-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroutines.c
380 lines (344 loc) · 14.5 KB
/
routines.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#include "matrix.h"
void scalar_multiply(struct COO matrix, double scalar) {
int i;
if (matrix.type == TYPE_INT) {
#pragma omp parallel for shared(matrix,scalar) num_threads(param.threads)
for (i = 0; i < matrix.count; i++) {
matrix.elements[i].value.f = (double) matrix.elements[i].value.i * scalar;
}
} else {
#pragma omp parallel for shared(matrix,scalar) num_threads(param.threads)
for (i = 0; i < matrix.count; i++) {
matrix.elements[i].value.f *= scalar;
}
}
}
int trace(struct CSR matrix) {
int trace = 0;
int i;
#pragma omp parallel for reduction(+:trace) shared(matrix) num_threads(param.threads)
for (i = 1; i < matrix.rows + 1; i++) {
// Check num of elements in row i
int elements = matrix.ia[i] - matrix.ia[i-1];
if (elements == 0) {
continue;
}
int pos = matrix.ia[i-1]; // Starting index for ja/nnz
while (pos - matrix.ia[i-1] <= elements) {
if (matrix.ja[pos] == i - 1) {
trace += matrix.nnz.i[pos];
break;
} else if (matrix.ja[pos] > i - 1) {
break;
}
pos++;
}
}
return trace;
}
double trace_f(struct CSR matrix) {
double trace = 0.0;
int i;
#pragma omp parallel for reduction(+:trace) shared(matrix) num_threads(param.threads)
for (i = 1; i < matrix.rows + 1; i++) {
// Check num of elements in row i
int elements = matrix.ia[i] - matrix.ia[i-1];
if (elements == 0) {
continue;
}
int pos = matrix.ia[i-1]; // Starting index for ja/nnz
while (pos - matrix.ia[i-1] <= elements) {
if (matrix.ja[pos] == i - 1) {
trace += matrix.nnz.f[pos];
break;
} else if (matrix.ja[pos] > i - 1) {
break;
}
pos++;
}
}
return trace;
}
struct COO matrix_addition(struct CSR matrix, struct CSR matrix2) {
int totalcount = 0;
int i;
// Removing loop carried dependancies
struct COO *result_local = allocate(matrix.rows * sizeof(struct COO));
for (i = 0; i < matrix.rows; i++) {
result_local[i].count = 0;
result_local[i].elements = allocate((matrix.count + matrix2.count) * sizeof(struct ELEMENT));
}
#pragma omp parallel for reduction(+:totalcount) shared(matrix,matrix2) num_threads(param.threads)
for (i = 0; i < matrix.rows; i++) {
int elements = matrix.ia[i+1] - matrix.ia[i];
int elements2 = matrix2.ia[i+1] - matrix2.ia[i];
int m1seen = 0;
int m2seen = 0;
int pos = matrix.ia[i];
int pos2 = matrix2.ia[i];
while (m1seen != elements || m2seen != elements2) {
if (m1seen == elements) { // Seen all matrix 1 elements
while (m2seen < elements2) {
result_local[i].elements[result_local[i].count].y = matrix2.ja[pos2];
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].value.i = matrix2.nnz.i[pos2++];
m2seen++;
}
break;
} else if (m2seen == elements2) { // Matrix2 no more elements
while (m1seen < elements) {
result_local[i].elements[result_local[i].count].y = matrix.ja[pos];
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].value.i = matrix.nnz.i[pos++];
m1seen++;
}
break;
} else { // Both matrices have elements
if (matrix.ja[pos] < matrix2.ja[pos2]) { // Matrix1 lower ja
result_local[i].elements[result_local[i].count].y = matrix.ja[pos];
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].value.i = matrix.nnz.i[pos++];
m1seen++;
} else if (matrix2.ja[pos2] < matrix.ja[pos]) { // Matrix2 lower ja
result_local[i].elements[result_local[i].count].y = matrix2.ja[pos2];
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].value.i = matrix2.nnz.i[pos2++];
m2seen++;
} else { // Perform addition on same ja
result_local[i].elements[result_local[i].count].y = matrix2.ja[pos2];
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].value.i = matrix.nnz.i[pos++] + matrix2.nnz.i[pos2++];
m1seen++;
m2seen++;
}
}
}
totalcount += result_local[i].count;
}
struct COO result;
result.rows = matrix.rows;
result.cols = matrix.cols;
result.type = matrix.type;
result.elements = allocate(totalcount * sizeof(struct ELEMENT));
result.count = 0;
// Put the local copies back together
for (i = 0; i < matrix.rows; i++) {
if (result_local[i].count != 0) {
memcpy(&result.elements[result.count], result_local[i].elements, result_local[i].count * sizeof(struct ELEMENT));
result.count += result_local[i].count;
}
free(result_local[i].elements);
}
free(result_local);
return result;
}
struct COO matrix_addition_f(struct CSR matrix, struct CSR matrix2) {
int totalcount = 0;
int i;
// Removing loop carried dependancies
struct COO *result_local = allocate(matrix.rows * sizeof(struct COO));
for (i = 0; i < matrix.rows; i++) {
result_local[i].count = 0;
result_local[i].elements = allocate((matrix.count + matrix2.count) * sizeof(struct ELEMENT));
}
#pragma omp parallel for reduction(+:totalcount) shared(matrix,matrix2) num_threads(param.threads)
for (i = 0; i < matrix.rows; i++) {
int elements = matrix.ia[i+1] - matrix.ia[i];
int elements2 = matrix2.ia[i+1] - matrix2.ia[i];
int m1seen = 0;
int m2seen = 0;
int pos = matrix.ia[i];
int pos2 = matrix2.ia[i];
while (m1seen != elements || m2seen != elements2) {
if (m1seen == elements) { // Seen all matrix 1 elements
while (m2seen < elements2) {
result_local[i].elements[result_local[i].count].y = matrix2.ja[pos2];
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].value.f = matrix2.nnz.f[pos2++];
m2seen++;
}
break;
} else if (m2seen == elements2) { // Matrix2 no more elements
while (m1seen < elements) {
result_local[i].elements[result_local[i].count].y = matrix.ja[pos];
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].value.f = matrix.nnz.f[pos++];
m1seen++;
}
break;
} else { // Both matrices have elements
if (matrix.ja[pos] < matrix2.ja[pos2]) { // Matrix1 lower ja
result_local[i].elements[result_local[i].count].y = matrix.ja[pos];
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].value.f = matrix.nnz.f[pos++];
m1seen++;
} else if (matrix2.ja[pos2] < matrix.ja[pos]) { // Matrix2 lower ja
result_local[i].elements[result_local[i].count].y = matrix2.ja[pos2];
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].value.f = matrix2.nnz.f[pos2++];
m2seen++;
} else { // Perform addition on same ja
result_local[i].elements[result_local[i].count].y = matrix2.ja[pos2];
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].value.f = matrix.nnz.f[pos++] + matrix2.nnz.f[pos2++];
m1seen++;
m2seen++;
}
}
}
totalcount += result_local[i].count;
}
struct COO result;
result.rows = matrix.rows;
result.cols = matrix.cols;
result.type = matrix.type;
result.elements = allocate(totalcount * sizeof(struct ELEMENT));
result.count = 0;
// Put the local copies back together
for (i = 0; i < matrix.rows; i++) {
if (result_local[i].count != 0) {
memcpy(&result.elements[result.count], result_local[i].elements, result_local[i].count * sizeof(struct ELEMENT));
result.count += result_local[i].count;
}
free(result_local[i].elements);
}
free(result_local);
return result;
}
struct CSR transpose(struct CSC matrix) {
struct CSR result;
int i;
result.rows = matrix.cols;
result.cols = matrix.rows;
result.ia = matrix.ia;
result.ja = matrix.ja;
result.type = matrix.type;
if (matrix.type == TYPE_INT) {
result.nnz.i = allocate(matrix.count * sizeof(int));
#pragma omp parallel for shared(result,matrix) num_threads(param.threads)
for (i = 0; i < matrix.count; i++) {
result.nnz.i[i] = matrix.nnz.i[i];
}
} else {
result.nnz.f = allocate(matrix.count * sizeof(double));
#pragma omp parallel for shared(result,matrix) num_threads(param.threads)
for (i = 0; i < matrix.count; i++) {
result.nnz.f[i] = matrix.nnz.f[i];
}
}
return result;
}
struct COO matrix_multiply(struct CSR matrix, struct CSC matrix2) {
int totalcount = 0;
int i;
// Removing loop carried dependancies
struct COO *result_local = allocate(matrix.rows * sizeof(struct COO));
for (i = 0; i < matrix.rows; i++) {
result_local[i].count = 0;
result_local[i].elements = allocate((matrix2.cols) * sizeof(struct ELEMENT));
}
#pragma omp parallel for reduction(+:totalcount) shared(matrix,matrix2) num_threads(param.threads)
for (i = 0; i < matrix.rows; i++) {
int m1count = matrix.ia[i+1] - matrix.ia[i];
for (int j = 0; j < matrix2.cols; j++) {
int dp = 0; // Final dot product
int m1pos = matrix.ia[i];
int m1seen = 0;
int m2count = matrix2.ia[j+1] - matrix2.ia[j];
int m2pos = matrix2.ia[j];
int m2seen = 0;
while (m1seen != m1count && m2seen != m2count) {
if (matrix.ja[m1pos] == matrix2.ja[m2pos]) { // Row and col index match
dp += (matrix.nnz.i[m1pos++] * matrix2.nnz.i[m2pos++]);
m1seen++;
m2seen++;
} else if (matrix.ja[m1pos] < matrix2.ja[m2pos]) {
m1seen++;
m1pos++;
} else {
m2seen++;
m2pos++;
}
}
if (dp != 0) {
result_local[i].elements[result_local[i].count].value.i = dp;
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].y = j;
}
}
totalcount += result_local[i].count;
}
struct COO result;
result.count = 0;
result.type = matrix.type;
result.elements = allocate(totalcount * sizeof(struct ELEMENT));
result.rows = matrix.rows;
result.cols = matrix2.cols;
// Put the local copies back together
for (i = 0; i < matrix.rows; i++) {
if (result_local[i].count != 0) {
memcpy(&result.elements[result.count], result_local[i].elements, result_local[i].count * sizeof(struct ELEMENT));
result.count += result_local[i].count;
}
free(result_local[i].elements);
}
free(result_local);
return result;
}
struct COO matrix_multiply_f(struct CSR matrix, struct CSC matrix2) {
int totalcount = 0;
int i;
// Removing loop carried dependancies
struct COO *result_local = allocate(matrix.rows * sizeof(struct COO));
for (i = 0; i < matrix.rows; i++) {
result_local[i].count = 0;
result_local[i].elements = allocate((matrix2.cols) * sizeof(struct ELEMENT));
}
#pragma omp parallel for reduction(+:totalcount) shared(matrix,matrix2) num_threads(param.threads)
for (i = 0; i < matrix.rows; i++) {
int m1count = matrix.ia[i+1] - matrix.ia[i];
for (int j = 0; j < matrix2.cols; j++) {
double dp = 0; // Final dot product
int m1pos = matrix.ia[i];
int m1seen = 0;
int m2count = matrix2.ia[j+1] - matrix2.ia[j];
int m2pos = matrix2.ia[j];
int m2seen = 0;
while (m1seen != m1count && m2seen != m2count) {
if (matrix.ja[m1pos] == matrix2.ja[m2pos]) { // Row and col index match
dp += (matrix.nnz.f[m1pos++] * matrix2.nnz.f[m2pos++]);
m1seen++;
m2seen++;
} else if (matrix.ja[m1pos] < matrix2.ja[m2pos]) {
m1seen++;
m1pos++;
} else {
m2seen++;
m2pos++;
}
}
if (dp != 0) {
result_local[i].elements[result_local[i].count].value.f = dp;
result_local[i].elements[result_local[i].count].x = i;
result_local[i].elements[result_local[i].count++].y = j;
}
}
totalcount += result_local[i].count;
}
struct COO result;
result.count = 0;
result.type = matrix.type;
result.elements = allocate(totalcount * sizeof(struct ELEMENT));
result.rows = matrix.rows;
result.cols = matrix2.cols;
// Put the local copies back together
for (i = 0; i < matrix.rows; i++) {
if (result_local[i].count != 0) {
memcpy(&result.elements[result.count], result_local[i].elements, result_local[i].count * sizeof(struct ELEMENT));
result.count += result_local[i].count;
}
free(result_local[i].elements);
}
free(result_local);
return result;
}