where
$$ \phi_\mu(\mathbf{r}) = \mathcal{Y}{lm}(\widehat{ \mathbf{r - R_A}}) \left| \mathbf{r-R_A}\right|^l \sum_b c{ b} e^{ -\alpha_{b} \left| \mathbf{r-R_A}\right|^2 } $$
This scales formally as
$$ (v^{1/2} \chi_0 v^{1/2}){PQ}(\mathrm{i}\omega) = \sum{ia} ( P | i a ) ( Q | i a ) \left[ \frac{1}{\mathrm{i} \omega - \epsilon_a + \epsilon_i} - \frac{1}{\mathrm{i} \omega - \epsilon_i + \epsilon_a} \right] $$
$$ (v^{1/2} \chi v^{1/2}){PQ}(\mathrm{i}\omega) = (v^{1/2} \chi_0 v^{1/2}){PQ}(\mathrm{i}\omega)
- \sum_{R} (v^{1/2} \chi_0 v^{1/2}){PR}(\mathrm{i}\omega) (v^{1/2} \chi_0 v^{1/2}){RQ}(\mathrm{i}\omega) $$
\sum_R (v^{1/2} \chi_0 v^{1/2}){PR}(\mathrm{i}\omega) \left[ I - v^{1/2} \chi_0 v^{1/2}(\mathrm{i}\omega) \right]^{-1}{RQ} $$