-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcore_pca.py
151 lines (134 loc) · 4.31 KB
/
core_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import torch
import argparse
import numpy as np
import pandas as pd
import seaborn as sns
from tqdm import tqdm
from einops import rearrange
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from torch.utils.data import DataLoader
from v1t import data
from v1t.models.model import Model
from v1t.utils import utils, tensorboard
from v1t.utils.scheduler import Scheduler
utils.set_random_seed(1234)
BACKGROUND_COLOR = "#ffffff"
@torch.no_grad()
def inference(
mouse_id: int,
ds: DataLoader,
model: Model,
device: torch.device = torch.device("cpu"),
):
latents = []
model.to(device)
model.train(False)
for batch in tqdm(ds, desc=f"Mouse {mouse_id}"):
images = batch["image"].to(device)
behaviors = batch["behavior"].to(device)
pupil_centers = batch["pupil_center"].to(device)
images, _ = model.image_cropper(
inputs=images,
mouse_id=mouse_id,
behaviors=behaviors,
pupil_centers=pupil_centers,
)
latent = model.core(
inputs=images,
mouse_id=mouse_id,
behaviors=behaviors,
pupil_centers=pupil_centers,
)
latents.append(latent)
latents = torch.concat(latents, dim=0)
latents = rearrange(latents, "b n h d -> b n (h d)")
return latents.cpu().numpy()
def main(args):
if not os.path.isdir(args.output_dir):
raise FileNotFoundError(f"Cannot find {args.output_dir}.")
tensorboard.set_font()
utils.load_args(args)
args.device = torch.device(args.device)
_, _, test_ds = data.get_training_ds(
args,
data_dir=args.dataset,
mouse_ids=args.mouse_ids,
batch_size=args.batch_size,
device=args.device,
)
model = Model(args, ds=test_ds)
scheduler = Scheduler(args, model=model, save_optimizer=False)
scheduler.restore(force=True)
df = pd.DataFrame(columns=["Mouse", "Component 1", "Component 2"])
for mouse_id, mouse_ds in test_ds.items():
latents = inference(
mouse_id=mouse_id, ds=mouse_ds, model=model, device=args.device
)
latents = np.sum(latents, axis=1) # sum over channel dimension
pca = PCA(n_components=2)
pca.fit(latents)
print(f"Explained variance ratio: {pca.explained_variance_ratio_}")
factors = pca.transform(latents)
mouse_df = pd.DataFrame(
data={
"Mouse": np.repeat(mouse_id, repeats=len(factors)),
"Component 1": factors[..., 0],
"Component 2": factors[..., 1],
}
)
df = pd.concat([df, mouse_df], ignore_index=True)
tick_fontsize, label_fontsize = 10, 12
figure, ax = plt.subplots(nrows=1, ncols=1, figsize=(5, 5), dpi=120)
sns.scatterplot(
data=df,
x="Component 1",
y="Component 2",
hue="Mouse",
palette="Set2",
alpha=0.6,
ax=ax,
)
x_range = np.linspace(
np.ceil(df["Component 1"].min()), np.floor(df["Component 1"].max()), 3
)
tensorboard.set_xticks(
axis=ax,
ticks_loc=x_range,
ticks=x_range.astype(int),
label="Component 1",
tick_fontsize=tick_fontsize,
label_fontsize=label_fontsize,
)
y_range = np.linspace(
np.ceil(df["Component 2"].min()), np.floor(df["Component 2"].max()), 3
)
tensorboard.set_yticks(
axis=ax,
ticks_loc=y_range,
ticks=y_range.astype(int),
label="Component 2",
tick_fontsize=tick_fontsize,
label_fontsize=label_fontsize,
)
sns.despine(ax=ax, offset={"left": 15, "bottom": 5}, trim=True)
sns.move_legend(
ax,
loc="best",
frameon=True,
handletextpad=0.2,
markerscale=0.6,
fontsize=tick_fontsize,
title_fontsize=tick_fontsize,
)
ax.set_title("Latent factors of ViT core", fontsize=label_fontsize)
figure.tight_layout()
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="../data/sensorium")
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--device", type=str, default="cpu")
main(parser.parse_args())