-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathestimate_aRFs.py
222 lines (183 loc) · 7.07 KB
/
estimate_aRFs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import torch
import pickle
import argparse
import warnings
import numpy as np
import typing as t
from tqdm import tqdm
import scipy.optimize as opt
from einops import rearrange, einsum
from v1t import data
from v1t.utils import utils
from v1t.models.model import Model
from v1t.utils.scheduler import Scheduler
from torch.utils.data import TensorDataset, DataLoader
warnings.simplefilter("error", opt.OptimizeWarning)
IMAGE_SIZE = (1, 36, 64)
def normalize(image: t.Union[np.array, torch.Tensor]):
"""Normalize image to [0, 1] using its min and max values."""
return (image - image.min()) / (image.max() - image.min())
def load_model(args) -> Model:
train_ds, _, _ = data.get_training_ds(
args,
data_dir=args.dataset,
mouse_ids=args.mouse_ids,
batch_size=args.batch_size,
device=args.device,
)
model = Model(args, ds=train_ds)
model.to(args.device)
scheduler = Scheduler(args, model=model, save_optimizer=False)
_ = scheduler.restore(force=True)
return model
def generate_ds(args, num_samples: int):
"""Generate num_samples of white noise images from uniform distribution
Return:
ds: DataLoader, the DataLoader object with the white noise images
noise: np.ndarray, the array with the raw white noise images
"""
noise = torch.rand((num_samples, *IMAGE_SIZE))
# standardize images
mean, std = torch.mean(noise), torch.std(noise)
images = (noise - mean) / std
# create DataLoader
dataloader_kwargs = {"batch_size": args.batch_size, "num_workers": args.num_workers}
if args.device.type in ("cuda", "mps"):
gpu_kwargs = {"prefetch_factor": 2, "pin_memory": True}
dataloader_kwargs.update(gpu_kwargs)
ds = DataLoader(TensorDataset(images), shuffle=False, **dataloader_kwargs)
return ds, noise
@torch.no_grad()
def inference(args, model: Model, ds: DataLoader) -> torch.Tensor:
responses = []
device, mouse_id = args.device, "A"
for batch in tqdm(ds, desc=f"Mouse {mouse_id}"):
images = batch[0].to(device)
batch_size = images.size(0)
# create dummy behaviors to match input arguments
behaviors = torch.zeros((batch_size, 3), device=device)
pupil_centers = torch.zeros((batch_size, 2), device=device)
# run model without image cropper
outputs = model.core(
images,
mouse_id=mouse_id,
behaviors=behaviors,
pupil_centers=pupil_centers,
)
outputs = model.readouts(outputs, mouse_id=mouse_id, shifts=None)
outputs = model.elu1(outputs)
responses.append(outputs.cpu())
responses = torch.concat(responses, dim=0)
return responses
def estimate_RFs(activations: torch.Tensor, noise: torch.Tensor) -> np.ndarray:
"""
Compute sum of the white noise images weighted their corresponding
response value to estimate the artificial RFs
"""
aRFs = einsum(activations, noise, "b n, b c h w -> n c h w")
return aRFs.numpy()
def Gaussian2d(
xy: np.ndarray,
amplitude: float,
xo: float,
yo: float,
sigma_x: float,
sigma_y: float,
theta: float,
offset: float,
):
x, y = xy
xo = float(xo)
yo = float(yo)
a = (np.cos(theta) ** 2) / (2 * sigma_x**2) + (np.sin(theta) ** 2) / (
2 * sigma_y**2
)
b = -(np.sin(2 * theta)) / (4 * sigma_x**2) + (np.sin(2 * theta)) / (
4 * sigma_y**2
)
c = (np.sin(theta) ** 2) / (2 * sigma_x**2) + (np.cos(theta) ** 2) / (
2 * sigma_y**2
)
g = offset + amplitude * np.exp(
-(a * ((x - xo) ** 2) + 2 * b * (x - xo) * (y - yo) + c * ((y - yo) ** 2))
)
return g.ravel()
def fit_gaussian(args, aRFs: np.ndarray) -> np.ndarray:
"""Fit 2D Gaussian to each aRFs using SciPy curve_fit
Gaussian fit reference: https://stackoverflow.com/a/21566831
Returns:
popts: np.ndarray, a (num. units, 7) array with fitted parameters in
[amplitude, center x, center y, sigma x, sigma y, theta, offset]
"""
num_units = aRFs.shape[0]
# standardize RFs and take absolute values to remove background noise
mean = np.mean(aRFs, axis=(1, 2, 3))
std = np.std(aRFs, axis=(1, 2, 3))
broadcast = lambda a: rearrange(a, "n -> n 1 1 1")
aRFs = (aRFs - broadcast(mean)) / broadcast(std)
aRFs = np.abs(aRFs)
height, width = aRFs.shape[2:]
x, y = np.linspace(0, width - 1, width), np.linspace(0, height - 1, height)
x, y = np.meshgrid(x, y)
# numpy array of optimal parameters where rows are unit index
popts = np.full(shape=(num_units, 7), fill_value=np.inf, dtype=np.float32)
for i, unit in enumerate(tqdm(range(num_units), desc="Fit 2D Gaussian")):
data = aRFs[unit][0]
data = data.ravel()
data_noisy = data + 0.2 * np.random.normal(size=data.shape)
try:
popt, pcov = opt.curve_fit(
f=Gaussian2d,
xdata=(x, y),
ydata=data_noisy,
p0=(3, width // 2, height // 2, 10, 10, 0, 10),
)
popts[unit] = popt
except (RuntimeError, opt.OptimizeWarning):
pass
# filter out the last 5% of the results to eliminate poor fit
num_drops = int(0.05 * len(popts))
large_sigma_x = np.argsort(popts[:, 3])[-num_drops:]
large_sigma_y = np.argsort(popts[:, 4])[-num_drops:]
drop_units = np.unique(np.concatenate((large_sigma_x, large_sigma_y), axis=0))
popts[drop_units] = np.nan
print(
f"sigma X: {np.nanmean(popts[:, 3]):.03f} \pm {np.nanstd(popts[:, 3]):.03f}\n"
f"sigma Y: {np.nanmean(popts[:, 4]):.03f} \pm {np.nanstd(popts[:, 4]):.03f}"
)
return popts
def main(args):
utils.get_device(args)
utils.set_random_seed(args.seed)
filename = os.path.join(args.output_dir, "aRFs.pkl")
results = {}
if os.path.exists(filename):
print(f"Load aRFs from {filename}.")
with open(filename, "rb") as file:
results = pickle.load(file)
if "aRFs" not in results or args.overwrite:
utils.load_args(args)
model = load_model(args)
ds, noise = generate_ds(args, num_samples=args.sample_size)
activations = inference(args, model=model, ds=ds)
aRFs = estimate_RFs(activations=activations, noise=noise)
results["aRFs"] = aRFs
else:
aRFs = results["aRFs"]
results["popts"] = fit_gaussian(args, aRFs=aRFs)
with open(filename, "wb") as file:
pickle.dump(results, file)
print(f"Saved aRFs and Gaussian fits to {filename}.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument(
"--device", type=str, default="", choices=["cpu", "cuda", "mps"]
)
parser.add_argument("--sample_size", type=int, default=100000)
parser.add_argument("--overwrite", action="store_true")
parser.add_argument("--seed", type=int, default=1234)
main(parser.parse_args())