
(q : Q')
{qv'}(qv : q #' v ~ qv')
(v<w : v << w)
{e : Tm m syn}{S : Tm m chk}
-> SYN (Ga < v >< De ^ def) qv' e S
-> SYN (Ga < w >< De ^ subsumeCxHoleDef def v<w) (defUpset?Act q qv v<w) e S
subsumeVALID' Ga [] def vw valid = valid
subsumeVALID' Ga (De -, (q , S)) (def , qv' , qv) vw (ext valid *S)
with subsumeCHK' Ga De def (inr (starSg& q)) (starSg&-pf qv) vw *S
... | subsume*S rewrite sym (defUpsetCommStarAct qv vw)
= ext (subsumeVALID' Ga De def vw valid) subsume*S
subsumeCHK' Ga De def q qv vw (pre x p) = pre x (subsumeCHK' Ga De def q qv vw p)
subsumeCHK' Ga De def q qv vw (star p) = star (tyWUpset (op? q qv vw) p)
subsumeCHK' {v = v}{w} Ga De def q qv vw (pi {r}{S = S} p ru-qv *S *T)
= let assoc-ruq-v : snd (r &unst& q) # v ~ _
assoc-ruq-v = &unst&-actionL r q ru-qv qv
*Sw : CHK (Ga < w >< De ^ _)
(defUpsetAct (starSg&-pf (&unst&-actionL r q ru-qv qv)) vw)
star S
*Sw = subsumeCHK' Ga De def (inr (starSg& (r &unst& q))) (starSg&-pf assoc-ruq-v) vw *S
worlds-same : defUpsetAct (starSg&-pf (&unst&-actionL r q ru-qv qv)) vw
== st-act (defUpsetAct (&unst&-actionL r q ru-qv qv) vw)
worlds-same = #functional
(defUpsetPf (starSg&-pf (&unst&-actionL r q ru-qv qv)) vw)
(starSg&-pf (defUpsetPf assoc-ruq-v vw))
in pi (tyWUpset (op? q qv vw) p)
(defUpset-comm-unst-act ru-qv qv vw)
(subst (\w' -> CHK (Ga < _ >< De ^ subsumeCxHoleDef def vw) w' star _) worlds-same *Sw)
(subsumeCHK' Ga (De -, (r &unst& q , S)) (def , _ , assoc-ruq-v) q qv vw *T)
subsumeCHK' Ga De def q qv vw (lam rqv Tt)
= lam (defUpsetCommAct' _ q _ qv rqv vw)
(subsumeCHK' Ga (De -, ((_ , _ &' q) , _)) (def , _ , isActionR' _ q _ qv rqv) q qv vw Tt)
subsumeCHK' Ga De def q qv vw ([ eS ] S=T) = [ subsumeSYN' Ga De def q qv vw eS ] S=T
subsumeSYN' Ga De def q qv vw (post p x) = post (subsumeSYN' Ga De def q qv vw p) x
subsumeSYN' {w = w} Ga De def q qv vw (var i p) rewrite subsumeTy Ga De def vw i = subsumeVar' Ga De def q qv vw i p
subsumeSYN' Ga De def q qv vw (_$~_~$_ {r} fST rqv Ss)
= subsumeSYN' Ga De def q qv vw fST
$~ defUpsetCommAct' r q _ qv rqv vw ~$
subsumeCHK' Ga De def (inr (r &' q)) (isActionR' r q _ qv rqv) vw Ss
subsumeSYN' Ga De def q qv vw (*S :~: Ss)
= let *Sw : CHK (Ga < _ >< De ^ subsumeCxHoleDef def vw)
(defUpsetAct (isActionR' st q _ qv (st-pr _)) vw)
star
_
*Sw = subsumeCHK' Ga De def (inr (st &' q)) (isActionR' st q _ qv (st-pr _)) vw *S
worlds-same : st-act (defUpset?Act q qv vw)
== defUpsetAct (isActionR' st q _ qv (st-pr _)) vw
worlds-same = st-functional (defUpsetCommAct' st q _ qv (st-pr _) vw)
in subst (\w' -> CHK (Ga < _ >< De ^ subsumeCxHoleDef def vw) w' star _) (sym worlds-same) *Sw
:~:
subsumeCHK' Ga De def q qv vw Ss
subsumeCHK : forall {n v w}
(Ga : Cx n)
{T t : Tm n chk}
-> v << w
-> CHK Ga v T t
-> CHK Ga w T t
subsumeCHK Ga vw Tt = subsumeCHK' Ga [] <> (inl <>) refl vw Tt
subsumeSYN : forall {n v w}
(Ga : Cx n)
{e : Tm n syn}{S : Tm n chk}
-> v << w
-> SYN Ga v e S
-> SYN Ga w e S
subsumeSYN Ga vw eS = subsumeSYN' Ga [] <> (inl <>) refl vw eS
------------------------------------------------------------------------------
----- Substitution -----------------------------------------------------------
------------------------------------------------------------------------------
CxMor : {n m : Nat} -> Cx m -> Cx n -> Env (Tm m syn) n -> Set
CxMor De [] [] = One
CxMor De (Ga -, (w , S)) (ez -, e) = CxMor De Ga ez * SYN De w e (Sb.act ez S)
thinCxMor : {n m l : Nat}(th : m <= l) ->
{De : Cx m}{Th : Cx l} -> ThinC th De Th ->
{Ga : Cx n}(ez : Env (Tm m syn) n) ->
CxMor De Ga ez ->
CxMor Th Ga (env (Th.act th) ez)
thinCxMor th thC {[]} [] <> = <>
thinCxMor th thC {Ga -, (w , S)} (ez -, e) (ezok , eS)
with thinSYN th thC eS
... | eS'
rewrite ActCo.actCo THINSUBSTSUBST th ez S
= (thinCxMor th thC {Ga} ez ezok) , eS'
-- weaken a CxMor
CxMorW : {n m : Nat}{De : Cx m}{Ga : Cx n}(ez : Env (Tm m syn) n) ->
CxMor De Ga ez ->
(w : W) ->
(S : Tm n chk) ->
CxMor (De -, (w , Sb.act ez S)) (Ga -, (w , S)) (Sb.actW ez)
CxMorW {De = De} ez ezok w S
with the (SYN (De -, (w , Sb.act ez S)) w (var ze) (Th.act (o' oi) (Sb.act ez S)))
(var ze <<refl)
... | h
rewrite ActCo.actCo THINSUBSTSUBST (o' oi) ez S
= thinCxMor (o' oi) (idThinC De) ez ezok , h
idCxMor : forall {n}(Ga : Cx n) -> CxMor Ga Ga si
idCxMor [] = <>
idCxMor (Ga -, (w , S)) with CxMorW si (idCxMor Ga) w S
... | h
rewrite ActId.actId SUBSTID S
= h
yelp : forall {n m}(ez : Env (Tm m syn) n) s S ->
env (Sb.act (si -, Sb.act ez (s :: S))) (env (Th.act (o' oi)) ez)
== ez
yelp {n}{m} ez s S
rewrite envenvQ (Sb.act (si -, Sb.act ez (s :: S))) (Th.act (o' oi)) ez
= envIdQ _ zelp ez
where
zelp : (x : Tm m syn) ->
Sb.act (si -, Sb.act ez (s :: S)) (Th.act (o' oi) x) == x
zelp x
rewrite ActCo.actCo SUBSTTHINSUBST (si -, Sb.act ez (s :: S)) (o' oi) x
| si{m} /oiQ
= ActId.actId SUBSTID x
substVar : forall {n m}{Ga : Cx n}{De : Cx m}
(ez : Env (Tm m syn) n) -> CxMor De Ga ez ->
(i : Fin n) ->
SYN De (cxW Ga i) (ez ! i) (Sb.act ez (cxTy Ga i))
substVar {Ga = Ga -, (w , S)} (ez -, e) (ezok , eS) ze
rewrite ActCo.actCo SUBSTTHINSUBST (ez -, e) (o' oi) S
| ez /oiQ
= eS
substVar {Ga = Ga -, (_ , S)} (ez -, e) (ezok , _) (su i) with substVar ez ezok i
... | eS
rewrite ActCo.actCo SUBSTTHINSUBST (ez -, e) (o' oi) (cxTy Ga i)
| ez /oiQ
= eS
substCHK : forall {n m}{Ga : Cx n}{De : Cx m}
(ez : Env (Tm m syn) n) -> CxMor De Ga ez ->
forall {w T t} ->
CHK Ga w T t -> CHK De w (Sb.act ez T) (Sb.act ez t)
substSYN : forall {n m}{Ga : Cx n}{De : Cx m}
(ez : Env (Tm m syn) n) -> CxMor De Ga ez ->
forall {w e S} ->
SYN Ga w e S -> SYN De w (Sb.act ez e) (Sb.act ez S)
substCHK ez ezok (pre TT' Tt) =
pre (parStab (parzRefl ez) TT') (substCHK ez ezok Tt)
substCHK ez ezok (star p) = star p
substCHK ez ezok {w} (pi {q}{quw'}{S} p quw *S *T) =
pi p quw (substCHK ez ezok *S) (substCHK (Sb.actW ez) (CxMorW ez ezok quw' S) *T)
substCHK ez ezok {w} (lam {_}{qw'}{S} qw Tt) =
lam qw (substCHK (Sb.actW ez) (CxMorW ez ezok qw' S) Tt)
substCHK ez ezok ([ eS ] refl) =
[ substSYN ez ezok eS ] refl
substSYN ez ezok (post eS SS') =
post (substSYN ez ezok eS) (parStab (parzRefl ez) SS')
substSYN ez ezok (var i p) = subsumeSYN _ p (substVar ez ezok i)
substSYN ez ezok (_$~_~$_ {f = f}{s}{S}{T} fST qw Ss)
with substSYN ez ezok fST $~ qw ~$ substCHK ez ezok Ss
... | h
rewrite ActCo.actCo SUBSTSUBSTSUBST (si -, Sb.act ez (s :: S)) (Sb.actW ez) T
| yelp ez s S
| ActCo.actCo SUBSTSUBSTSUBST ez (si -, (s :: S)) T
| subsiQ ez
= h
substSYN ez ezok (*T :~: Tt) = substCHK ez ezok *T :~: substCHK ez ezok Tt
-- This is extra data needed over CxMor to be a substitution intstance
-- and then we will preserve validity
-- (note that a CxMor can introduce complete garbage, so won't preserve validity)
CxMorIsSub : {n m : Nat} -> Cx m -> Cx n -> Env (Tm m syn) n -> m <= n -> Set
CxMorIsSub De (Ga -, (w , S)) (ez -, x) (o' th) = CxMorIsSub De Ga ez th
CxMorIsSub {su n}{su m} (De -, (u , T)) (Ga -, (v , S)) (ez -, e) (os th)
= e == var ze
* u == v
* Sg (Env (Tm m syn) n) (\ez' ->
(ez == env (Th.act (o' oi)) ez')
* T == Sb.act ez' S -- A CxMor (De -, u ~ T) (Ga -, v ~ S) (ez -, var ze)
-- will only say SYN De (var ze) (Sb.act ez S)
-- i.e. T ~>>* S, whereas we need equality
* CxMorIsSub De Ga ez' th)
CxMorIsSub [] [] [] oz = One
strengthenCxMor : {m m' : Nat}(th : m <= m')(De : Cx m)(De' : Cx m')
-> ThinC th De De'
-> {n : Nat}(Ga : Cx n)
-> (ez : Env (Tm m syn) n)
-> CxMor De' Ga (env (Th.act th) ez)
-> CxMor De Ga ez
strengthenCxMor th De De' thC [] [] isMor = isMor
strengthenCxMor th De De' thC (Ga -, (w , S)) (ez -, e) (isMor , eS)
= strengthenCxMor th De De' thC Ga ez isMor
, strengthenSYN th De De' thC eS {e}{Sb.act ez S} refl (sym (ActCo.actCo THINSUBSTSUBST th ez S))
substVALID : forall {n m}(th : m <= n){Ga : Cx n}{De : Cx m}
(ez : Env (Tm m syn) n) -> CxMor De Ga ez -> CxMorIsSub De Ga ez th ->
VALID Ga -> VALID De
substVALID oz {[]}{[]} ez isMor isSub valid = valid
substVALID (os th) {Ga -, (u , S)}{De -, (._ , ._)} (._ -, e) (isMor , eS') (p' , refl , ez' , refl , refl , isSub) (ext valid *S)
= ext (substVALID th ez' isMor' isSub valid)
(substCHK ez' isMor' *S)
where isMor' = strengthenCxMor (o' oi) De (De -, (u , Sb.act ez' S)) (idThinC De) Ga ez' isMor
substVALID (o' th) {Ga -, (_ , S)}{De} (ez -, _) (isMor , _) isSub (ext valid *S)
= substVALID th ez isMor isSub valid
------------------------------------------------------------------------------
----- A Pi will never accept a Pi or * ---------------------------------------
------------------------------------------------------------------------------
killPiPi : forall {n}{Ga : Cx n}{w q q' S S' T T'} ->
CHK Ga w (pi q S T) (pi q' S' T') -> Zero
killPiPi (pre (pi _ _ _) bad) = killPiPi bad
killPi* : forall {n}{Ga : Cx n}{w q S T} ->
CHK Ga w (pi q S T) star -> Zero
killPi* (pre (pi _ _ _) bad) = killPi* bad
------------------------------------------------------------------------------
----- Boost pre and post rules to allow multistep reduction ------------------
------------------------------------------------------------------------------
pre* : forall {n}{Ga : Cx n}{w T T' t} ->
T ~>>* T' -> CHK Ga w T' t ->
CHK Ga w T t
pre* [] Tt = Tt
pre* (rT ,- rTs) T't = pre rT (pre* rTs T't)
post* : forall {n}{Ga : Cx n}{w e S S'} ->
SYN Ga w e S -> S ~>>* S' -> SYN Ga w e S'
post* eS [] = eS
post* eS (r ,- rs) = post* (post eS r) rs
------------------------------------------------------------------------------
----- Inversion principles which strip off pre and post ----------------------
------------------------------------------------------------------------------
annInv : forall {n}{Ga w}{t T T' : Tm n chk} ->
SYN Ga w (t :: T) T' ->
CHK Ga (st-act w) star T * CHK Ga w T t * (T ~>>* T')
annInv (post tT r) with annInv tT
... | T , t , rs = T , t , rs ++ (r ,- [])
annInv (T :~: t) = T , t , []
lamInv : forall {n}{Ga w q}{S : Tm n chk}{T t} ->
CHK Ga w (pi q S T) (lam t) ->
Sg W \qw -> q # w ~ qw *
Sg (Tm n chk) \ S' -> Sg (Tm (su n) chk) \ T' ->
(S ~>>* S') * (T ~>>* T') *
CHK (Ga -, (qw , S')) w T' t
lamInv (pre (pi _ rS rT) d) with lamInv d
... | qw' , qw , _ , _ , rsS , rsT , d' = qw' , qw , _ , _ , (rS ,- rsS) , (rT ,- rsT) , d'
lamInv (lam qw d) = _ , qw , _ , _ , [] , [] , d
-- Note that this is not the inversion principle you may want, which would be
-- CHK Ga (st # w) star (pi q S T) ->
-- CHK Ga (st # q # w) star S * CHK (Ga -, q # w ~ S) (st # w) star T
piInv : forall {n}{Ga w q}{S : Tm n chk}{T} ->
CHK Ga w star (pi q S T) ->
Sg W \quw -> snd (q &unst& inl <>) # w ~ quw *
CHK Ga (st-act quw) star S * CHK (Ga -, (quw , S)) w star T
piInv (pre star *piST) = piInv *piST
piInv (pi _ quw *S *T) = _ , quw , *S , *T
helpPiInvSt1 : forall {n Ga}{q : Q Real}{S : Tm n chk}{T}{w}
(u v : Sg W (\u -> st-act u == w * Sg W \qu -> q # u ~ qu)) ->
((fst u << fst v) + (fst (snd (snd v)) << fst (snd (snd u)))) ->
CHK (Ga -, (fst (snd (snd u)) , S)) w star T ->
CHK (Ga -, (fst (snd (snd v)) , S)) w star T
helpPiInvSt1 {_}{Ga}{q}{S} (u , refl , qu~qu') (v , stv=w , qv~qv') (inl u<v) *Tu
with subsumeCHK' Ga ([] -, ((_ , q) , S)) (<> , qu~qu') (inr st) (st-pr u) u<v *Tu
... | *Tv rewrite #functionalSg (defUpset (snd qu~qu') u<v) qv~qv'
| sym (st-functional (defUpsetPf (st-pr u) u<v))
| stv=w
= *Tv
helpPiInvSt1 u v (inr qu>qv) *Tu = lowerCxCHK (!<<refl , qu>qv , refl) *Tu
helpPiInvSt2 : forall {n Ga}{S : Tm n chk}{T u v w} ->
st-act u == w -> st-act v == w ->
forall {q qu' qv'} -> q # u ~ qu' -> q # v ~ qv' ->
CHK (Ga -, (qu' , S)) w star T ->
CHK (Ga -, (qv' , S)) w star T
helpPiInvSt2 stu=w stv=w qu qv = starLiftPres _ (\{u}{v} -> helpPiInvSt1 u v) (GwqConn _ _ stu=w qu stv=w qv)
-- This is the nice version of inverting a Pi
piInvSt : forall {n}{Ga w} ->
forall {q qw'} -> q # w ~ qw' ->
forall {S : Tm n chk}{T} ->
CHK Ga (st-act w) star (pi q S T) ->
CHK Ga (st-act qw') star S * CHK (Ga -, (qw' , S)) (st-act w) star T
piInvSt qw (pre star *piST) = piInvSt qw *piST
piInvSt {w = w}{q} qw (pi tyWsw qu-sw *S *T)
rewrite &unst&-action q (inl <>) (st-act w)
with split## (unst (st-act w)) qu-sw
... | w' , u-sw , q-w'
rewrite stq (st-unst u-sw) refl q-w' qw
= *S , helpPiInvSt2 (st-unst u-sw) refl q-w' qw *T
------------------------------------------------------------------------------
----- The forwards direction of "nice pi" is admissible ----------------------
------------------------------------------------------------------------------
-- This is the same reasoning as the inversion principle, but backwards
piSt : forall {n}{Ga w q}{S : Tm n chk}{T} ->
forall {qw'} -> q # w ~ qw' -> -- needed to have a derivation at world "q # w"
forall {qusw'} -> snd (q &unst& inl <>) # (st-act w) ~ qusw' -> -- premiss
CHK Ga (st-act qw') star S -> CHK (Ga -, (qw' , S)) (st-act w) star T ->
CHK Ga (st-act w) star (pi q S T)
piSt {w = w}{q} q-w qu-sw *S *T
with split## (unst (st-act w))
(trans (sym (&unst&-action q (inl <>) (st-act w))) qu-sw)
... | w' , u-sw , q-w'
rewrite stq refl (st-unst u-sw) q-w q-w'
= pi (stTyW w) qu-sw *S (helpPiInvSt2 refl (st-unst u-sw) q-w q-w' *T)