From 921840d1ae7b2d8322a020d50d5261bcdbc7e2ce Mon Sep 17 00:00:00 2001 From: Blair Azzopardi Date: Sat, 11 May 2024 20:40:42 +0100 Subject: [PATCH] Some linting. --- notebooks/Delta_Hedging.ipynb | 1469 ++++++++++++++------------- poetry.lock | 715 +++++++------ pyproject.toml | 2 +- yabte/tests/test_strategy_runner.py | 1 - 4 files changed, 1085 insertions(+), 1102 deletions(-) diff --git a/notebooks/Delta_Hedging.ipynb b/notebooks/Delta_Hedging.ipynb index 2092ace..8f8cf3f 100644 --- a/notebooks/Delta_Hedging.ipynb +++ b/notebooks/Delta_Hedging.ipynb @@ -1,735 +1,738 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Delta Hedging\n", - "\n", - "This notebook compares delta hedging against simulated data with constant or stochastic volatility." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from collections import defaultdict\n", - "from dataclasses import dataclass\n", - "from datetime import date\n", - "from decimal import Decimal\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "import QuantLib as ql\n", - "\n", - "from yabte.backtest import (\n", - " ADFI_AVAILABLE_AT_CLOSE,\n", - " ADFI_AVAILABLE_AT_OPEN,\n", - " Book,\n", - " CashTransaction,\n", - " OHLCAsset,\n", - " OrderSizeType,\n", - " PositionalOrder,\n", - " SimpleOrder,\n", - " Strategy,\n", - " StrategyRunner,\n", - ")\n", - "from yabte.utilities.simulation.geometric_brownian_motion import gbm_simulate_paths\n", - "from yabte.utilities.simulation.heston import heston_simulate_paths" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Black Scholes Asset & Simple Delta Hedge Strategy" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# TODO: track call premium mtm valuation using constant / stochastic volatility\n", - "\n", - "class QlBsm:\n", - " def __init__(\n", - " self, K: float, sigma: float, exp: date, r: float = 0, S: float | None = None\n", - " ):\n", - " self.option = ql.EuropeanOption(\n", - " ql.PlainVanillaPayoff(ql.Option.Call, K),\n", - " ql.EuropeanExercise(ql.Date().from_date(exp)),\n", - " )\n", - "\n", - " day_counter = ql.ActualActual(ql.ActualActual.ISDA)\n", - " calendar = ql.NullCalendar()\n", - "\n", - " self.S = S = ql.SimpleQuote(S or K)\n", - " self.r = r = ql.SimpleQuote(r)\n", - " self.sigma = sigma = ql.SimpleQuote(sigma)\n", - "\n", - " risk_free_curve = ql.FlatForward(0, calendar, ql.QuoteHandle(r), day_counter)\n", - " volatility = ql.BlackConstantVol(\n", - " 0, calendar, ql.QuoteHandle(sigma), day_counter\n", - " )\n", - "\n", - " process = ql.BlackScholesProcess(\n", - " ql.QuoteHandle(S),\n", - " ql.YieldTermStructureHandle(risk_free_curve),\n", - " ql.BlackVolTermStructureHandle(volatility),\n", - " )\n", - "\n", - " engine = ql.AnalyticEuropeanEngine(process)\n", - " self.option.setPricingEngine(engine)\n", - "\n", - " def calc(\n", - " self,\n", - " t: date,\n", - " S: float | None = None,\n", - " sigma: float | None = None,\n", - " r: float | None = None,\n", - " greeks: bool = False,\n", - " ) -> float | tuple[float, float, float, float]:\n", - " ql.Settings.instance().evaluationDate = ql.Date().from_date(t)\n", - " if S is not None:\n", - " self.S.setValue(S)\n", - " if sigma is not None:\n", - " self.sigma.setValue(sigma)\n", - " if r is not None:\n", - " self.r.setValue(r)\n", - " if greeks:\n", - " return (\n", - " self.option.NPV(),\n", - " self.option.delta(),\n", - " self.option.gamma(),\n", - " self.option.vega(),\n", - " )\n", - " else:\n", - " return self.option.NPV()\n", - "\n", - "\n", - "@dataclass(kw_only=True)\n", - "class BSMOption(OHLCAsset):\n", - " \"\"\"Black Scholes Model Option\"\"\"\n", - "\n", - " K: float\n", - " exp: date\n", - " r: float = 0\n", - " divr: float = 0\n", - " cp: int = 1\n", - "\n", - " def data_fields(self):\n", - " dfs = super().data_fields()\n", - " dfs.append(\n", - " (\n", - " \"IVol\",\n", - " ADFI_AVAILABLE_AT_CLOSE | ADFI_AVAILABLE_AT_OPEN,\n", - " )\n", - " )\n", - " return dfs\n", - "\n", - " def intraday_traded_price(self, asset_day_data, size) -> Decimal:\n", - " ts = asset_day_data.name\n", - " bsm_option = QlBsm(K=self.K, sigma=asset_day_data.IVol, exp=self.exp, r=self.r)\n", - " price = bsm_option.calc(t=ts, S=asset_day_data.Close)\n", - "\n", - " return round(Decimal(price), self.price_round_dp)\n", - "\n", - "\n", - "class DeltaHedgingStrat(Strategy):\n", - " def init(self):\n", - " # capture some data for analysis\n", - " self.metrics = defaultdict(dict)\n", - "\n", - " def on_open(self):\n", - " data = self.data\n", - " p = self.params\n", - " ts = self.ts\n", - "\n", - " # buy option on t0\n", - " if len(data) == 1:\n", - " self.orders.append(SimpleOrder(asset_name=\"CO_ACME\", size=1))\n", - "\n", - " # buy delta hedge shares\n", - " t = (p.exp - ts).days / 100\n", - " s = data.ACME.Open.iloc[-1]\n", - " vol = data.iloc[-1].loc[\"ACME\"].IVol\n", - " bsm_option = QlBsm(K=p.K, sigma=vol, exp=p.exp, r=p.r)\n", - " _, delta, gamma, vega = bsm_option.calc(t=ts, S=s, greeks=True)\n", - "\n", - " self.orders.append(\n", - " PositionalOrder(\n", - " asset_name=\"ACME\", size=-1 * delta, size_type=OrderSizeType.QUANTITY\n", - " )\n", - " )\n", - "\n", - " self.metrics[ts][\"delta\"] = delta\n", - " self.metrics[ts][\"gamma\"] = gamma\n", - " self.metrics[ts][\"vega\"] = vega\n", - " self.metrics[ts][\"vol\"] = vol\n", - " self.metrics[ts][\"price\"] = s" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constant Volatility" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# gbm params\n", - "r = 0.05\n", - "vol = 0.2\n", - "s0 = 100\n", - "N = 101\n", - "T = N / 365\n", - "\n", - "# simulate data\n", - "rng = np.random.default_rng(12345) # for reproducibility\n", - "ix = pd.date_range(end=\"20221231\", periods=N, freq=\"D\")\n", - "p = gbm_simulate_paths(S0=s0, mu=r, sigma=vol, R=1, T=T, n_steps=N, n_sims=1, rng=rng)\n", - "df = pd.DataFrame(np.c_[p[:, :, 0], p[:, :, 0]], index=ix)\n", - "df.columns = pd.MultiIndex.from_tuples(((\"ACME\", \"Open\"), (\"ACME\", \"Close\")))\n", - "\n", - "# add constant vol to data\n", - "df.loc[:, (\"ACME\", \"IVol\")] = vol\n", - "\n", - "# assets\n", - "assets = [\n", - " OHLCAsset(name=\"ACME\", denom=\"USD\", quantity_round_dp=6),\n", - " BSMOption(name=\"CO_ACME\", data_label=\"ACME\", K=s0, exp=ix[-1], r=r),\n", - "]\n", - "\n", - "# run simulation\n", - "book = Book(name=\"Main\", cash=\"0\", rate=0.05 / 100)\n", - "sr = StrategyRunner(\n", - " data=df,\n", - " assets=assets,\n", - " strategies=[DeltaHedgingStrat()],\n", - " books=[book],\n", - ")\n", - "srr = sr.run(\n", - " {\n", - " \"r\": r,\n", - " \"vol\": vol,\n", - " \"exp\": ix[-1],\n", - " \"K\": s0,\n", - " }\n", - ")\n", - "metrics = pd.DataFrame.from_dict(srr.strategies[0].metrics, orient=\"index\").reindex(\n", - " srr.book_history.index\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAJRCAYAAAB/Wb99AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hU1dbA4d9MyqR30iAkIfQaCBABkWIUECnSRFGQq+KniAXLlasCKopgQ7Bwr4WiIAgKYgOpIhB6LwkBEkgnvfc53x8nMzCkkISEBLLe55lnZs7ZZ599Ik5Zs/baGkVRFIQQQgghhBBCCCGEuMm09T0AIYQQQgghhBBCCNE4SWBKCCGEEEIIIYQQQtQLCUwJIYQQQgghhBBCiHohgSkhhBBCCCGEEEIIUS8kMCWEEEIIIYQQQggh6oUEpoQQQgghhBBCCCFEvZDAlBBCCCGEEEIIIYSoFxKYEkIIIYQQQgghhBD1QgJTQgghhBBCCCGEEKJeSGBKCCGEEKKBW7p0KRqNhqioqFrrMyoqCo1Gw9KlS43bZs+ejUajMWnn5+fHY489VmvnFUIIIYS4mgSmhBBCCFGh8+fP89RTT9GiRQusrKxwcHCgT58+fPrpp+Tl5dXr2P744w9mz559U861Z88eZs+eTXp6eqXtioqKcHNz484776ywjaIo+Pj40K1bt1oeZflWrlzJggULaq2/06dPM3v27FoNkgkhhBCi8ZLAlBBCCCHK9fvvv9OpUyd+/PFHhg0bxqJFi5g7dy7NmzfnlVde4fnnn6/X8f3xxx+89dZbN+Vce/bs4a233rpuYMrCwoKxY8eyZ88eLl68WG6bnTt3EhMTwyOPPFIHIy2rosCUr68veXl5PProo5UeHx4ezldffWV8fvr0ad566y0JTAkhhBCiVpjX9wCEEEII0fBERkYyfvx4fH192bZtG15eXsZ9U6dO5dy5c/z+++/1OMKGa8KECSxevJgffviB1157rcz+lStXotVqGT9+fD2M7gqNRoOVldV12+l0upswGiGEEEI0VpIxJYQQQogy5s+fT3Z2Nt98841JUMqgZcuWJhlTxcXFvPPOOwQEBKDT6fDz8+M///kPBQUFJsf5+flx//33s2vXLnr27ImVlRUtWrRg+fLlJu2Kiop46623aNWqFVZWVri6unLnnXeyefNmAB577DE+//xzQA2wGG4GH374Ib1798bV1RVra2uCgoJYu3ZtmevQaDQ8++yzrF+/no4dO6LT6ejQoQMbN240tpk9ezavvPIKAP7+/sZzVZQx1KdPH/z8/Fi5cmWZfUVFRaxdu5YBAwbg7e0NwLZt2+jbty+2trY4OTkxYsQIzpw5U27fV/vll18YOnQo3t7e6HQ6AgICeOeddygpKTG26d+/P7///jsXL140jtvPzw8ov8ZUea6uMbV06VLGjh0LwIABA4x97tixg0mTJuHm5kZRUVGZPu69917atGlz3WsSQgghROMjGVNCCCGEKOPXX3+lRYsW9O7du0rtn3jiCZYtW8aYMWN46aWX2LdvH3PnzuXMmTOsW7fOpO25c+cYM2YMjz/+OJMmTeLbb7/lscceIygoiA4dOgBqMGju3Lk88cQT9OzZk8zMTA4ePMjhw4e55557eOqpp4iLi2Pz5s189913Zcbz6aefMnz4cCZMmEBhYSGrVq1i7Nix/PbbbwwdOtSk7a5du/j555955plnsLe3Z+HChYwePZpLly7h6urKqFGjOHv2LD/88AOffPIJbm5uADRp0qTcv4VGo+Hhhx/mvffe49SpU8ZrAti4cSOpqalMmDABgC1btjBkyBBatGjB7NmzycvLY9GiRfTp04fDhw8bg0jlWbp0KXZ2dkyfPh07Ozu2bdvGzJkzyczM5IMPPgDg9ddfJyMjg5iYGD755BMA7OzsKvtPWam77rqL5557joULF/Kf//yHdu3aAdCuXTseffRRli9fzqZNm7j//vuNxyQkJLBt2zZmzZpV4/MKIYQQ4jamCCGEEEJcJSMjQwGUESNGVKn90aNHFUB54oknTLa//PLLCqBs27bNuM3X11cBlJ07dxq3Xb58WdHpdMpLL71k3NalSxdl6NChlZ536tSpSkUfZXJzc02eFxYWKh07dlQGDhxosh1QLC0tlXPnzhm3HTt2TAGURYsWGbd98MEHCqBERkZWOiaDU6dOKYAyY8YMk+3jx49XrKyslIyMDEVRFCUwMFBxd3dXUlJSTM6v1WqViRMnGrctWbKkzPmvvUZFUZSnnnpKsbGxUfLz843bhg4dqvj6+pZpGxkZqQDKkiVLjNtmzZpV5m/q6+urTJo0yfh8zZo1CqBs377dpF1JSYnSrFkz5cEHHzTZ/vHHHysajUa5cOFCmTEIIYQQQshUPiGEEEKYyMzMBMDe3r5K7f/44w8Apk+fbrL9pZdeAihTi6p9+/b07dvX+LxJkya0adOGCxcuGLc5OTlx6tQpIiIiqn8BgLW1tfFxWloaGRkZ9O3bl8OHD5dpGxISQkBAgPF5586dcXBwMBlPdbVv356uXbuyatUq47acnBw2bNjA/fffj4ODA/Hx8Rw9epTHHnsMFxcXk/Pfc889xr9rVa4xKyuL5ORk+vbtS25uLmFhYTUee01ptVomTJjAhg0byMrKMm5fsWIFvXv3xt/f/6aPSQghhBANnwSmhBBCCGHCwcEBwCS4UJmLFy+i1Wpp2bKlyXZPT0+cnJzKrE7XvHnzMn04OzuTlpZmfP7222+Tnp5O69at6dSpE6+88grHjx+v8jX89ttv3HHHHVhZWeHi4kKTJk348ssvycjIKNO2KuOpiQkTJhAZGcmePXsAWL9+Pbm5ucZpfIa/S3m1l9q1a0dycjI5OTkV9n/q1CkeeOABHB0dcXBwoEmTJsaV/sq7zpth4sSJ5OXlGadvhoeHc+jQoeuu/CeEEEKIxksCU0IIIYQw4eDggLe3NydPnqzWcVcXH6+MmZlZudsVRTE+vuuuuzh//jzffvstHTt25Ouvv6Zbt258/fXX1+3/n3/+Yfjw4VhZWfHFF1/wxx9/sHnzZh5++GGTc1RnPDXx0EMPodVqjUXQV65cibOzM/fdd98N9QuQnp5Ov379OHbsGG+//Ta//vormzdvZt68eQDo9fobPkdNtG/fnqCgIL7//nsAvv/+eywtLRk3bly9jEcIIYQQDZ8EpoQQQghRxv3338/58+cJDQ29bltfX1/0en2ZaXeJiYmkp6fj6+tbozG4uLgwefJkfvjhB6Kjo+ncuTOzZ8827q8oEPbTTz9hZWXFpk2b+Ne//sWQIUMICQmp0Riud67KeHt7M2DAANasWUNiYiKbN29mzJgxWFpaAhj/LuHh4WWODQsLw83NDVtb23L73rFjBykpKSxdupTnn3+e+++/n5CQEJydnWtl7JW5Xn8TJ05k27ZtxMfHs3LlSoYOHVruuIQQQgghQAJTQgghhCjHq6++iq2tLU888QSJiYll9p8/f55PP/0UwJgBtGDBApM2H3/8MUCZVfCqIiUlxeS5nZ0dLVu2pKCgwLjNELRJT083aWtmZoZGo6GkpMS4LSoqivXr11d7HNc71/VMmDCBy5cv89RTT1FUVGScxgfg5eVFYGAgy5YtM+n35MmT/PXXX5VmVhmyvK7O6iosLOSLL74od+y1ObXven+Lhx56CI1Gw/PPP8+FCxeM0wuFEEIIIcpjXt8DEEIIIUTDExAQwMqVK3nwwQdp164dEydOpGPHjhQWFrJnzx7WrFnDY489BkCXLl2YNGkS//vf/4xTzPbv38+yZcsYOXIkAwYMqPb527dvT//+/QkKCsLFxYWDBw+ydu1ann32WWOboKAgAJ577jkGDRqEmZkZ48ePZ+jQoXz88ccMHjyYhx9+mMuXL/P555/TsmXLatWpuprhXK+//jrjx4/HwsKCYcOGVZjRZDB69GieeeYZfvnlF3x8fLjrrrtM9n/wwQcMGTKEXr168fjjj5OXl8eiRYtwdHQ0yQ67Vu/evXF2dmbSpEk899xzaDQavvvuu3KnHwYFBbF69WqmT59Ojx49sLOzY9iwYdX/I5QKDAzEzMyMefPmkZGRgU6nY+DAgbi7uwNqMfvBgwezZs0anJycahSYFEIIIUQjUq9rAgohhBCiQTt79qzy5JNPKn5+foqlpaVib2+v9OnTR1m0aJGSn59vbFdUVKS89dZbir+/v2JhYaH4+PgoM2bMMGmjKIri6+urDB06tMx5+vXrp/Tr18/4fM6cOUrPnj0VJycnxdraWmnbtq3y7rvvKoWFhcY2xcXFyrRp05QmTZooGo1GufpjzTfffKO0atVK0el0Stu2bZUlS5Yos2bNUq796AMoU6dOLTMeX19fZdKkSSbb3nnnHaVp06aKVqtVACUyMrIqf0Jl7NixCqC8+uqr5e7fsmWL0qdPH8Xa2lpxcHBQhg0bppw+fdqkzZIlS8qcc/fu3codd9yhWFtbK97e3sqrr76qbNq0SQGU7du3G9tlZ2crDz/8sOLk5KQAiq+vr6IoihIZGakAypIlS4xty/sblfe3+Oqrr5QWLVooZmZmZc6nKIry448/KoAyZcqUKv2NhBBCCNF4aRTlBit7CiGEEEIIcZVffvmFkSNHsnPnTvr27VvfwxFCCCFEAyaBKSGEEEIIUavuv/9+zpw5w7lz52q9+LoQQgghbi9SY0oIIYQQQtSKVatWcfz4cX7//Xc+/fRTCUoJIYQQ4rokY0oIIYQQQtQKjUaDnZ0dDz74IIsXL8bcXH4DFUIIIUTl5NOCEEIIIYSoFfJ7pxBCCCGqS1vfAxBCCCGEEEIIIYQQjZMEpoQQQgghhBBCCCFEvZDAlBBCCCGEEEIIIYSoFxKYEkIIIYQQQgghhBD1QgJTQgghhBBCCCGEEKJeSGBKCCGEEEIIIYQQQtQLCUwJIYQQQgghhBBCiHohgSkhhBBCCCGEEEIIUS8kMCWEEEIIIYQQQggh6oUEpoQQQgghhBBCCCFEvZDAlBBCCCGEEEIIIYSoFxKYEkIIIYQQQgghhBD1QgJTQgghhBBCCCGEEKJeSGBKCCGEEEIIIYQQQtQLCUwJIYQQQgghhBBCiHohgSkhhBBCCCGEEEIIUS8kMCWEEEIIIYQQQggh6oUEpsRNs2PHDjQaDTt27KjvoZTRv39/+vfvX9/DEEII0QhpNBpmz55d38MQQghxm1q6dCkajYaoqKj6HooQ5ZLA1G1Oo9FU6VaVYNF7773H+vXr63zMhhfOgwcPlru/f//+dOzYsc7HcTNlZmby1ltv0aVLF+zs7LC2tqZjx478+9//Ji4urk7O+cUXX7B06dJa6ev8+fM8/PDDuLu7Y21tTatWrXj99deve1x8fDyvvfYaAwYMwN7e/rr/Fvfs2cOdd96JjY0Nnp6ePPfcc2RnZ9fKNQghhBBCCCGEuPnM63sAom599913Js+XL1/O5s2by2xv167ddft67733GDNmDCNHjqzNITZ6Fy5cICQkhEuXLjF27FimTJmCpaUlx48f55tvvmHdunWcPXu21s/7xRdf4ObmxmOPPXZD/Rw9epT+/fvTtGlTXnrpJVxdXbl06RLR0dHXPTY8PJx58+bRqlUrOnXqRGhoaKXnufvuu2nXrh0ff/wxMTExfPjhh0RERPDnn3/e0DUIIUR9ysvLw9xcPpIJIYQQonGST0G3uUceecTk+d69e9m8eXOZ7aJ+FBcXM2rUKBITE9mxYwd33nmnyf53332XefPm1dPork+v1/Poo4/Stm1btm/fjrW1dbWODwoKIiUlBRcXF9auXcvYsWMrbPuf//wHZ2dnduzYgYODAwB+fn48+eST/PXXX9x77703dC1CCHEz6fV6CgsLsbKywsrKqr6HI4QQQghRb2QqnyAnJ4eXXnoJHx8fdDodbdq04cMPP0RRFGMbjUZDTk4Oy5YtM07/M2TaXLx4kWeeeYY2bdpgbW2Nq6srY8eOvelzmL///nuCgoKwtrbGxcWF8ePHl5u187///Y+AgACsra3p2bMn//zzT7n9Xbx4keHDh2Nra4u7uzsvvvgimzZtKne62b59+xg8eDCOjo7Y2NjQr18/du/efd0x//TTTxw7dozXX3+9TFAKwMHBgXfffddk25o1a4zX6ebmxiOPPEJsbKxJm4SEBCZPnkyzZs3Q6XR4eXkxYsQI438TPz8/Tp06xd9//23873l1ja3z589z/vz5647/r7/+4uTJk8yaNQtra2tyc3MpKSm57nEG9vb2uLi4XLddZmamMaBqCEoBTJw4ETs7O3788ccqn1MIIWrT7Nmz0Wg0hIWFMW7cOBwcHHB1deX5558nPz/f2E6j0fDss8+yYsUKOnTogE6nY+PGjcZ919aYio2N5fHHH8fb2xudToe/vz9PP/00hYWFxjbp6em88MILxvfvli1bMm/ePPR6/U25diGEEHVj7dq1aDQa/v777zL7/vvf/6LRaDh58iQA27Zto2/fvtja2uLk5MSIESM4c+bMzR6yEDdEMqYaOUVRGD58ONu3b+fxxx8nMDCQTZs28corrxAbG8snn3wCqFMCn3jiCXr27MmUKVMACAgIAODAgQPs2bOH8ePH06xZM6Kiovjyyy/p378/p0+fxsbGpkZjy8jIIDk5ucz2oqKiMtveffdd3nzzTcaNG8cTTzxBUlISixYt4q677uLIkSM4OTkB8M033/DUU0/Ru3dvXnjhBS5cuMDw4cNxcXHBx8fH2F9OTg4DBw4kPj6e559/Hk9PT1auXMn27dvLnHvbtm0MGTKEoKAgZs2ahVarZcmSJQwcOJB//vmHnj17VniNGzZsAODRRx+t0t9k6dKlTJ48mR49ejB37lwSExP59NNP2b17t8l1jh49mlOnTjFt2jT8/Py4fPkymzdv5tKlS/j5+bFgwQKmTZuGnZ2dsRaUh4eH8Tx33303wHWDi1u2bAFAp9PRvXt3Dh06hKWlJQ888ABffPFFlYJOVXHixAmKi4vp3r27yXZLS0sCAwM5cuRIrZxHCCFqaty4cfj5+TF37lz27t3LwoULSUtLY/ny5cY227Zt48cff+TZZ5/Fzc0NPz+/cvuKi4ujZ8+epKenM2XKFNq2bUtsbCxr164lNzcXS0tLcnNz6devH7GxsTz11FM0b96cPXv2MGPGDOLj41mwYMHNuXAhhBC1bujQocYfX/v162eyb/Xq1XTo0IGOHTuyZcsWhgwZQosWLZg9ezZ5eXksWrSIPn36cPjw4QrfZ4RocBTRqEydOlW5+j/7+vXrFUCZM2eOSbsxY8YoGo1GOXfunHGbra2tMmnSpDJ95ubmltkWGhqqAMry5cuN27Zv364Ayvbt2ysd45IlSxSg0luHDh2M7aOiohQzMzPl3XffNennxIkTirm5uXF7YWGh4u7urgQGBioFBQXGdv/73/8UQOnXr59x20cffaQAyvr1643b8vLylLZt25pcg16vV1q1aqUMGjRI0ev1Jn8Tf39/5Z577qn0Wrt27ao4OjpW2sbAMP6OHTsqeXl5xu2//fabAigzZ85UFEVR0tLSFED54IMPKu2vQ4cOJtd8NV9fX8XX1/e6Yxo+fLgCKK6ursqECROUtWvXKm+++aZibm6u9O7d2+Rvcj1r1qyp8N+HYd/OnTvL7Bs7dqzi6elZ5fMIIURtmjVrlgIow4cPN9n+zDPPKIBy7NgxRVEUBVC0Wq1y6tSpMn0AyqxZs4zPJ06cqGi1WuXAgQNl2hpeV9955x3F1tZWOXv2rMn+1157TTEzM1MuXbp0o5cmhBCiHj300EOKu7u7UlxcbNwWHx+vaLVa5e2331YURVECAwMVd3d3JSUlxdjm2LFjilarVSZOnGjcZvh+FRkZedPGL0R1yFS+Ru6PP/7AzMyM5557zmT7Sy+9hKIoVSoqfXVdoaKiIlJSUmjZsiVOTk4cPny4xmP7/PPP2bx5c5lb586dTdr9/PPP6PV6xo0bR3JysvHm6elJq1atjFlOBw8e5PLly/zf//0flpaWxuMfe+wxHB0dTfrcuHEjTZs2Zfjw4cZtVlZWPPnkkybtjh49SkREBA8//DApKSnGc+fk5HD33Xezc+fOSqdUZGZmYm9vX6W/h2H8zzzzjEk9kqFDh9K2bVt+//13QP3vYWlpyY4dO0hLS6tS39eKioqq0lRMw4p4PXr04Pvvv2f06NG8/fbbvPPOO+zZs4etW7fW6PzXysvLA9TMrGtZWVkZ9wshRH2ZOnWqyfNp06YB6vusQb9+/Wjfvn2l/ej1etavX8+wYcPKZImCOu0P1Gndffv2xdnZ2eS9LyQkhJKSEnbu3HmjlySEEKIePfjgg1y+fNmkhMjatWvR6/U8+OCDxMfHc/ToUR577DGTWQqdO3fmnnvuMXn/EaKhk6l8jdzFixfx9vYuExwxrNJ38eLF6/aRl5fH3LlzWbJkCbGxsSa1qTIyMmo8tp49e5b7odzwIdwgIiICRVFo1apVuf1YWFgAV67l2nYWFha0aNHCZNvFixcJCAgwfgEwaNmypcnziIgIACZNmlThdWRkZODs7FzuPgcHBy5cuFDhsdeOCaBNmzZl9rVt25Zdu3YBavBm3rx5vPTSS3h4eHDHHXdw//33M3HiRDw9Pat0rqoyBCUfeughk+0PP/wwM2bMYM+ePYSEhNTaeQoKCsrsy8/Pr3bRdSGEqG3XvrcEBASg1WpNgvz+/v7X7ScpKYnMzEw6duxYabuIiAiOHz9OkyZNyt1/+fLl6w9aCCFEg2WoX7t69WpjmY3Vq1cTGBhI69at2bt3L1D+d4N27dqxadMmcnJysLW1vanjFqImJDAlbti0adNYsmQJL7zwAr169cLR0RGNRsP48eNvSgFWvV6PRqPhzz//xMzMrMx+Ozu7Oj03wAcffEBgYGC5bSo7f9u2bTly5AjR0dEmNa5u1AsvvMCwYcNYv349mzZt4s0332Tu3Lls27aNrl271tp5vL29AdP6VADu7u4ANc7YupaXlxcA8fHxZfbFx8cbxyGEEA3FtT9sALUaRNfr9dxzzz28+uqr5e5v3bp1rZ1LCCHEzafT6Rg5ciTr1q3jiy++IDExkd27d/Pee+/V99CEqHUSmGrkfH192bJlC1lZWSZZU2FhYcb9BuV9yAY1pXTSpEl89NFHxm35+fmkp6fXzaCvERAQgKIo+Pv7V/pB3HAtERERDBw40Li9qKiIyMhIunTpYtL29OnTKIpict3nzp0rc25QM59qkhk0bNgwfvjhB77//ntmzJhRaVvD+MPDw03Gb9h29X8rw9heeuklXnrpJSIiIggMDOSjjz7i+++/Byr+71kdQUFBfPXVV2VWBYyLiwOo8Jf86urYsSPm5uYcPHiQcePGGbcXFhZy9OhRk21CCFEfIiIiTDKizp07h16vr3bh2SZNmuDg4GBcbakiAQEBZGdn10pWqhBCiIbpwQcfZNmyZWzdupUzZ86gKAoPPvggYPrd4FphYWG4ublJtpS4ZUiNqUbuvvvuo6SkhM8++8xk+yeffIJGo2HIkCHGbba2tuUGm8zMzEym7wEsWrSIkpKSOhnztUaNGoWZmRlvvfVWmXEoikJKSgoA3bt3p0mTJixevNhkue2lS5eWua5BgwYRGxtrXDUP1GDbV199ZdIuKCiIgIAAPvzwQ2O9paslJSVVOvYxY8bQqVMn3n33XUJDQ8vsz8rKMq6a1717d9zd3Vm8eLHJlLY///yTM2fOMHToUAByc3NNligH9QuMvb29yXEV/fcEOH/+POfPn6907AAjRoxAp9OxZMkSk+y4r7/+GoB77rnHuC0+Pp6wsLByV1W8HkdHR0JCQvj+++/Jysoybv/uu+/Izs5m7Nix1e5TCCFq0+eff27yfNGiRQAm76NVodVqGTlyJL/++isHDx4ss9/wPjdu3DhCQ0PZtGlTmTbp6ekUFxdX67xCCCEanpCQEFxcXFi9ejWrV6+mZ8+exh9BvLy8CAwMZNmyZSaf6U+ePMlff/3FfffdV0+jFqL6JGOqkRs2bBgDBgzg9ddfJyoqii5duvDXX3/xyy+/8MILLxgzgkANwmzZsoWPP/4Yb29v/P39CQ4O5v777+e7777D0dGR9u3bExoaypYtW3B1db0p1xAQEMCcOXOYMWMGUVFRjBw5Ent7eyIjI1m3bh1Tpkzh5ZdfxsLCgjlz5vDUU08xcOBAHnzwQSIjI1myZEmZGlNPPfUUn332GQ899BDPP/88Xl5erFixwlh03JBtpNVq+frrrxkyZAgdOnRg8uTJNG3alNjYWLZv346DgwO//vprhWO3sLDg559/JiQkhLvuuotx48bRp08fLCwsOHXqFCtXrsTZ2Zl3330XCwsL5s2bx+TJk+nXrx8PPfQQiYmJfPrpp/j5+fHiiy8CcPbsWe6++27GjRtH+/btMTc3Z926dSQmJjJ+/HjjuYOCgvjyyy+ZM2cOLVu2xN3d3ZiJZZjHfr0C6J6enrz++uvMnDmTwYMHM3LkSI4dO8ZXX33FQw89RI8ePYxtZ8yYwbJly4iMjDTJIJgzZw4Ap06dAtRgk6Fe1htvvGFs9+6779K7d2/69evHlClTiImJ4aOPPuLee+9l8ODBlY5TCCHqWmRkJMOHD2fw4MGEhoby/fff8/DDD5tk41bVe++9x19//WV8vWvXrh3x8fGsWbOGXbt24eTkxCuvvMKGDRu4//77eeyxxwgKCiInJ4cTJ06wdu1aoqKicHNzq4MrFUIIcbNYWFgwatQoVq1aRU5ODh9++KHJ/g8++IAhQ4bQq1cvHn/8cfLy8li0aBGOjo7Mnj27fgYtRE3U13KAon5MnTpVufY/e1ZWlvLiiy8q3t7eioWFhdKqVSvlgw8+MC5JbRAWFqbcddddirW1tQIokyZNUhRFUdLS0pTJkycrbm5uip2dnTJo0CAlLCxM8fX1NbZRFEXZvn27Aijbt2+vdIyG5UzLWyZbURSlX79+SocOHcps/+mnn5Q777xTsbW1VWxtbZW2bdsqU6dOVcLDw03affHFF4q/v7+i0+mU7t27Kzt37lT69eun9OvXz6TdhQsXlKFDhyrW1tZKkyZNlJdeekn56aefFEDZu3evSdsjR44oo0aNUlxdXRWdTqf4+voq48aNU7Zu3VrptRqkpaUpM2fOVDp16qTY2NgoVlZWSseOHZUZM2Yo8fHxJm1Xr16tdO3aVdHpdIqLi4syYcIEJSYmxrg/OTlZmTp1qtK2bVvF1tZWcXR0VIKDg5Uff/zRpJ+EhARl6NChir29vQKYXL+vr6/i6+tbpbHr9Xpl0aJFSuvWrRULCwvFx8dHeeONN5TCwkKTdpMmTSp3mVqgwtu1/vnnH6V3796KlZWV0qRJE2Xq1KlKZmZmlcYphBB1YdasWQqgnD59WhkzZoxib2+vODs7K88++6ySl5dnbAcoU6dOLbcPQJk1a5bJtosXLyoTJ05UmjRpouh0OqVFixbK1KlTlYKCAmObrKwsZcaMGUrLli0VS0tLxc3NTendu7fy4YcflnkNFkIIcWvavHmzAigajUaJjo4us3/Lli1Knz59FGtra8XBwUEZNmyYcvr0aZM2hu9X134OF6Kh0CjKNXOfhBAVWrBgAS+++CIxMTE0bdq0vocjhBCins2ePZu33nqLpKQkyVASQgghhKgBqTElRAXy8vJMnufn5/Pf//6XVq1aSVBKCCGEEEIIIYSoBVJjSogKjBo1iubNmxMYGEhGRgbff/89YWFhrFixor6HJoQQQgghhBBC3BYkMCVEBQYNGsTXX3/NihUrKCkpoX379qxatcq4RKsQQgghhBBCCCFujNSYEkIIIYQQQgghhBD1QmpMCSGEEEIIIYQQQoh6IYEpIYQQQgghhBBCCFEvbskaU3q9nri4OOzt7dFoNPU9HCGEuCUoikJWVhbe3t5otY3zdwl5/xBCiOpr7O8f8t4hhBDVV533jlsyMBUXF4ePj099D0MIIW5J0dHRNGvWrL6HUS/k/UMIIWqusb5/yHuHEELUXFXeO27JwJS9vT2gXqCDg0M9j0YIIW4NmZmZ+Pj4GF9DGyN5/xBCiOpr7O8f8t4hhBDVV533jlsyMGVIoXVwcJA3ByGEqKbGPA1B3j+EEKLmGuv7h7x3CCFEzVXlvaPxTRIXQgghhBBCCCGEEA1CtQNTO3fuZNiwYXh7e6PRaFi/fr3JfkVRmDlzJl5eXlhbWxMSEkJERIRJm9TUVCZMmICDgwNOTk48/vjjZGdn39CFCCGEEEIIIRq2zz//HD8/P6ysrAgODmb//v0Vtv3qq6/o27cvzs7OODs7ExISUqb9zz//zL333ourqysajYajR4+W6Sc/P5+pU6fi6uqKnZ0do0ePJjExsbYvTQghRA1VOzCVk5NDly5d+Pzzz8vdP3/+fBYuXMjixYvZt28ftra2DBo0iPz8fGObCRMmcOrUKTZv3sxvv/3Gzp07mTJlSs2vQgghhBBCCNGgrV69munTpzNr1iwOHz5Mly5dGDRoEJcvXy63/Y4dO3jooYfYvn07oaGh+Pj4cO+99xIbG2tsk5OTw5133sm8efMqPO+LL77Ir7/+ypo1a/j777+Ji4tj1KhRtX59QgghakajKIpS44M1GtatW8fIkSMBNVvK29ubl156iZdffhmAjIwMPDw8WLp0KePHj+fMmTO0b9+eAwcO0L17dwA2btzIfffdR0xMDN7e3tc9b2ZmJo6OjmRkZMg8byGEqCJ57ZS/gRBC1ERtvXYGBwfTo0cPPvvsMwD0ej0+Pj5MmzaN11577brHl5SU4OzszGeffcbEiRNN9kVFReHv78+RI0cIDAw0bs/IyKBJkyasXLmSMWPGABAWFka7du0IDQ3ljjvuuO555b1DCCGqrzqvnbVa/DwyMpKEhARCQkKM2xwdHQkODiY0NJTx48cTGhqKk5OTMSgFEBISglarZd++fTzwwAO1OSQhbkkl+hLMtGZltusVPQBajZSHawzS8tM4m3aWxNxELudeJiUvBVB/FNCgwd7SHjdrN9ys3Whq15QApwD5tyFEI6UoCj/sj6a9twOBPk71PRwhyigsLOTQoUPMmDHDuE2r1RISEkJoaGiV+sjNzaWoqAgXF5cqn/fQoUMUFRWZfD9p27YtzZs3rzAwVVBQQEFBgfF5ZmZmlc8nhBCi+mo1MJWQkACAh4eHyXYPDw/jvoSEBNzd3U0HYW6Oi4uLsc215M1B3MqKSorILsomuzCbzKJMUvNSSc03vaXlp6m3gjRS81PJK87DUmuJjYUN1ubWFOmLyCnKIa84D3OtOd623jSzb4a7jTsFxQVkF2WTW5yLg6UDPvY+NLNvhquVKwoKekVPsb6Y1PxUUvJSSMlXgxtWZlZYmVthpjGjoKSAgpICivXFtHRqSRf3LrR3bY/OTFfPf73Gp1hfzJ64PayLWMeO6B0UK8VVPtbe0p6u7l0J8ghisN9gvO2un4EqhLg9/HU6kf+sO4G3oxW7XxvYaFdPEw1XcnIyJSUl5X5PCAsLq1If//73v/H29jYJMl1PQkIClpaWODk5lTlvRd895s6dy1tvvVXlcwghhLgxtRqYqivy5nDryizMJCM/AycrJ+ws7BrcB2VFUVBQUBQFPXoURcFCa1HhOPWKnrNpZ9kfv5+kvCQKSwop1BdSWFJIUUmRMcCTXpBuDDTlFefVaGyF+kIKCwpJL0g32V6sL+ZS1iUuZV2qUb9VZa41p4VjC/wc/PB18MXO0o4L6Rc4l36OmOwYmtk1o5NbJzo16YRWo+V8+nnOpZ0jszCTII8g7mx6J52bdMZce0u8zNS7iLQIfj3/K79d+I2kvCTj9ub2zfG288bdxh1Xa1fMNGbqv1dFT2ZhJsl5ySTlJRGZEUlWYRY7Y3ayM2YnCw4toG+zvoxtPRZHnSNnU89yPOZ4PV6hEKIu/XQoBoC4jHzOxGfR3lumG4nby/vvv8+qVavYsWMHVlZWdXquGTNmMH36dOPzzMxMfHx86vScQgjRmNXqN0ZPT08AEhMT8fLyMm5PTEw0zvX29PQsU+CwuLiY1NRU4/HXkjeHhk2v6DmYcJDIjEhismOIzY4lJiuGmOwYsgqzjO0stZa4WbvhbedNc4fm+Nj70MKxBe1d2+Nh42EMBimKQkp+CpcyLxGVGUVUZhT5xfm4WLngYuVCE+smtHRuSTO7ZuUGkIr1xWQUZJBVmIWCglajRVEUwlLD2JewjwMJB7iUeQmF8sur2VrY4u/gTwunFnjYeJBfkk9ecR7p+ekcSjxEWkFajf5O1ubW2Fva42rliouVC85WzjhbOauPdVceu1q5YmdpR35xPjlFOeQW52KhtcDOwg4bCxsKSwqJyY4hJiuG5LxkrMytsLOww9rCmrT8NGKyYojOiiajIAOtRmu8OVs542bthquVGtzIK8kjrziPEn0JOjMdVuZW6BU9Z1LOcCzpGCn5KZxNO8vZtLPlXk9GQQanUk6xKnxVmX2HLx/mqxNfYWdhR1f3rnRp0oVA90A6uXXCxsKmRn+/qymKQmhcKGdSzxj/XbjZuNHaqTUWZhY33H9dSM9Pp1gpNmaqJeUmcSrlFCeTT7Inbg9nUs8Y2zrrnLk/4H5GthxJa+fWVeq/WF9MeGo4hxIPsTNmJ/sS9hmDVAYleSW1fl1CiPqXmlPI9vArn622h1+WwJRocNzc3DAzMyuzGl5iYmKF3wEMPvzwQ95//322bNlC586dq3VeT09PCgsLSU9PN8maquy8Op0OnU6yxoUQ4map1cCUv78/np6ebN261RiIyszMZN++fTz99NMA9OrVi/T0dA4dOkRQUBAA27ZtQ6/XExwcXG6/8ubQcIXGhfLxoY8JS604BdvKzIr8knwK9YXE5cQRlxPHwcSDJm1crFzwc/AjOS+ZhJwECvWF1z23vYU9bVzaYKG1UDOzCjLIKMwwCYbVRE5RDidTTnIy5WS5+63Nrenu0Z0ApwAstBZYmlliobVAZ6bD0swSnZkOR52jGmjSueCgc8DWwrZWM4e87Lzo4dmj1vq7lqIoxOXEcT79PFEZanAwuzAbf0d/Y1DwYuZFjicf51TyKQBaOrUkwCkAa3NrQuNDCY0LJb0gnX9i/+Gf2H8ANTgZ7BXMgOYD6OXVC0szS/SKnqKSIiIzIwlLDSMsNQwLrQUDfAbQt1lfbC1sTcYWnRnN3P1zjX1ezcrMikD3QOPf5mLmRS5mXiSrMAt7S3scLB1wtnKmvWt7url3o7Vz63JredUWvaJnV+wuVpxZwZ64PZW2Ndeac1fTuxjecjh3Nb2r2gE2c605Hdw60MGtAxM7TORi5kXWnl3L7xd+R6vR0sa5Fc1T0nmNM9fvTAhxS/nteBxFJQpaDegV2B52makDWtb3sIQwYWlpSVBQEFu3bjUunKTX69m6dSvPPvtshcfNnz+fd999l02bNpnUqK2qoKAgLCws2Lp1K6NHjwYgPDycS5cu0atXrxpdixBCiNpV7VX5srOzOXfuHABdu3bl448/ZsCAAbi4uNC8eXPmzZvH+++/z7Jly/D39+fNN9/k+PHjnD592ph2O2TIEBITE1m8eDFFRUVMnjyZ7t27s3LlyiqNQVbGqLqikiLOZ5znTMoZ8kvy6enZkxaOLW54St2plFN8duQzdsXuAsDOwo7unt1pZteMZvbNaGrX1HizsbAhrziPlLwUkvOSiclWM3ouZV7ibNpZzqefp0QxzeTQoMHbzhtfB191GpmFnVojKT+FhJwEzqWfo1hfee0dw9RBw7QnH3sfenr1pKdnT9q5tMNMa4YGDRqNBi1atFq1aHRSbhIXMi5wIf0CKfkpWJlbYW1uja25LR3dOtLJrVODzcppSEr0JYSlhnE06SjHLh/jSNIREnLKr+VQEUutJT29euJu446dhR0FJQWsi1hHob4Qc605A3wGkFecR1p+GrHZsWWmPV6PrYUtQ/yH8GLQizhY1t5rSUxWDJuiNrHu3DouZl40btegMWbqmWvMaenckg6uHejk1omBzQfibOVca2MwceFv+PPfZMacxvH9rEb92invH+J2NOLz3RyLTueJO/35elckWg0ceuMenG0t63to4jZRW6+dq1evZtKkSfz3v/+lZ8+eLFiwgB9//JGwsDA8PDyYOHEiTZs2Ze7cuQDMmzePmTNnsnLlSvr06WPsx87ODjs7OwBSU1O5dOkScXFxDB06lFWrVtGmTRs8PT2NGVFPP/00f/zxB0uXLsXBwYFp06YBsGdP5T8a1fb1CyFEY1Knq/IdPHiQAQMGGJ8bpthNmjSJpUuX8uqrr5KTk8OUKVNIT0/nzjvvZOPGjSZzwVesWMGzzz7L3XffjVarZfTo0SxcuLC6QxGl4rPj2R69nR3ROziWdAwzrRnW5tZYmVkRnxNPkb7IpL27jTvBnsE46hyx0FpgrjUnoyCDhNwEEnIS0Ct6gjyCCPYKpqdnT+MX9mKlmK0Xt7LizAqOJh0F1C/XD7Z9kKc6P1Xpl2prc2ua2atBq0D3QJN9+cX5hKeFE5sVSxObJnjZeuFh41Fp8KeopIgLGReM08wcLB1w0DngaOmIk5UTDpYONc5QcrB0IMApAHxrdLgoZaY1M2bwTGg3AUVROJ9+nu3R29kevZ1TKWqmlVajxVxjTjP7ZrRxaUMb5zakF6Sz5eIWLmVdMgY/r9bLqxf/Cf4Pfo5+xm2G/vcn7OfI5SNYmlni6+BLc4fmOOucySrMIrMwk8u5l43BsuyibNaeXcvOmJ281fst7mx6J9FZ0fx+4XcOJBxQ/702CSTQPRAvWy/0ih4FBUutZZl/n0X6In4++zO/nP+FE8knjNvtLex5oNUDjG87nmZ2zSjUF5JXlIe1hXXdF5fX6+GXZ+DYD+pzK2fgxjIKhRANy7nL2RyLTsdMq+GpfgHsOpdMWEIWOyOSGBHYtL6HJ4SJBx98kKSkJGbOnElCQgKBgYFs3LjRWBD90qVLxh8KAb788ksKCwsZM2aMST+zZs1i9uzZAGzYsIHJkycb940fP75Mm08++cT4naOgoIBBgwbxxRdf1OGVCiGEqI5qZ0w1BI3hV4uCEnUVwoq+uKblp/Fn5J/8ev7XCqecGdhb2NPOtR1mGjMOXz5s7PtGmGvMGeQ/iKe7PI2vg0RwRO1TFIWzaWc5fPkwWYVZ6sqDRbn08urFwOY3vuJUib6Eg4kHeWfvO8aspgDHAM5nnL/usTozHcMDhjOx/UT8HP04kHCA9/a9x7l0NZtUq9HSw7MHg/0Gc5//fbVSV6tGIv+BZfeDRgs9niAz6FkcPf1u69fO62kM7x+3g4zcIqb/eJT7OnkxOqhZfQ+nQftgUxifbz/PwLbufPtYD+ZtDOPLHecZGejNgvFdAUjKKmDtoRjGdm+Gm52URhDV19hfOxv79QshRE3UacZUQ1aiLyEsLQydVoevoy8W2ps/3SqnKIdDiYeIzoqmuX1zWjq1xNPWk4uZFzmYeJDDiYfJKsrC3dodNxs3XHQuxl+GivXFnEs7x4nkE0SkRYAGurl3o7d3bzo36UxCTgIXMi5wJvUM++L2GZeR16Ah0D2QAT4D6NO0D+Zac/KL1YLd7tbuNLO/UiQ8vzifw5cPcyzpGPnF+ZToSyhWirG1sMXT1hNPG0+K9EXsT9jP3ri9Zb6ku1i58GCbBxnbeixNbJrc3D+uaFQ0Go2aQeXSpk76N9OaEewVzJpha1h4eCErzqzgfMZ5tBotwZ7BDGw+kIScBI5cPsKplFMmAd2CkgLWnF3D2rNraefajtMppwFw0jkxpfMUhvgPwc3arU7GXS3JpYXrW94D930AmZn1Ox4hquinwzFsDbvM6fhMRnVr2uBWdG0o9HqFdYdjARjVTc2OGtjWnS93nOfvs0mU6BWK9XoeX3aA4zEZpOcWMuO+dvU5ZCGEEEKIMm7pwNSkPydxd+u7aefajtC4ULZe2kpyXjIAFloLApwCaG7fHDtLO2zMbbA2t0aj0aBBg1ajxc3ajQCnAFo6tcRR51jjcRTri/kh7Ac2X9zMiaQTxoCRgYXWosx0uipRYH/CfvYn7C93dzuXdgwPGM5g/8FV/hJsZW5Fb+/e9PbuXWm7gc0HApBdmE2hvhBFUVBQcNI51WoRbyHqm7W5Nf/u+W8G+w8mLCWMAc0H4G7jbtKmSF9EUUmR8fXjRPIJlp1axt8xf3M65TQaNIxrM45pXafd0GtJrUspDSy7ShFkcWvZGZEEQHxGPjFpefi41FPWYQO3NzKFuIx87K3MCWmnToXq6uOEo7UFablFHI1O49dj8RyPyQDgbKJM5RVCCCFEw3NLRxjC08I5d/ycyTY7CzsUFHKKcowrfFWFl60Xdze/myH+Q+jk1okifRERaRGcTj1NTFYMCTlq/SUzrRnj24wnxDcErUZLfHY8r/3zGocvHzb21cyuGa2cWxGdFU1URhRF+iIstBZ0cutEd8/uuFu7k5SXRHJeMukF6Vw9m9LXwZcObh2MY9gdu5vdcbuJSIugqV1TApwC8Hf0J9gzmJbOdf9l087Srs7PIURD0KVJF7o06VLuPguthUkGZg/PHvTw7MGF9AtsuriJu5rdRQfXDjdrqFWXaghMBdTvOISohoLiEvZeSDE+3x+ZKoGpCqw5GAPA0E5eWFmoK4yam2m5q3UTfj0Wx7u/n+HwpXRj+6iU3PoYphBCCCFEpW7pwNTMO2ZyIP0AZ9PO0s2jG/f43kOwZzBmWjPisuMITwsnISeB3KJccotzySvOU4sXl67SFp8Tz/n088TlxBGfE8/3Z77n+zPf42LlQmZBZpnMJ4MDCQdo7dyaIf5DWHJyCZmFmdha2PJs4LP09+lPM/sr9TCKSoqIz4nH3cYdK3OrcvurjK+DLw+3e7jGfyMhRN1p4dSCp52eru9hVCylNHAvgSlxCzkYlUZ+kd74fH9kqtSZKkdSVgG/H48HYHzP5ib7BrZVA1OGoNTwLt5sOBZHdGouxSV6zM2013YnhBBCCFFvbunA1H0t7mO8w/hy9xlWgKuKnKIc9sfv58+oP9kRvYPU/FQAHHWOtHdpj7+jv1p/ydaTCxkX+P7095xNO2tcEa6ja0fm3zUfHwefMn1bmFnQ3KF5me1CCFGnSoohLUp9LFP5xC1k51l1Gp+ngxUJmfnsi0y5zhGN0+oDlygs0dPFx4lAHyeTfXe1aoJGA4oCXZs78cHYzmw6lUBBsZ6YtDz83GzrZ9BCCCGEEOW4pQNTtcXWwpYBzQcwoPkA8orzOJ1yGi9bL7xsvcotuPpIu0dYfno5v1/4ncF+g5kaOLXM0vFCCFGv0i+CvhjMrcDeu75HI0SV7YxQa0VOHdiSmb+cJColl8TMfDwcqp91fLsqKtHz/d5LADzWu+zKuK52Oh7s7sOBqFQWPdQVnbkZfq62hCdmEZmSI4EpIYQQQjQokst9DWtza4I8gvC2865wFSBHnSPTuk5j4+iNvBD0ggSlhBANT+oF9d4lALS1+1K/c+dOhg0bhre3+jq5fv16k/2KojBz5ky8vLywtrYmJCSEiIgIkzZ+fn5qMfmrbu+//36l583Pz2fq1Km4urpiZ2fH6NGjSUxMrNVrE/XrclY+Z+LV1SPv6+hJey91aeH9kan1OawGZ/PpRBIy83Gzs+S+Tl7ltnl/dGe2vtSfZs5qfS4/N/U+Minnpo1TCCGEEKIqJDAlhBC3I2N9qRa13nVOTg5dunTh888/L3f//PnzWbhwIYsXL2bfvn3Y2toyaNAg8vPzTdq9/fbbxMfHG2/Tpk2r9Lwvvvgiv/76K2vWrOHvv/8mLi6OUaNG1dp1ifr3z1k1W6pjUwdc7XT09HcBJDB1raV7ogB4qGdzdOZmVTrG301dzCQqRQJTQgghhGhYZCqfEELcjlIMK/LVfn2pIUOGMGTIkHL3KYrCggULeOONNxgxYgQAy5cvx8PDg/Xr1zN+/JW6gPb29nh6elbpnBkZGXzzzTesXLmSgQMHArBkyRLatWvH3r17ueOOO27wqkRD8E+EWl/qrlZNAAj2d2HJ7igJTF3lTHwm+yNTMdNqmBBcdhpfRfwNGVPJEpgSQgghRMMiGVNCCHE7MmRMudzcFfkiIyNJSEggJCTEuM3R0ZHg4GBCQ0NN2r7//vu4urrStWtXPvjgA4qLy18JFeDQoUMUFRWZ9Nu2bVuaN29epl9xa9LrFf4prS91V2s1MNXDT82YCk/MIi2nsN7G1pAsD40CYHAHTzwdq153y89VrSslGVNCCCGEaGgkY0oIIW5HqXWXMVWZhIQEADw8PEy2e3h4GPcBPPfcc3Tr1g0XFxf27NnDjBkziI+P5+OPP66wX0tLS5ycnCrt91oFBQUUFBQYn2dmZlb3ksRNcjo+k5ScQmwtzejW3BlQi3i3dLfj3OVs9kelMqhD1TLsblfpuYWsOxILwKTeftU61r+04HlsWh4FxSVVngIohBBCCFHXJGNKCCFqqjAHdi2AtKj6HomponxIj1Yfu97cjKmqmj59Ov3796dz58783//9Hx999BGLFi0yCSLVhrlz5+Lo6Gi8+fj41Gr/ovbsLJ3G1yvAFUvzKx9PgqXOlNGqA9HkF+lp7+VADz/nah3bxF6HraUZegWiU3PraIRCCCGEENUngSkhhKipzbNgyyxYMRaK8up7NFekRQEK6BzAtslNPbWhZtS1q+UlJiZWWk8qODiY4uJioqKiKuy3sLCQ9PT0avU7Y8YMMjIyjLfo6OiqXYi46XaEl9aXam36b1YKoKuKS/R8F3oRgMf6+FW4cnBFNBoNfqVZU5HJEpgSQgghRMMhgSkhhKiJ1AtwaIn6OPksbH27fsdzNWN9qRZQzS+vN8rf3x9PT0+2bt1q3JaZmcm+ffvo1atXhccdPXoUrVaLu7t7ufuDgoKwsLAw6Tc8PJxLly5V2q9Op8PBwcHkJhqe9NxCDl1MA2BAG9N/A4bA1Km4DLLyi2762BqKzacTiU3Pw8XWkuFdvGvUhyEwFSUF0IUQQgjRgEiNKSGEqInt74G+WC0unnoe9n4BrQdDi371PbI6ry+VnZ3NuXPnjM8jIyM5evQoLi4uNG/enBdeeIE5c+bQqlUr/P39efPNN/H29mbkyJEAhIaGsm/fPgYMGIC9vT2hoaG8+OKLPPLIIzg7q9OTYmNjufvuu1m+fDk9e/bE0dGRxx9/nOnTp+Pi4oKDgwPTpk2jV69esiLfbeDvs0mU6BVae9jh42Jjss/L0ZqmTtbEpudxKi6TO1q41tMo69eSPVEAPNyzOVYWNasP5V9aAD1SCqALIYQQogGRwJQQQlRX/HE4sUZ9PHYJHFyiZk+tfwae2QNWjvU7PkPGVB3Vlzp48CADBgwwPp8+fToAkyZNYunSpbz66qvk5OQwZcoU0tPTufPOO9m4cSNWVuoKYjqdjlWrVjF79mwKCgrw9/fnxRdfNPYDUFRURHh4OLm5V6YcffLJJ2i1WkaPHk1BQQGDBg3iiy++qJNrFDfXtrDLAAxs61Hu/o5NHYhNz+NkbEajDEydistgf2Qq5loNj9zhW+N+DAXQI5MkMCWEEEKIhkMCU0IIUV1b31LvO44Gry5w7xy4sAPSIuGPV+GBxTd9Cp2JlAvqfR1lTPXv3x9FUSrcr9FoePvtt3n77fKnN3br1o29e/dWeg4/P78y57CysuLzzz/n888/r/6gRYNVXKI31pe6u135Uzk7eDuy6VQip+Ia56qKS3dHATCkkxeejlY17sc4lU8ypoQQQgjRgEiNKSGEqI7If+DcFtCaw4DX1W06O3jgv6DRwvFVsPfL+h2jscZUw1yRT4irHb6UTkZeEU42FnT1cSq3Tcemam2wU3EZN3FkDcPlzHx+ORYHwOQ+fjfUlyFjKj4jn7zCkhsdmhBCCCFErZDAlBBCXI+iqAGptY/D96PUbd0mmU6Vax4M97yjPt70Hwj/8+aPE6AgG7IT1MeuLepnDEJUw9YwdQXH/q2bYG5W/seSjt7q9Nhzl7MbVUClsFjPsyuPUFisJ9DHqcLAXVU521jgYKUmy19MVbOmzl3OZuPJ+BsdqhBCCCFEjUlgSgghKpOfCV8NhGX3w8m1UFIIzXrCgP+UbdtrKgRNBhQ1iBV/7KYPl9TSaXw2rmDtfPPPL0Q1bTtTWl+qXfn1pQDcHaxoYq9Dr8CZhMYxnU9RFGZtOMX+qFTsdeZ8NK4LmhucIqzRaPBvYgeodabOXc7igS9283/fH+bwpbTaGLYQQgghRLVJYEqIBqhEX3H9HlFHNr0OnwZCcoTp9u3vQdxhsLCFoMdgyg54YjPYupXtQ6OB+z6AFgOgKAdWjofspJsw+KsYC5/XTX0pIWpTdGouEZezMdNq6NeqSaVtO3qXTueLbRzT+b7fe5Ef9l9Co4GFD3UloDSgdKP8XdVVDw9fSmPy0gNk5RcDcORSeq30L4QQQghRXRKYEqKB+WBTGG3f/JPNpxPreyiNh74EDi1Vi5f/OAmK8tTtcUdh/3/Vx+O/h2GfgnfXyvsys4CxS8GtNWTFwf7/1eHAy5F6Xr2X+lLiFmBYja+7rzOONhaVtu1QOp2vMRRA33chhbd+PQ3Avwe3ZUDb8ovC14ShAPpX/0QSnZpn3H66EfxdhRBCCNEw1XpgqqSkhDfffBN/f3+sra0JCAjgnXfeMVldSVEUZs6ciZeXF9bW1oSEhBAREVFJr0I0DltOJ/L59vMUlSi8uvYYlzPz63tIjUNSOBRmq48vn4I//60Gq357ARQ9dBwDAQOr3p+1E/SfoT4+8h2UFNf2iCuWFqXeu/jfvHMKUUNbSwNTFa3GdzVDAfSTt3kB9BK9wuvrT1KsVxgZ6M1Td9VurThDAXQAeytzXh3cBoAz8RKYEkIIIUT9qPXA1Lx58/jyyy/57LPPOHPmDPPmzWP+/PksWrTI2Gb+/PksXLiQxYsXs2/fPmxtbRk0aBD5+fIlXDRe8Rl5vLxWrUlkZaElLbeIV386bgzq5heVMOe307z203GZ6lfbYg+p9/ZegAYOL4NVD0PcEdA5wqD3qt9n2/vBxg2y4iHir1odbqUy1dW7cGx2884pRA0Ul+jZez4FgAFtrh+YMmRMhSdkUVisr9Ox1aefD8dw7nI2TjYWvD2y4w3XlbpWaw97AMy1GhY/EsSwzt4ARFy+vf+uQgghhGi4aj0wtWfPHkaMGMHQoUPx8/NjzJgx3Hvvvezfvx9Qs6UWLFjAG2+8wYgRI+jcuTPLly8nLi6O9evX1/ZwhLglFJfoef6Ho6TnFtGpqSNr/683luZadoQnsXL/JSKTcxj5+W6+3hXJqgPRHIxKre8h314MgalOY+GuV9THZzeq9yEzwb7ioswVMreErhPUx4eW3PgYq8oQmHLwvnnnFKIGUnMLKSzRo9VAiyrUT2rmbI2jtQVFJQpnE7NuwghvvvyiEhZsUTPIp/ZviYNV5dMba6KdlwNzR3Vi+b960qelG82crbG3MqeoROHc5exaP58QQgghxPXUemCqd+/ebN26lbNnzwJw7Ngxdu3axZAhQwCIjIwkISGBkJAQ4zGOjo4EBwcTGhpa28MR4pawcNs59kelYqczZ9FDXenY1JFXB6nTK+b8doZhi3YRlnDli9j28JtcUPt2ZwhMNesO/V8Dv77q86bdIehfNe+32yT1PmIzpEerjwtz4een4Kcn1ce1zRiYalr7fQtRi5KzCgFwsbXETHv9rCCNRmOczne71kNase8Ssel5eDpY8Wgv3zo7z0M9m9O7pbqAg0ajob1X6d9VpvMJIYQQoh7UemDqtddeY/z48bRt2xYLCwu6du3KCy+8wIQJauZAQkICAB4ephkIHh4exn3XKigoIDMz0+QmxO1ie/hlFm1TfyF/94GOxsK0/+rjT68WruQVlZBdUExPPxfeGNpOPaa0LouoBUV5kHhKfdw0CLRmMG45DHxTvdfewMukawD43wUoaq2p4gJY/QgcXwUnfoSfnlBrWdWW/EwoKH19tPeqvX6FqAPJ2QUAuNnpqnyMYTrf7VhnKrugmM+3q6tqvhDSCisLs5t27vbet3fATwghhBANW60Hpn788UdWrFjBypUrOXz4MMuWLePDDz9k2bJlNe5z7ty5ODo6Gm8+Pj61OGIh6s/FlBye/+EIigIPBzdnROCVLBetVsNH47rQr3UTnru7FSufDGZMUDO0GghPzCI2Pa+SnkWVxR8DpQTsPK5kGdm4wF0vg2MtZB0FPabeH/4O1v4Lzm8FCxsw00H47/DHy6DUUs2wrHj13soRdLWztLwQdSUpqyaBqdIC6LG3V2BKr1f4fPs5UnMKaeFmy5igm1sj7krG1O31dxVCCCHErcG8tjt85ZVXjFlTAJ06deLixYvMnTuXSZMm4enpCUBiYiJeXld+0U9MTCQwMLDcPmfMmMH06dONzzMzMyU4JW55uYXFPPXdITLzi+na3IlZw9qXaePtZM2yf/U0PneysaRbc2cOXkxje9hlHrmj7qZ6NBqGaXxNg6CWiwwDpUXQXSErDsLi1IDUQz+o2U0/ToSD36r1oAy1rW5EZqx6L9P4xC3gSsaUZZWP6dhUzZg6E59FiV6p0hTAhkqvVzgak84fx+P540Q8cRnqAjAvD2qDuVmt/25YqaszphRFqfWC60IIIYQQlan1Tz65ublor5n6YmZmhl6vrvTi7++Pp6cnW7duNe7PzMxk37599OrVq9w+dTodDg4OJjchbmWKovDvn04QlpCFm52OLycEoTOv2rSNAW3V1at2hMt0vlphDEx1q5v+zXUQWFoEXWuuTg9s0R/aD4ch89Xt2+bAhR03fi4pfC5uITWZyufvaoutpRl5RSVEJt96hboLi/X8fjyel348Ro93tzDqiz18vSuSuIx8bC3NeLKvP0M6et70cbVyt8fCTENmfrFk4wohhBDipqv1wNSwYcN49913+f3334mKimLdunV8/PHHPPDAA4BaZPOFF15gzpw5bNiwgRMnTjBx4kS8vb0ZOXJkbQ9HiAZpye4ofj0Wh7lWwxcTuuHpaFXlYw3Lqu8+l0J+US3WJ2qsjIGp7nV3jj7PQ6dxMH4ltBl8ZXvwFOjysPr41PobP48EpsQtJDlbLX7uZl/1wJRWq6Gdl2E6361XD2n2r6eYuvIwPx2OISWnEHudOcO7ePPfR4M49OY9vD60fb1kK1maa2npbg+o2WjliUjM4scD0ZToa2nqsWi0Pv/8c/z8/LCysiI4ONi4cnd5vvrqK/r27YuzszPOzs6EhISUaa8oCjNnzsTLywtra2tCQkKIiIgwaePn54dGozG5vf/++3VyfUIIIaqv1gNTixYtYsyYMTzzzDO0a9eOl19+maeeeop33nnH2ObVV19l2rRpTJkyhR49epCdnc3GjRuxsqr6l3Nxa7iQlM2yPVEUFuvreygNxsGoVN774wwA/7mvHT39Xap1fDsvezwdrMgrKmFfZGpdDLHxyEmGtCj1sXfXujuPrRuM/gpaDyq7r/1w9f7C9hs/j0zlE7eQmmRMwZU6U2eus4JcTkExaw5Gk1fYcAL4+0tfs0d1a8rKJ4M59OY9LHyoK4M6eN7UYuflMdaZKqcAelGJnslLD/DqT8dZsjvyZg9N3EZWr17N9OnTmTVrFocPH6ZLly4MGjSIy5fLzwLfsWMHDz30ENu3byc0NBQfHx/uvfdeYmNjjW3mz5/PwoULWbx4Mfv27cPW1pZBgwaRn59v0tfbb79NfHy88TZt2rQ6vVYhhBBVV+uBKXt7exYsWMDFixfJy8vj/PnzzJkzB0vLKzUkNBoNb7/9NgkJCeTn57NlyxZat25d20MR9Sy/qITHlhxg1oZTxlXnGrvk7AKmrjxMsV5haGcvJvfxq3YfGo2GAW2bAFdW5zsZm8GYL/ew+O/ztTnc21/sYfXetRVYO9XPGPzuVKf4pUVB6g1+4ZOMKXELMRQ/b1KNjCmAVh5qZs/ZxPIzeww+/CucV9Ye54NN4TUbYC0rKC4hMjkHgFcGtaF3gBuW5je3llRljHWmyimAvu5ILDFp6hS/T7dGGIOKQlTXxx9/zJNPPsnkyZNp3749ixcvxsbGhm+//bbc9itWrOCZZ54hMDCQtm3b8vXXX6PX640lQRRFYcGCBbzxxhuMGDGCzp07s3z5cuLi4li/fr1JX/b29nh6ehpvtra2dX25QgghqqjhfCISt50vd5znUmouAP/deYHo0seNVYle4flVR0jMLCCgiS3zRneu8ZSN/qXT+baHX+bHg9GM/nIPBy+m8emWiAaVHdDgXV34vL7o7KFZD/XxjdaZksCUuIUYp/JVo/g5QBtPQ2Cq4hpTiqLw54kEAH45GktRyY1n7WYXFPPxX+H8cjS2Rq+z5y5nU6JXcLAyx9Oh4WWIt/NS/66nr8lEKy7R8/n2c4A65S8rv5iP/jp708cnbn2FhYUcOnSIkJAQ4zatVktISAihoaFV6iM3N5eioiJcXNRs88jISBISEkz6dHR0JDg4uEyf77//Pq6urnTt2pUPPviA4uLiCs9TUFBAZmamyU0IIUTdkcCUqBNRyTl8WZq94+VoRWGx3jh9rTEqKC7h9XUn2H0uBWsLM758JAg7Xc0XxezT0g0LMw0XU3J5de1xCor1aDSQV1TCzoikWhz5ba4hBKYAWgxQ7290Op9M5RO3iBK9QmpOacZUNafytS6thRSbnkd2QflfLE/EZpCQqU7jSckpZOfZG39d/C70Igu3neP5VUfpPmcz0388yubTiWTkFVXpeEOGV1tPhwa56p1hKl90ap7JNf16PI6LKbk421jwv0fV18pVBy5xMvZKZlVqTmGF/y2EMEhOTqakpAQPDw+T7R4eHiQkJFSpj3//+994e3sbA1GG467X53PPPceqVavYvn07Tz31FO+99x6vvvpqheeZO3cujo6OxpusBi6EEHVLAlOi1imKwqwNpygs1tO3lRtLJvdAq4E/Tyaw53xyfQ/vpruYksOYL0NZdSAagPdHd6J16VSUmrLTmRPs7wqARgMv3dOax3r7AbDxZNU+3DV6itKAAlP91fsLf4O+hhlvhbmQl6Y+lowp0cCl5RaiV9TXLxfb6mVMOdpY4F46/S+igul8f51KBNT+AX4+Eltuu+o4EZsOgLWFGTmFJfx8OJYnlx8k8O2/GLrwH+ZvDKt0QYqwBHWshoyvhsbJxpKmTtYAhJVmTZXoFT7bpmZLPdG3Bf3buDOsizeKAm//eppDF1N5+vtDdJ+zmRGf7UIvhdFFHXr//fdZtWoV69atq3Zd2unTp9O/f386d+7M//3f//HRRx+xaNEiCgrKn5Y6Y8YMMjIyjLfo6OjauAQhhBAVkMCUqHWbTiXw99kkLM20vDW8A209HXjkDl9A/SBbXAtTKm4VG0/Gc//CXZyIzcDJxoJvH+vOiMDayWaZOqAlfVq6snRyT6bd3Yr7OnkBsOVMohSbr4qUc5CXCmaW4NmxfsfSNAh0DpCfDvHHatZHVrx6b2mn9iVEA2aoL+VsY4m5WfU/ihiC+xEVTOfbfFoNTD3ex9/4PDO/aplNFTGsVvffR4P46elePHqHL/5utigKnIrL5Isd5/nzZHyFx4eXBqZaN9DAFGBc8fCPE/GkZBfw58l4zifl4GBlzsRe6vv4jCFtsbLQsj8qldFfhvLnyQT0CpxPyiExK7+y7kUj5+bmhpmZGYmJiSbbExMT8fT0rPTYDz/8kPfff5+//vqLzp07G7cbjqtun8HBwRQXFxMVFVXufp1Oh4ODg8lNCCFE3ZHAlKhVOQXFvPXraQCe6teCFk3sAJh+T2ucbCwIS8jihwON41enP0/E8/SKw2QVFNPd15k/nuvLwLYe1z+winoFuLLiiTvo11othB7U3Jkm9jqy8osbZWZatR1frd779gHz6k0lqnVm5uDXV31c0+l8xml83lfSRIRooK6syFe9bCmDVh7qe0t5BdCjknMIT8zCTKth2sBWtHK3o7BYz58nKg4aXU9OQTFRKWrh8vbeDgT5uvDOyI5sf7k/+/5zN8O6qFmKhy+mV9iHITDVtgEHpjo3cwRgWehFguZs4eU1aqB8ch9/7K0sAPB2smZq/5YAWJppebC7j7FmlqG4uxDlsbS0JCgoyFi4HDAWMu/Vq1eFx82fP5933nmHjRs30r17d5N9/v7+eHp6mvSZmZnJvn37Ku3z6NGjaLVa3N3db+CKhBBC1BYJTIlatWDLWeIz8mnmbM0zpR9cQZ0i8GKIuvLi4h3nKbnN0/33R6by/OqjKAo82N2HH6bcgXfpFIm6otVquLe9GvjadKr86XyXM/MZ8+Ue/r32eOPOqtKXwNGV6uNuj9bvWAwCSutMna9pYEoKn4tbx5XAVM2CwoaMqfByAlOGbKk7WrjgaGPByK5qlurPh2s+nS8sIQtFAXd7XZkxezhYMaiD+tp7NDq93OMz8oqIz8g3GXtDNKm3H0/1a2HMnMov0mNvZc6/SjPPDJ4d2JIVTwSz+7WBzBvT2Vg4XQJT4nqmT5/OV199xbJlyzhz5gxPP/00OTk5TJ48GYCJEycyY8YMY/t58+bx5ptv8u233+Ln50dCQgIJCQlkZ6vZkhqNhhdeeIE5c+awYcMGTpw4wcSJE/H29mbkyJEAhIaGsmDBAo4dO8aFCxdYsWIFL774Io888gjOzs43/W8ghBCiLAlMiVpzJj6Tb3dHAfDOiI5YW5qZ7H+whw9ONhbEpuexPexyPYzw5jibmMUTyw5QWKznnvYevDeqExY1mKpSE0M6qtP5/jqVWCb4pygKL689zsGLaaw+GM20Hw7XykpVt6Tz29QMI2tnaHt/fY9GZagzFb1PrRdVXTex8PnOnTsZNmwY3t7eaDSaMktyK4rCzJkz8fLywtrampCQECIiIoz7o6KiePzxx/H398fa2pqAgABmzZpFYWFhpeft378/Go3G5PZ///d/dXGJoo4lZxlW5LuxwFR5U/kMgal72qnBIkNgal9kKjFpNVsd1rBSXXvv8qfzBPo4Aer7YHl1pgyZXd6OVjhaW9RoDDeDo7UFM4a048/n+3Lg9RC+mNCNtf/XG0cb0zFrNBr6tHSjSWmtLz83W0DNVhOiMg8++CAffvghM2fOJDAwkKNHj7Jx40Zj8fJLly4RH38lu/HLL7+ksLCQMWPG4OXlZbx9+OGHxjavvvoq06ZNY8qUKfTo0YPs7Gw2btxorEOl0+lYtWoV/fr1o0OHDrz77ru8+OKL/O9//7u5Fy+EEKJCNV8WTIir6PUKr687QYleYUhHTwa0LZsabWVhxrjuPvxv5wW+23uRkPa1N62tvimKQmRyDrvPp/DF9nNk5hcT5OvMooe6Yqa9edOqglu44GhtQUpOIQeiUrmjhatx37I9Uew8m4TOXIuiwKZTiTy/6ggLx3flYmouq/ZfYn9UGv8Z0pbgq467LR1ept53Hl//0/gMXFuCQzPIjIFLe6BlyPWPudpNzJjKycmhS5cu/Otf/2LUqFFl9s+fP5+FCxeybNky/P39efPNNxk0aBCnT5/GysqKsLAw9Ho9//3vf2nZsiUnT57kySefJCcnx+TLRnmefPJJ3n77beNzGxubWr8+UfduNGPKMJUvITOfjLwiY7AnObuAgxdTAbing1pfpqmTNXe0cGHvhVR+ORrH1AEty++0EmcMgSmv8gNTTZ2saWKvIymrgJOxGXT3czHZH3YL1Je6VhN7nbF24fX4lwamIpNrFvgTjcuzzz7Ls88+W+6+HTt2mDyvqAbU1TQaDW+//bbJe8PVunXrxt69e6s7TCGEEDeRBKZErfjxYDSHL6Vja2nGzGHtK2w3Ibg5X/1zgb/PJhGVnGP8lfVWo9crnE/K5kBUGgeiUtl3IYW4jCtFX1s0seXrid2xsjCrpJfaZ2Gm5Z72Hqw9FMPGkwnGwNTZxCzm/hkGwH/ua0dzFxue+u4Qf5xI4HjMDmLS8ox9LNkd1XADUyVFYHaD2QbZSRD+p/q4oUzjA7UuVEB/OPK9Op2vAQemhgwZwpAhQ8rdpygKCxYs4I033mDEiBEALF++HA8PD9avX8/48eMZPHgwgwcPNh7TokULwsPD+fLLL68bmLKxsblukVzR8CWVBqYMGTfV5WBlgZejFfEZ+Zy7nEWQrxoI2nbmMnoFOjZ1MK4wBzCqazP2Xkjl12M1C0ydjlMDU+0qCExpNBoCfZzYfDqRo9HpZQJT4Qnq8Q11Rb4bZQhMGepwCSGEEEJUh0zlEzcsJbvAGPR48Z7WeDlWXEvJ19XWWKx7xb6LN2V8tS2/qITBn+7knk928p91J1h3JJa4jHwszbQE+7sw/Z7WrHmqF87VXAK9tgwuzRL440Q8aw/FsCP8Mi+sOkpBsZ7+bZowsZcvA9q688WEbliYaYhJy0OrgS6lRW+PxaTXy7grpShw4Bt43xd+f/nG+jq+CvTF4N0NPDrUzvhqi39/9f5SDX7ZvYlT+SoTGRlJQkICISFXAmuOjo4EBwcTGhpa4XEZGRm4uLhUuN9gxYoVuLm50bFjR2bMmEFurmRo3IqSsw1T+Wr+OtnKUGcq4cp0vr9Kp/Hd2940eGnI4g1PzCKnoLha5ynRK8bC5RVN5YMr0/mOlFNn6mzpGBty4fMb4eeqBqYupeTe9jUkhRBCCFH7JGNK3LD1R+PIyCuirac9j/X2u277R+/wZUd4Ej8ejOGle9vc9KyiG7XnfDJnE7OxNNMS5OtMDz9nevi70N3XpUxdrfpwZys37HTmXM4qMK6oBOBia8n8MZ3RlK7YFtLegxVP3MGx6HSGdvbCwdqCTrM3EZ+Rz+WsfNztrerrEkzlZ8Kvz8Gpderzkz/BfR/UbOU5RYHD36mPG1K2lIEhUJYUro61OtfYQIqfJySohfcN9UIMPDw8jPuude7cORYtWnTdbKmHH34YX19fvL29OX78OP/+978JDw/n559/rvCYgoICCgoKjM8zMzOreimiDiVnlU7lq2HGFEBrdzt2nk0y1m+6nJnP32fV+oX3djD999fEXoeHg47EzALOxGeWyWiqTFRKDnlFJVhZaI0BmPJ0LQ1MHb2UbrJdURTCSjOmGnLh8xvh7WSNpZmWwhI9cel5+LjIFFshhBBCVJ0EpsQNM9TeGNzRE/MqFPnu38adZs7WxKTlseFYHOO6+9T1EGvVttLC7eN6NGPOyE71PJqyrCzMWPhQIL8eiyc5u4CU7ELyi0qYPbxDmWBTT38Xevpf+YLWsokdEZezOR6dQUj7BhCYSo6AFWMhLRK05qDoIS8VMqLBqXn5xygK7FsMnp3A707TfTEHIDkczK2h4+i6H391uQaARguFWZAVX/UgU3EB5CSpj+s5Y6q6YmNjGTx4MGPHjuXJJ5+stO2UKVOMjzt16oSXlxd3330358+fJyAgoNxj5s6dy1tvvVWrYxY3zlBjqkkNa0zBlXpNEZfVwNSKfZcoKlHo1tyJtp5lM5s6ejuSmHm53BpQlTG8x7X1dKi0ZmBnHyc0GohNzzMJ7idk5pOZX4yZVkNLd7sqn/dWYqbV4OtqQ8TlbCKTcyQwJYQQQohqkal84oYZfq1uU8Vfgs20GiYE+wLwXej1p/P9cSKe70KjUJTamR7wza5IRn2xm+d+OMLHf4Wz9lAMf59N4mRsBnHpeegrmYagKArbw9QAwMByCrw3FAPbevDJg4F893gwfzzfl20v9+eu0imUlenczAmA4w1lOt/mmWpQyrE5TN4I7qUZRXFHKz7m7EbY+BosHwFnN13ZnpUI659WH3cYCVaOdTXqmjPXgUsL9XFSeNWPyypdwcjcSl1psB4Z6j8lJiaabE9MTCxTGyouLo4BAwbQu3fvGq2OFBwcDKgZVxWZMWMGGRkZxlt0dHS1zyNql16vkJJzY6vywZXso7OJ2RQUlxinh0/u419u+w5N1f/nT8ZVL2vuevWlDOx05rR2V8d0ddaUofC5v5stOvP6z6qtK37GAuhSZ0oIIYQQ1SOBKXFD9HrlSmCqGrUzxnVvhoWZhhOxGUSUHl+eM/GZPLvyMG/+corVB278C2VOQTHzNoZx+FI6G47FsXDbOV5ec4xJ3+7n/kW76P3+Nh79dl+FQbCzidnEpuehM9fSq4XbDY+noQn0Ub+4HY3JqOeRAEX5cGGH+nj89+DTA7y7qM/jj1Z83MnSaV36Ylj9qNpHTjIsHw4p58DRBwa+UYcDv0FubdT75LNVP+bqaXw1meJYi/z9/fH09GTr1q3GbZmZmezbt49evXoZt8XGxtK/f3+CgoJYsmQJWm31346OHj0KgJdXxSuH6XQ6HBwcTG6i6kLPp9D6jT9ZfeBSrfWZlltorEPkeiM1pkqzj5KyCvh+7yWSswvxdLBicMfyi+N3LK0PdTK2eq9vxhX5KqkvZWCoM3X0qjpTZxOq/x55K/KXwJQQQgghakgCU+KGXErNJb9Ij6W5Ft9Kam9cy9VOR99WagbPnyfLrzujKApzfj+NIYHprV9P3/AH3h3hSRQW62nqZM2MIW15qGdz+rR0pa2nPe72OjQa2H0uhVMV/KJumMbXO8C1QdSTqm1XZ0zVVoZajV3cDUW5YO8Fnp3VbV6B6n1FGVNFeRD+x5W2JQXww0Ow5D5IClP7mrQBHJvV8eBvQJPW6n11MqaMgambM40vOzubo0ePGgNDkZGRHD16lEuXLqHRaHjhhReYM2cOGzZs4MSJE0ycOBFvb29GjhwJXAlKNW/enA8//JCkpCQSEhJMalDFxsbStm1b9u/fD8D58+d55513OHToEFFRUWzYsIGJEydy11130blz55ty3Y3R6gOXKCzWV/g6XROGwudONhZYVGH6d0VsdebGlfc+2awGch/t5Vthnx1LM6YiLmeTX1RS5fOcNgSmrpMxBdC1uRNgGpgyFE6valbxrUpW5hNCCCFETUmNKXFDwkuznVq521Vae6M8gzt6si3sMn+ciOe5u1uV2b/lzGV2n0vB0lxLOy8HjkWn88KqI6x9uneNv8xsPKV+ubq/sxdP9Stbk2bqysP8flxdzc7wJeZq20sDUw15Gt+NaOtlj4WZhvTcIqJT82juWo91QiI2q/ctQ65kAXl3Ve/jj5ZfHPzcFijMVrOi/rUJVk9QtyWHg607TPr1ylS5hsqQMVWtwJRhRb6bU/j84MGDDBgwwPh8+vTpAEyaNImlS5fy6quvkpOTw5QpU0hPT+fOO+9k48aNWFmpNXc2b97MuXPnOHfuHM2amQYJDQHRoqIiwsPDjavuWVpasmXLFhYsWEBOTg4+Pj6MHj2aN95owNlvtzhFUdh9PgWo3SwYQ32pG5nGZ9Daw47Y9DyyC4rRmWt5uGcFtecAL0crXGwtSc0pJDwhiy6l2U2VSckuIDGzAI2maivqBZYGpo5Fp1OiVzDTaoxT+W73jClDYXjJmBJCCCFEdUnGlLghZ2/gl+B72nkYP7RHXfNBtrBYz7u/nwbg8Tv9WfxINxytLTgWk8HCrRE1Gmt+UQnbzqh1bwZVMNVjbJD6JXn90VgKik1/Uc/ILeLQpTTgytLjtxuduZmxjsrR+q4zda40MNXq3ivbPDqAxgxyUyAjpuwxhpX72o8ACysY9x20vR9cAmDiL+BWNgDa4DQxTOWrScbUzQlM9e/fH0VRytyWLl0KgEaj4e233yYhIYH8/Hy2bNlC69atjcc/9thj5R5/dZaen58fiqLQv39/AHx8fPj7779JSUkhPz+fiIgI5s+fL1Pz6lDE5WySSlfPi07NpbBYXyv91kbhc4OrV7l7oGtTnG0rnhqo0WjoYJjOF1fxdL6o5BwSMvIBOBOvvsf5udpiq7v+b3mt3O2xtTQjp7CEc5ez2XAszlicvSqBrVuZIWMqJi2PopLa+bcihBBCiMZBAlPihhgyplrX4AO3s60lvQNcgbLT+ZaHRhGVkoubnY5n+gfg5WjNew+oK+B9vv0cR0oDRNWx53wyOYUleDjoCCydsnatvq2a4OlgRXpuEVvPXDbZ93dEEiV6hdYedjRzvn1XHOpimM531VSUmy7lvFoPSmsOLfpf2W5hDe7t1MfX1pkqzIXwjerjDqPUe0sbGL8Cph0Cj/Z1Pera4VYawMlJgtzUqh1jzJi6tVbkEw3b7nPJxsd6RZ26XRsMwS43+9oNTD3Wx++67Q2ZsCdjy5+uvT8ylZCP/+bOeduY8fMJdoSr7wPtvKq+uEenZuo5Hluyn+d+OEJRiUKQrzM+t/H7BoCHgw5rCzNK9ArRtfRvRQghhBCNgwSmxA0Jv8EpCoYitX+ejDduS8oq4NPSrKhXBrXG3soCgKGdvRgR6I1egWV7oqp9ro2lwa/BHTzRVjDt0EyrYVQ39cv9moOmxdYN0/hu12wpg86lX6qO12UB9LQo2DIbVk2Az++A95rClreu7D+3Rb1v3gusrsmIqajO1LnNUJQDTs2haTfTffVcELxadHbgUDq9raoF0G9yxpRoHHafSzF5XltTtAw1ptxuoPC5Qe+WrtjpzBnWxZu2ntfPnuvorb6+nSonYyolu4BpPxymWK9QrFf4Yf8lvt4VCVStvpRB1+bqypjxGfnozLW8GNKaFU8EV/i+c7vQaDTGlfmkzpQQQgghqkMCU6LGCopLjF9UalrU9d72nmg0ahAkJi2XEr3CC6uPkJVfTHsvB8YE+Zi0f6y3HwB/nU4kt7C4yucpLtGz+XTl0/gMxpRO5/v7bBKJmep0jhK9YvzlfGCb2zswZai7ciI2g+K6mo7x+0uw6xMI+w2Szqh1oXZ9DJE71f0Rf6n3re4pe6x3oHp/bcaUYRpfhwdurUBUeapbAD2jNGPKvuLV6YSojuISPfsuqIGpK6utZddK37VZY8rL0ZqjM+9hwYOBVWrfsakaYAqLzzKZbqbXK7y05hiJmQUENLHlu8d7EuzvYtwf6ONc5TEN6eiJvc6ckHYebH6xH8+HtMLK4vZbLKM8/m5qVtiFJAlMCSGEEKLqJDAlaiwyOYdivYK9zhwvR6sa9dHEXkcPP/XD/8aTCSzYcpbd51KwtjBjwfjAMgXVA32caO5iQ25hiTHQVBX7I1NJyy3C2caCnn4ulbZt0cSO7r7O6BX4+XAsiqLw16kE0nKLcLAyJ8i36l9QbkUBTeywtTQjr6iEc0m180XURGHOlQDU3TPhkZ8g8BH1+S/PQk4yRO1Sn19dX8rg6owpQ02iwhw4u0l93OGB2h/zzWYogF6VjKnMeMhOAI0WXFvW7bhEo3E8NoOsgmIcrMwZ2kkNeNZWsKE2a0wBmJtpq7z4RnMXG+ytzCks0ROReOX17X//XGBHeBI6cy2fT+hG31ZNWDXlDn548g4+HR9In5auVR5P52ZOHJt1L19P6l6/C0jUA1mZTwghhBA1IYEpUWOGaXytPe3R3ECGyn2lGUxf/XOBRdvOATB3VCeT2iEGGo2GEYHqdKUNR+Mq7LOoRM/BqFQy8oqAK6vx3dPeA/MqrOg3truaNbVsTxRDPv2Hp1ccBtTV+Kpy/K3MTKsx1mE5Hl0H0/midkFJITg2hzunq6vuDXlfXUkv/SJ89wAU56vPm7Qte7xnx9IC6MlXaiud3QRFueDsdyVwdSszFEBPCrt+2+i96r1Hh7LTHoWookMXU00WodhTWl+qd4AbLd3tALhQa1P5DDWmbnwqX3VpNBrjdD5DAfT9kal8sEnNTpw9vINxSqBGo6FXgCsjAptW+z3udp+2VxHDynxRyVJjSgghhBBVVyffsGNjY3nkkUdwdXXF2tqaTp06cfDgQeN+RVGYOXMmXl5eWFtbExISQkREzVZaE1Wz9lAM7/x2ulanZt1ofSmDwR3VX+MTM9UvKxN7+TKya8VFnA2Bqb/PJpGWU1hm/+XMfMb/by9jFofS9e2/eOCL3Ww4pgaxhnSs2lSn+zp5YWWhJSEzn7CELHTmWkZ1a8rMYR2qdW23KsN0vmN1sTKfoX5Uq5ArU+509jB8ofo44bh63zKk/Cl5FtZXAlZxRyEvHba+rT7vMOrWn8YHVwWmqpAxdak0MNW8V92NR9zWolNzGfffvdy/aBcRpQtaGOpL9WnpetVUvtoJTBmLn9dSxlR1GabznYrN4GxiFk8sO0CJXmFYF2/G9/C5ztGiMrX9b0UIIYQQjUOtB6bS0tLo06cPFhYW/Pnnn5w+fZqPPvoIZ+cr05/mz5/PwoULWbx4Mfv27cPW1pZBgwaRn59f28MRqF86XvvpON/simR7eFKt9Xu29AtMTetLGXg6WtGtuROgTtV7fWi7Stu3dLenvZcDxXqFP64qmg5w5FIawz7bxaGLaZhrNegVOHIpnfTcIux05vSu4nQMeysLZgxpR09/F2YNa8/+/4Tw8bhAXCpZivx2YliZr04CUxGb1fuWIabbAwZCt0lXnpc3jc/AUGcq7gisfwbSItUMrN7TanWo9cYwlS/jkjpNsTKGwJRPcN2OSdy2jkanU6JXyC4o5onlB0nIyOfQRXXl094t3YwFrZOyCsjKL7qhc+n1CinG4uf1FZhSM6Z2nUtm0rf7ycwvpmtzJ+aP7nxD2b8C47+VuIw88otK6nk0QgghhLhVmNd2h/PmzcPHx4clS5YYt/n7+xsfK4rCggULeOONNxgxYgQAy5cvx8PDg/Xr1zN+/PjaHlKjt2hbBMV6tRbP9vDL3NPeo1b6DS8NTJU35a66Zg7rwJqD0Tx3dyt05tcvEjuyqzen4zP55WgcE4J9URSFH/ZHM3vDKQpL9LRyt+Orid2xMNeyOyKZA1Gp9G/jXqW+DSb19mNSabH1xqZraaDwdFwmCRn5eF5VQ6yoRM+vx+Lo38a9+oG6lPNqEElrAf53ld1/7xy4FAqFudCiX8X9eAXC0RWwb7FaON3MEsYtA5vK64fdMmxdwcYVclMgOeJKIO5aBdmQcEJ93PyOmzY8cXsJS8g0Pr6YksvoL/dQWKLH08GKFm62aDQa3OwsSc4uJCo5l06lK3fWREZekfH9yLUWVuWriQ6lU/nOl9bMaulux7eTemBt2TgKlNclV1tL7K3Mycov5lJqbq18PhBCCCHE7a/WM6Y2bNhA9+7dGTt2LO7u7nTt2pWvvvrKuD8yMpKEhARCQq5kSzg6OhIcHExoaGhtD6fRi0rO4afDscbnO8IuoxgKRt+A7IJiolPzAGjtYXfD/QX6OPHuA53wcKhaEfVhXbzRaNTaIIcupvHYkgP8Z90JCkv03Nveg3VT++DnZktTJ2vG9fDhg7FdGNpZViyrKm8na2MB+F+OxprsW7TtHNN/PMac309Xv2PDNL7md6jT965l5QD/twueOwKWtpUMMFC9LywtXjxkHjTtVv3xNGSG6YqVFUCPPQhKiVqPy7HZzRmXuO2ciVd/ZHg4uDk2lmbEpquv7b1buhoziAxTtC7c4Mp8hvpSjtYW1fqhoDb5u9liUxqE8nSwYtm/euLcSLJh65pGozH+Wzl3uQ4WzxBCCCHEbanWA1MXLlzgyy+/pFWrVmzatImnn36a5557jmXLlgGQkKAWofbwMM3a8fDwMO67VkFBAZmZmSY3UZaiKKTmFJoEnhZui6BEr9CrhSs6cy1xGfmcTbzxD4uGOiRudjpc62E6hpejtXF1vdFf7uHvs0lYmmuZMaQtix8Jwk5X68mAjc6obmqgw7AyIUB+UQkr9l4EYOfZpOoHOY31pe6puI25Dsyv8yXRo7QAOkCXhyBocvXGcStwa63eJ4VX3ObSPvVepvGJGxAWr76njgxsyicPBhq39wlwMz6urdpBSYbC5/WULQXqAg/jezTHz9WG5Y/3pKmTdb2N5XYUWFqjcM/55DL79HqlVn4cE0IIIcTtpdYDU3q9nm7duvHee+/RtWtXpkyZwpNPPsnixYtr3OfcuXNxdHQ03nx8pDhpeZbsjqLbO5t59Jv9XEjK5nxSNuuPqNkurw1pS+8Atb7StrDLN3wuQ32ptjdY+PxGjAi8UiA90MeJP567k6f6BTTa1ZBq29BOXliaawlPzOJ06RfX34/Hk1JacD45u7B6Qc6ifIj8R318bX2p6rK0gYGvQ+cHYejHt0fB82tVZWU+w4p8Mo1P1FBGbhFxGWp9xzae9gzq4Mn8MZ15oGtT7ut0JcvU303NjL3hwFQ9Fz43mDmsPTteGSBTzepA/zZNANgRbvrjRVGJnqGLdjHk038oqsWFWIQQQghx66v1wJSXlxft27c32dauXTsuXboEgKenJwCJiYkmbRITE437rjVjxgwyMjKMt+jo6NoedvVlxsOaxyB6f32PBFCzpZbsiQTUgq6DF/zDU98dQq9ASDsPuvg4MaCtO6DWmbpR4QlqQKI+P9SP6taUf/XxZ/aw9vz0dG9aussXjNrkaGPBPe3UzEZD1tTSPVGAmnEA5f8iXqGLu6E4D+y9wb399dtfT9+XYNT/1CDV7ciQMVXRVD59CUQfUB9LYErU0JnS+lJNnaxxtLYAYFx3Hz55MNCk5lKLJrWTMRWTpk4TbOosWUq3qztauGJppiUmLc9YxwtgV0QyZ+IzCUvIMq7qK4QQQggBdRCY6tOnD+HhplNPzp49i6+vL6AWQvf09GTr1q3G/ZmZmezbt49evcpf7lyn0+Hg4GByq3d7FsKpdbDtnfoeCQBHotOJTs3D2sKM/m2aUFiiN9Z3eCGkFQAD2qiBqUMX08jIu7GVlQzFctt43nh9qZqysjBj5rD2PNbH3xgoEbVrVDc1K+2Xo3EciErjRGwGluZaHr9TXdDAsKS8QUFxCTFpueV3ZpjG1/Lu2zPDqbYZMqZSL0BxYdn9iaegMAt0DrUT6BONkmEaXzuvygP7LQxT+ZJybmgqVlRpYMvPtZIacuKWZmNpTnALdar932evrAT867E44+M6WfFVCCGEELesWg9Mvfjii+zdu5f33nuPc+fOsXLlSv73v/8xdepUQC2M+cILLzBnzhw2bNjAiRMnmDhxIt7e3owcObK2h1M3FAXC/1QfR++H4oL6HQ9XPvDd096DJY/1YPEjQXRs6sD/9QswLo3t42JDS3c7SvQK/0QkVdZdpYpK9By5lA5Ap6ZONzp00YDd1boJrraWJGcX8NKaowCM6OLN/aWF5PddSKH4qikZ01cfo+/87Ry+lFa2s6rUlxJXODQF2yagL4awX8vujy6tL9WsB2hlNTFRM2EJhmnZlf/g09zVBo0GsgqKSc4uJ1BaRRdT1MC1r+ttmukoAOjX2jCdT83Qzi8qYdOpK3VEj0Wn18ewhBBCCNFA1XpgqkePHqxbt44ffviBjh078s4777BgwQImTJhgbPPqq68ybdo0pkyZQo8ePcjOzmbjxo1YWVVtRbZ6lxSuLnkPUJwPMQfqdTgleoXfjscDMLyLNxqNhsEdPfltWl9eG9LWpO2A0toP28PKD0ydjsvkp0Mxlf4ifjwmg7yiEpxtLOq1xpSoexZmWoZ18QYwrsI4qbcfHbwdcbAyJ6ugmJNxasbFuctZ/H4iHkVRa4uYSDmvTknTmIF/v5t6DbcsjQZ6PKk+/ucTNSB+tUtSX0rcuDPGjKnKA1M6czOalU6/K286X3RqLk8uP8iuiMqn90alSMZUY2CoM7UvMpW8whK2hV0mp7DEmCx7LDqjHkcnhBBCiIam1gNTAPfffz8nTpwgPz+fM2fO8OSTT5rs12g0vP322yQkJJCfn8+WLVto3bp1XQylboT/YfrcUNC5nuy7kEJSVgGO1hbcVforZUUM0/n+PnsZvd70i+7eCymM+nI3L605VjawcE07gGB/Vyk03giMLl2dD6CnnwsdmzpiptVwRwu1mP7uc+oX0SW7o4ztjl87TeP0evW+RT+wdqq7wd5uej4JFraQeALObTXdZwhMyYp8ooZK9ArhhoUsrjOVD64ugF520YO3fzvN5tOJfLHjXIXH5xYWc7m0+LkEpm5vAU3saOpkTWGxnr0XUthwVM3qfqCrOj387OUssguK63OIQgghhGhA6iQwdUtTFMiILZudcLWzG9V7ry7qfVT9BqY2lE7ju6+TJ5bmlf8n7e7ngp3OnOTsQk7EXvnF8mBUKv9aeoD8InVa1tW1IK5lCEzdUVpDQtzeOjZ1MGbGTe7jZ9zep6W6lHzo+RTScwv56XCMcd+JmAzTrLtT69X79iPreLS3GRsX6D5Zfbzr4yvbUyMhM0bNQGvWvX7GJm55F1NyyC/SY2WhrVKgyFBn6kKSacbUoYtpbD6tLmhyJj6zwozbS6nqND4nGwscbSxuZOiigdNoNPQrzZr69Xgc20qn9D1+pz/ejlYoCpyMNc2aCk/IIiv/xupfCiGEEOLWJIGpax35Hj5pD+ueUle9ulZ20pWV+O6do97HHICivJs3xqsUFuv586Rat8Ew5aoyluZa7iwNKDy+7ABvrD/BmoPRPLbkALmFJbRyV38R33w6kYListdfWKznYJRaP+iOANfaugzRgGk0Gr6a2J2vJ3ZnyFXLx/cu/e9/ICqVpXuiyC/S09rDDnOthpScQmLTS/+fSL0ACcfVIErb++vjEm5tdzwDWgt1VcNL+9Sg1Pej1X0+PcFSMk9EzZyJV7Ol2njYV2kBCX9DYOqqqXyKovDBpjDj87TcImNW1LWikkvrS7lIfanGoH9pBvfPh2MpLNYT0MSW9l4OdPFxAkzrTP19NolBC3byn3Un62GkQgghhKhvEpi6ml5/JSvh+Gr47YWymVMRfwEKeHYGv75g7w0lhVcKEd9kO88mkZFXhLu9jmD/qgWKJvX2w9nGguTsQr7fe4lX1h4nu6CYO1q48MuzffB0sCKroJh/zpatFXI8Jp28ohJcbC1p7S71pRoLHxcbQtp7mGxr6W6Hu72OgmI9X2w/D8CTfVsYpwQdjyn9Nfz0L+q9f1+wlWBmtTk2hS7j1ceb/gPf3Aup58GxOQxfVL9jE7c0w+qq1yt8bmAITJ2/nG3MivonIpm9F1KxNNfibq8DrtStutbF0vpSvjKNr1Ho3dINC7MrAc/hXZqi0WiuBKaumvK9Yu9FQM3AFUIIIUTjI4Gpq53bomZ3WNiARguHl8PGGabBKUN9qTb3qcWJ/fuqz+upzpRhGt/9nb2r9Is3QK8AV/a/HsKyf/VkXPdmuNpa0reVG99M6oGNpTlDOnkC8MeJ+DLHXqkv5SL1pRo5jUZjzJoqLNHjZmfJ8EBv40qNxi8dhsBU+xE3f5C3iz7PAxqIPQg5l8GjIzz+F7i1qu+RiVuYIWOqXRXqSwG09rBHq1Ezph78717OJmbxwaZwAB69w5ee/i4m/V4rqnRFPj9Zka9RsNOZ0933ypT/YV3UjNsuzZyAKwXQU3MK2V461S85u4CU7Ppf6VgIIYQQN5cEpq62/7/qffd/wYjP1cf7voSNr6lT9Yry4fx2dXubIeq9nyEwtfPmjhXIKyxhyxm1rsfwwOtP47uahZmWfq2bMH9MFw69eQ/fPR6Mrc4cgKGl07XKm86390IqoAa3hOgd4GZ8/MgdvujMzejSzBGA49EZkBYFcUfUQG/bYfU0ytuAWyvoOEp97NcXJv8BDl6VHyPEdRgym9peZ0U+A09HK94Z2RFrCzP2R6UyaMFOTsRmYGtpxjP9A4wr+0nGlDAY0FadztexqQMtmqilAjo1c0Sjgdj0PC5n5fPrsTiKSq78ABieUH5gU9w+Pv/8c/z8/LCysiI4OJj9+/dX2Parr76ib9++ODs74+zsTEhISJn2iqIwc+ZMvLy8sLa2JiQkhIiICJM2qampTJgwAQcHB5ycnHj88cfJzi67kIMQQoj6cUsHpvKLyqkBVVPJEWrGFBro8QQEPgz3faju27cYPusJ296Bohx1+p6h8LkhYyruMBTc3De4v88mkVtYQlMna2MwoDZ0a+5c7nS+wmI9By+qgSnDimyicevTyg0zrQZLcy0Tgn0B6Fz6a/jJ2Az0pzaoDX37gF3lK0aK6xj5JTy6Hh75Gaxq7/930Thl5hcZ68C1q+JUPoAJwb5snn4XIe3cjcnET/Rtgaudzph5ZZgieK2LhowpN8mYaiwevcOP/+sXwPujOhu32enMjfUsj0dn8HPpwhnmpVnYYRKYuq2tXr2a6dOnM2vWLA4fPkyXLl0YNGgQly9fLrf9jh07eOihh9i+fTuhoaH4+Phw7733Ehsba2wzf/58Fi5cyOLFi9m3bx+2trYMGjSI/Px8Y5sJEyZw6tQpNm/ezG+//cbOnTuZMmVKnV+vEEKIqrmlA1N/hyeZPI/PyKPP+9t4ec2x6ne2/yv1vvVgcPFXH/d8EsZ9Bw7NIOMShH6mbm8zWJ3GB+Dsp9Z60RdfWb79JvnzpDrV7r5Onmg0tTetTqvVGKfz/X7VdL5jMenkF+lxtbU0fqgUjVtTJ2uWTe7JD0/eQZPS+jKtPezQmWvJKiim8PjPakOZxnfjzHUQMADMLet7JOzcuZNhw4bh7e2NRqNh/fr1Jvvr6tfr/Px8pk6diqurK3Z2dowePZrExMTavrxGIax0up23o1W1V8hr5mxjXBDhlUFteLp/AIAxY+p8Uk6ZH44KikuIy1ADYZIx1XhYW5rx2pC2dGxqGkw3TOf7+UgMx2IyMNdqGNfDB5CMqdvdxx9/zJNPPsnkyZNp3749ixcvxsbGhm+//bbc9itWrOCZZ54hMDCQtm3b8vXXX6PX69m6dSugvt8sWLCAN954gxEjRtC5c2eWL19OXFyc8b3pzJkzbNy4ka+//prg4GDuvPNOFi1axKpVq4iLq3gVaiGEEDePeX0P4Eb8ejyWsb1bG59/F3qR2PQ81h6KYUhHT+5u51HJ0VfJz4SjK9THwdf8etJ+OLS8G3YtgN2fQkkBdBhl2sb/Ljj6PUTthFYhNb+gasgvKmHrGfXXpatXSqst93f2YsnuKLacTiS/qAQrCzP2lhYlvaOFa60GwsSt7c5WbibPzc20dPB2IPFSBFaXjwAaaDe8fgYn6kROTg5dunThX//6F6NGjSqz3/Dr9bJly/D39+fNN99k0KBBnD59GisrK0D99To+Pp7NmzdTVFTE5MmTmTJlCitXrqzwvC+++CK///47a9aswdHRkWeffZZRo0axe/fuOrvW25Uhq6ldFafxXUuj0RDS3sNkUQRPByscrS3IyCvi3OVsk2BEdGoeiqJmy7ja1n9wVdSvLj5OrDkUwx8n1FWF+7dpQp8AN1buu0RYogSmbleFhYUcOnSIGTNmGLdptVpCQkIIDQ2tUh+5ubkUFRXh4qLWL4uMjCQhIYGQkCufvx0dHQkODiY0NJTx48cTGhqKk5MT3bt3N7YJCQlBq9Wyb98+HnjggSpfQ25hMeaFxVVuL4QQjVluNV4vb+nA1K6IFJKzC3Cz01FYrOfHg9HGfW//dpo+Ld2wsjC7fkfHfoDCbHBrAy0GlN1vaQsDX4egxyArHpp1N93v31cNTNViAfTcwmL0pR/iSY+G0+uh6yNg7QyoKyFlFxTj5WhFYOkvj7Wpq486nS8hM59vd0dyfydvQi8YAlMu1zlaNHadmzlRHHtUfdK8F9hXMUgsbglDhgxhyJAh5e679tdrgOXLl+Ph4cH69esZP3688dfrAwcOGL8oLFq0iPvuu48PP/wQb++yNfMyMjL45ptvWLlyJQMHDgRgyZIltGvXjr1793LHHXfU0dXengzTpdp41t7qqhqNhnZe9uy9kMqZ+EyTwJShvlRzFxv5YUMQWLoyn8Gobs1o7aH+W4xIzEKvV2SBldtQcnIyJSUleHiYfibw8PAgLCysSn38+9//xtvb2xiISkhIMPZxbZ+GfQkJCbi7u5vsNzc3x8XFxdjmWgUFBRQUXCnEn5mpBvN7vrsVrU6mIwshRFXoC3Kr3PaWnspXrFf4tXRVus2nE0nOLqSJvQ4PBx0XU3L5Zlfk9TvJToJdn6iPez55ZYpeeRyblg1KgZoxBWqR57gjpvuK8mDf/9TV/qoou6CY+z79h/4f7CAjtwh+fR7+egO+GwUF6peJP0un2A3u6FknH960Wg33lWZizd8Yzl0fbGfPVRlTQlSmi48jXbWlU7cM/3+IRuF6v14D1/31ujyHDh2iqKjIpN+2bdvSvHnzKv/SLq4Ir4PAFFzJwLq2TlCU1JcSV2njaY+lufoR1MHKnIFt3fFztcHSXEtuYQnRaVX/ICsaj/fff59Vq1axbt06Y/ZtXZk7dy6Ojo7Gm4+PT52eTwghGrtbOmMKYN2RWCb38Wfl/osAPNjdh1Yedjy/6iifbTvHA12b4u1kXf7B+hL46XE1C8qtNQROqNkgHLyh0zg48SP8+W/416YrAa4/XoEj38GB1vB/u0nM1aPRgLt9xW+oi7ZGGD/Ebw/dw8jz6jx64g7DyvEUjF/N5tLV+IbWwTQ+g6f7B5BXVMKJ2HTOJmRTWKInoIktLaW+lLiOzs2c0GjOAVDiHUQV8hbFbaKufr1OSEjA0tISJyenCvstT0W/ejdmiqJwtjRw1LYahc+rwlBI/dqV+WRFPnE1CzMtHb0dOHwpnfu7eBuz21u523EqLpMz8Vnyb+U25ObmhpmZWZnagImJiXh6elZ67Icffsj777/Pli1b6Nz5SjF9w3GJiYl4eV35TJyYmEhgYKCxzbXF1YuLi0lNTa3wvDNmzGD69OnG55mZmfj4+LD/9btxcKjd100hhLhdZWZm4rWgam1v6cCUuVbD8ZgMNp9OZPe5FDQaGN/Th6ZO1qzYe4n9Uam8+/sZPnu4a/lTB3a8D5F/g4WNWuTc8gZ+yb3nLQj7HaL3UXj0Ry5630erlG1qUAog+SzZOz7m3t3dyCsq4b+PBjGgjTsU5kDaRUiLhMw4opx78c2uS8ZutQdLi0F6dYHUSLi4i+zlD5Of/zju9rZ0a+5c8zFfRxN7HXNHdQKgqETPxZQc3B2sZBqGuC5/6wK0WjVYEGHRhrb1PB7ReM2dO5e33nrruu2iknM4n5Rd9dqEt7C4jHyyCoox12rwd6vdL/+GjKkz8ZkoimJ8vzBmTLlKxpRQ/V+/AL7ZFcn/3RVg3NbG055TcZmEJ2QxuGPlgQpx67G0tCQoKIitW7cycuRIAGMh82effbbC4+bPn8+7777Lpk2bTDJtAfz9/fH09GTr1q3GQFRmZib79u3j6aefBqBXr16kp6dz6NAhgoKCANi2bRt6vZ7g4OByz6nT6dDpdGW221iaY2N5S399EkKIm6a4Gq+Xt/RUvjtbqVPKXv7xMAD9WzehmbNav2L28A5oNeqqciM+38328MsohrWtASI2w8756uNhC8H9Br86O3hDX/WXlezf/sNTC1ZRuK70TdZHfdPT7f4I+/xYCov1PLN8P9HfPwPvNYUve8Gqh+GPl7FZNRqdPpdgfxfstQX0z/1L7WPgTHh4NZhb4xr/N7PMlzGkjqbxlcfCTEtLd3scrKq3epNonLRxhwA4r/fiaLIEMhuTq3+9vtrVv4jX5NdrT09PCgsLSU9Pr7Df8syYMYOMjAzjLTo6utx20344wuPLDrLnfHKl13c7MGRLBTSxM06nqi2tPOzQaiAtt4jLWVcy1SRjSlzr3g6erH6qF82vCla2LZ1aGp4omY23q+nTp/PVV1+xbNkyzpw5w9NPP01OTg6TJ08GYOLEiSbF0efNm8ebb77Jt99+i5+fHwkJCSQkJBhXcdVoNLzwwgvMmTOHDRs2cOLECSZOnIi3t7cx+NWuXTsGDx7Mk08+yf79+9m9ezfPPvss48ePL7emoRBCiJvvlg5MDe/SlAlmWzisPMQg7QEeDvY17mvv7cBbwztgY2nG8ZgM3ln6C6s/eIbwRaNJ/yQY/Q8Pqw17PAGdx9bOgHo9S4GdDy4lyfxi+SaWRZkUe3aFSb+R1+xOLJRC3jJfRu9mOr7Qzsfn3ApAAStH8AqkQOeCe0kCb1qu5IMxXXjF6zgOmlxSdc0gYCD49qZ4zBIAxpr9zf2t5Zdn0UDFHADgiNKKYzHp9TsWcVNd/eu1geHX6169egGmv14bXO/X66CgICwsLEz6DQ8P59KlS8Z+y6PT6XBwcDC5AaTmFBrb5BWWcCouA1DrFd7uDPWf/p+9+w6PqtoaOPybmWTSewcSEgi99yo1FDtFQeQqYLtXwU/kYkGlWvCi145iA7xKExUrRaWJEIqhQ4AACQmpJCG9Z873x8lMGJNA+iRkvc8zD5NzzuzZJxNmz6yz9tpta7m+FICttY5WXup079Ml0/kKiw3EXs0FIFACU+I62vmWX6NM1MyxmDSORF8lv6jY0l1h8uTJvPnmmyxYsIDu3btz9OhRtm7dapr+HR0dTXx8vOn4jz76iIKCAu655x78/PxMtzfffNN0zLPPPsuTTz7JY489Rp8+fcjKymLr1q1mdajWrFlD+/btGTlyJLfddhuDBw/mk08+qb8TF0IIcV2NOhd1SLAbt1h/jw6FefqvadH2JbP9DwwI5E7POBJ+eZ22V/9Am6PANfU0T+q70nbkK9TawtXWtnxoM4Ons5bgpMklW7Hhbft/85KVnv9aPcqzSigjdUcYUTgbjS6GXEXPU0UzOWU7BH+NHS6F+/mYRdyn3Q6pexlf9AsAqwtD+D9FfbFWX2nHQENLOmov0StzB9CqtnovRO0xBqYMwfxxLtlsSo+onqSMPLadTuTu7s0snrmYlZXF+fPnTT9HRkZy9OhR3N3dCQgIMF29btOmDUFBQcyfP7/Cq9crVqygsLCwzNXr2NhYRo4cyf/+9z/69u2Li4sLDz/8MHPmzMHd3R1nZ2eefPJJBgwYUK0V+S4kZRHo5wlAeEIGhpKE2t3nrtTsl9MInEs01peq/cCUsd3zSVmcic9keDtv4tJyKTIo2Fpr8XYqOzVGCCPj32RUcjZ5hcWVW1lZXNfmE/E8sUadWaC3Umt7jezgwz+HtMJKZ5nr07Nmzapw6t6uXbvMfo6KirphexqNhiVLlrBkyZIKj3F3d2ft2rVV6aYQQoh61KgDU7ZRO3AmFYBAYiFiK3S4Q92pKPD9E7geW4srgAaiPYdwwroLJ3O92JXizJkMb578I5o5o9vVSn8ORqbybmw7euq7MVR7jEVF09l4Wov7rvN8dsYaZ6s7+T+r79Gkx6DYe7DS71V+PeUMabnEpuUCbdnocDv3Fv8CG2fgVJBJLnpW5wykR0QyVjoNr20OZ7p2CAu0X6I9thb6PlIrfa9QcgTEHYXEE5B0BoJugYFP1u1zisYlPRZ01uBYUszaYIBYNRPmhKYdsWm5nEnINNWeEdXz3LfH2Xn2Cmv2X+KLh/ri41y3KxJdz19//cXw4cNNPxsLxE6bNo3Vq1fz7LPPkp2dzWOPPUZaWhqDBw8u9+r1rFmzGDlyJFqtlokTJ/Lee++Z9hcWFnL27FlyckqvJrz99tumY/Pz8xkzZgwffvhhtc4hIimTkSX3T8Wmm7ZfvJJNTGoO/u43b0aqKWPKp24CUx38nPn5eLypALqxvlSAu329TT8XjZO3kw1u9tZczSnkfFIWnZu7WLpLjdrFK1k8+81xAOysdeQWFnM4Oo3D0WkYDApPjmxj4R4KIYQQqkYdmOLw/wAosHFHn58Ke9+B9rerK+IdWw/H1oJGB92mwMAnCfBuTwBwO9Cl5ArS8l0XGNnBh27+rjXuztu/nQM0/N71LYYOc8F5fyH8GcmyrWcBuNThcchPhMJcNPesZKZHayZn5XMpJZtLKTnEp+fRo807sOkspKjZCKc9x5Jx2ZEPd53nXGIWBgWKO92Dcn4dmtgwuHIWvGonsFbGsQ2w6THzbed/U1cvtHevm+cUjUtOqlojzdoeZv0FNo6QfBbyM8DaAd/A7hw/k8JvpxMlMFUDEYmZ7DyrZvKcSchkwof7+N/DfWntZZkVMocNG2Zes+9vauPqdWBgYJnnsLW1Zfny5Sxfvrzqnf6biKQs0/1Tceb1bHadu8ID/Vv+/SE3hcJiAxdKzr2uMqY6+KntnoxLp6DIIPWlRKVpNBra+Tqx/2IqZxIyJTBVA7kFxTyx5jBZ+UX0DXJnzSP9iL2ay8/H43jz13O8uz2Coe286NrC1dJdFUIIIRp3jSmi9gAa9A9sBJ2NOn3o0j7IiIetz6nHjHgJxi0vU9z8ti5+3NWtGcUGhTlfHyWvsGbz7vdfTCH0YgrWOg3/CukEnm2YM6otzV3tAHUFwSfHdIEZW+Cfu8FDXYXG09GGXi3dmdCzBTOHBxPcwhvGfwwa9aVxGfoEAIeirpKeW0iPAFfm3XsLmjaj1Sc+WodpyYc+Vf/17gS9HwbXAFAMcGFH3T2naFwu7oS8dMiMh7DV6raSaXw078nITuq0rKZQt6cuff5nJAD9W7kT6GFPbFou93y0j+NSv6vazieWDUx1KfkSvPtsUrmPaQyikrN5ZuMx4tJyy91/KSWbgmID9nqdaXyqbR391N/jxSvZ9Hz5Nz7efRGQFflE5bQvqTN1NkEKoNfEgh9OciYhE09HPR9M6YG1TkugpwMzhwdze1c/igwKT284Sm6B5etOCSGEEI07MAXQZhS06A09pqo/730Hfn5a/bLcrAcM/L8KH7rk7k54Odlw4Uo2b247W6NuqNlSMKm3v+nDvoONFcvu6YqNlZZ/DW1NoKeDms11Iy16w9RvYPJXBHcZYMo08XW25eN/9FJrLnSboh57fAMY6uBDRcoFNcCg0cID38Edb0HHceq+89uv+1DRhJy/JkgZ+gEU5ZcGplr0ZkR7HzQaOBGbTnx6+V+UxfVdycznuyOxAMwd3Y5vHh9I1xYuXM0p5MVNJy3cu8Yr4komiqJQWGzgbMnUtpnD1QsG+y6kNIgiwdXxn61n2Bh2mU/+uFju/mun8dXVtDpfF1ueGtkGLycbsvKLSqaqo46BQtxAu5JMPimAXn0/H49jY9hltBp4b0oPvK+Z+q3RaHh1XGe8Sz7/vr4l3II9FUIIIVSNPzDV+2H134FPqkGUiF/h3BbQWsPdH4Ku4tmKrvZ6/jOxCwCf743kTDWvzsWk5nAgMhUrrYaZw4PN9g0K9iR8yVjmjqnidLvgkdDhTgDm3dqeQcEefDatd+mHi7Zjwc5dzVS5sLNa/b6uY+vVf1uPAKeSpdiDQ9R/z/+u1hESTZuilGbPaa3Vv8Vj6+HyX+q2Fn3wcrKhR8k02d/DG28WiiV9tf8SBUUGuvu70qulG56ONnzyQG9AnSqVmVdo4R42Tll5xcSn5xGRmEVBsQEnWytGd/TFy8mGnIJi/oq6aukuVlleYbGpePvJa+pmXetcyZf9dnVUX8ro6VFtOTBvJN/PHMSTI4KZ0tefu7s3r9PnFDcHY2DqrASmqu37kosZjw5pxcDWnmX2u9rreePebgB8EXqJPyOS67V/QgghxN817sCUcws1YwrAvRV0vLt039DnwKfjDZsY0d6HMZ18UBT4+tDlanXjSEwaAJ2aOdOsnKkRNb0qPaStF2se6W9ea8FKD13uUe8fq+XpfAYDHC8JTBkzswAC+oO1A2QnQaJkajQpmYnqNNlrXTkDmXFgZQvDnle37XkTkkquvjZXgyejOqqBTZnOV3V5hcV8uf8SAI/cEmRa2dDXxZYWbnYoChwtef8RVXc2MZNTcWoAp1MzZ7RaDUPbegGwqxFO5wu9kEJOybScU3EZFBvK1gEzZqG0q6P6UtfSajV093fl36PbsXRCVxxtGndZS1E/jEHTpMx8rmTmW7g3jY/BoHCoJLA+tpNvhccNbevF1H4BAHz+Z/kZlkIIIUR9adyBqe73g/aapYRv+bdaa6p5Lxg8u9LN3NdHHZh/OBpLYXH5mUAGg8KqvZHM2XCU7Pwis31Ho9PU7tRCAfUq6X6/+m/4z5Bbg6v7xUXmGVDRoZAWDXonaHdb6XYrGwgaot4//3v1n080LooC6+6DVbfC2S2l243ZUi0HQb9/gZ2b+neDotYjc/IBYFRH9d/QC8mS3VNF3x2OJTW7gOaudmW+YPRq6QZA2KXGl9nTUJxNyDTVl+rUTA38GwNTxsyjhmL/xRQe+PwA55MqziL59Zrgb25hMZHJWWWOOZeoPr6uCp8LUVMONlZ0LClhsO+CZPJUVURSFum5hdhZ625YPH7GoEAA/jyfTHqujM9CCCEsp84DU6+//joajYbZs2ebtuXl5TFz5kw8PDxwdHRk4sSJJCZWI5vi2mweAN8uMPsETP9FXb6+km5p44mXkw0p2QXsOlv2y0hsWi73f7afxT+d5rsjsfx8PM5s/9EY9Yth9wDXKp9Cjfh1B++OUJwPJ76p2mOzU+DIGlh3PyxtAZ+HQFZJhoAxW6rj3aD/W7Ha4JIF1qXOVNMRfxTiDqv39/xXDVRB6d9A6xHqanz9/lX6mBZ9THdbezkQ5OlAYbHCH+fkS0ZVrNqrFj1/aHAQVjrzt+veEpiqsXMJ5hlToI4HWg2cS8yqsIC4Jby/I4I9Ecm8sOlkuSsiGgwKv4er46idtXrB5sTfpvPlFBRxKTUHgLYSmBIN2C1t1elne2SKWZUdjEoFoEeAK9a663/MD/Z2oq2PI4XFimQ1CyGEsKg6DUwdOnSIjz/+mK5du5ptf/rpp/npp5/YuHEju3fvJi4ujgkTJlT9CRy9ym5z8gHrqq00ZKXTMr6HWvvim7AYs30/HI1l7Dt/sP9iqmnb3vMppvsFRQZOllxx7+7vVqXnrTGNBno+qN4//L/KPy78J/hvW/jhCTj7CxTlQmwYfD4aks7Aqe/V47rdV/axxjpTMfshT1bMaRIOf1l6//IhNaOuMA8u7VW3GYOVfR9Tp3qCWWBKo9GYsqZ+O51QHz2+KaTlFBCRpGa83NOrRZn9PUsCU0ej08qdsiVuLDwhk9Ml79/GzAJXe70p+3XHmfqdzldQZGDZ1jP8FZVqtj23oJhDkWoA8mBkarkXUI5dTuNKZj6ONlaM76mOZydjzd+jzydloSjg6ajH09Gmjs5CiJob0kb9fLcn4kq5gVhRsUOR6vtH3yD3Sh1/Wxc/ADafiK+zPgkhhBA3UmeBqaysLKZOncqnn36Km1tpwCY9PZ3PP/+ct956ixEjRtCrVy9WrVrFvn372L9/f609v6IoFBYWkpeXV6nb+C7eNHfSceZyCgmpGeTl5bHlWDTLfjmBs7VCSFs33p7YkeZOOi4kXCU3N5e8vDzCLyfjZaehvZcNvg7aSj9frd3ajSfPuRV5WVfJiz5Succc20SevR95LW4hb8TL5E3ZRJ5fP/IKi8j76n7yrJwp9OyIEjCw7C/WPQjcW4OhCCL/qLXXSzRQBTlwYqN630ddKIC970L0PijKA6dm4NVe3W7vDre+DgEDofNEs2aMgakdZ5IoqmC6rDB3MTkbUFfjdLErmwHazscJB72OzPwiIq4zvUtULDw+g+yCYmystLS6ZsW4kR3Uv9f/bD3DicvlFxGvC98fieXDXReYu/GY2Zfxg1GpFFzz/+Y/W8+UCUYasx2GtvWiZ4A65v49Y+raFfmEaMh6tXTD1lpLYka+KUAvbkxRFA6VBLb7BlYuMHV7SWBqT8QVmc4nhBDCYuqsEunMmTO5/fbbCQkJ4ZVXXjFtDwsLo7CwkJCQENO29u3bExAQQGhoKP3796/xcxcUFBAfH09OTk6VHvdaiA8FxQox0ZdIstKiz8ln0XBvHG10JV8Mc1kywhuDAhEXLmKt01KQX8Si4d7YWmuJioqqcd+rZch7UJgDybmQHXn9YxUDtLwPWk4GJz91yqMBGPwWZF+B4gL1OBtH7C9fxs/PD71eb95GcAgcvKDWmepwR52ckmggwn+E/AxwbQn3roIP+sC5rerfEajT+DTXFPfv+WBpFt81ega44WJnTXpuISdi0+kRUM/ZhY3QxStqYCromoDJtax0WroHuLL3fAphl67S3te5PrvX6Nlaayl5t6ODn7PZVMkZgwLZdTaJQ1FX+cfnB1j7aD9TDaq6ZKynE5WSQ3h8Jh1Lphf+GaFmSI3p5EPohRTOJGTyw9FYJvQszaQzBqZGdfShQ0l9ntNxGRgMimkBjnP1WPhciJqwtdbRL8iD3eeu8Me5KxJMraTLV3OJT8/DSqup9DjbxseJNt6ORCRl8fvpRCaWk6ErhBBC1LU6CUytX7+ew4cPc+jQoTL7EhIS0Ov1uLq6mm338fEhIaH8aT75+fnk55euzJKRUfEUMoPBQGRkJDqdjmbNmqHX600rWd2Ia3YBSZl56K10KIqCp6MBe72OFm72pjasU7PJKSjGy8kWNwc98Wm56PMKcXe0wctSUyPyvSA9GtCBZ4B5Qfi/y00Dx3y1SLxHa/N9hkBIj0UpzKPAsTlXUtOIjIykTZs2aLXXJNe1GQUHP1ZrDCmKeWBC3FyM0/h6/AM820CHO9VgVcSv6vbgEZVqRqfV0L+VO9tOJbLvQooEpirh4hU1S6CVV/mBKYBeAW6mwNTUfi3rq2s3hWAvR06nqAtZGOtLGdnrrVg1oy8PfH6AI9Fp/OOzA3z5cL8bFhKuCUVRCL1YOk18y8l4U2DKWGfnjq7N6ObvyrKtZ/nvr+e4vasfNlY6opKziUjKQqfVMLydNw42OmyttWTlFxGVkk0rL0dAXYUQSlc9E6Ihu6WNpxqYikjmkVtaWbo7jYIxW6pzcxfs9Nf5LPg3t3Xx493tEWw+ES+BKSGEEBZR61P5YmJieOqpp1izZg22tra10ubSpUtxcXEx3fz9/Ss8tqCgAIPBQLNmzXBxccHOzg5bW9tK3bxcHdFa21CIjiKNFTa2tgT5uJm14erkgMZKT76iw9bWlgKs0FjpcXGwr/Tz1PrN2QNbGxtsrQzYkq9us7HBVmvA1trK/FglB1srDbZObmXbsXfE1rctdv5dcXH3pFmzZhgMBgoKCsx/yS0HqYGt9GhIPlcrr7FogFIuwKU/QaMtXQFy0FPXHKCBVsMr3dygYLWYrayyVDmRJVP5jEGF8hjrTB2WAuhVFuxd+nstL+DkaGPFFw/1pVsLF67mFHLH+38y8r+7WPTjKf6sg4LMUSk5JGaUXoD55UQ8iqKQlJHHmYRMNBr1/9CMgUH4ONsQm5bLkp9OE3Yp1bQgR78gd1zsrbHSaU1ZU8YaiJl5haa/k47NJLtONHxDSlbIPHAxhbzCYgv3pnEwTeOrZH0po9u7GqfzJZMhq+cKIYSwgFoPTIWFhZGUlETPnj2xsrLCysqK3bt3895772FlZYWPjw8FBQWkpaWZPS4xMRFfX99y25w3bx7p6emmW0xMTLnHXcssw6eSrHRanG3VJDKtRkNLD4cyK2E52qj7s/OLKCo2kF+kfliyr8KVqVqn0YC9h3o/JwUKc9WgQvJZNXBknHZlMEB+SS0aW9eK2yrJgKrwd6i3B/++6v3o2qsLVmVZSfDJcPh6Gly9ZLl+3KyOlGRLtR4JLiVXUFv0hpaD1fvNeqh1pSppYGv1b/SvqKu18iXjrV/P8vhXYWTnF9W4rYbIOJXvehlTxsyzqJQckrPyKzxOlNXGpzQw9feMKSNnW2v+91A/RrT3RquBC1eyWb0vin98foA9EWULkNdE6IUUU1/0Oi0Xr6hZUH+eTzZtd3fQY6fXMTukLQBrDkQz8aNQ3vxVvUBgrOUG0Llk6uHJkjpT3x2OJbugmNZeDnSpw8wvIWpLG29HfJxtyC8y8FeUBN8r42BJ4fM+lawvZdTWx4lgb0cKig38LqvzCSGEsIBaD0yNHDmSEydOcPToUdOtd+/eTJ061XTf2tqa7du3mx5z9uxZoqOjGTBgQLlt2tjY4OzsbHarK95OtjjorQhwtzctuX0tW2sdOq2GYkUhJVvNJNJbacsEsOqdXcmHkIIsuHIGCkoCUMX5kF1ydT8/Qw1S6fRVXrmwjGbd1X8TjtesnZr4ayXEHYbT38PyvrDrP+pqcaLmiovg6Fr1fs8HzPeNWgxuQTBgZpWabO3liLeT+iWjphk+eYXFfLDzPFtOJrDox1M1aqshKjYoRKaoganWnhVnTLnYWdO2JMAiWVNV06ZkOptOq7lu/RoXe2tWTu/DkQWjWfGPnqZMhE1HYmu1P8ZpfCEdfBjSVs0u3Hwi3pSddUub0lVo7+vjz9IJXQjp4GNaXc9er2Ns59KLO8bg04nL6SiKwhehUQBMGxhY6entQliSRqMx/d3XdiD4ZpSclc+FkgsavVtWfbq8rM4nhBDCkmo9muLk5ETnzp3Nbg4ODnh4eNC5c2dcXFx4+OGHmTNnDjt37iQsLIwZM2YwYMCAWil8XlN2eh2tvR1xLmcVLFA/KBmzpowZCvb6OqshX3lWerC5JmBn66oWNwdWf/axWtMrr2SFJluXmteF8u2m/htvocCUwQBH16j33YLUFeJ2vQYf9ofLf1mmTzeTuCOQlaj+HbW91Xxfi97w1FHock+VmtRoNKasqX0XUm5w9PWdT8rCuCjZxrDL/HgsrkbtNTRxabkUFBnQ67Q0d7t+ELlXSzVQEhYtgamq6OHvRs8AV6b2C8C2nIsQf+diZ83Yzn48M6YdAL+dSjRlzNaUoiimjKkBrT24tXPpF8Q9JRlTt5RMhQX1/9KUvgF8Nq03h14cyZ/PDWfXM8Pwcyn9W+nU3DiVL509EclcvJKNo42VWcF0IRq6W9qof/d/1MH02ZvNXyXT+Nr5OOHmoL/B0WXd1kUNbP8RkSxTJ4UQQtQ7i6T5vP3229xxxx1MnDiRIUOG4Ovry3fffWeJrlSLMTBlXK7botP4ruXSAhy8wKMNuAeBow9Y2alZUopiHpiqKb+u6r+JJ8FggQ8wl/6EtGg1GPf4PrhnFTg1g6uRsHIM/Pm2GrwCyE6Bc9sg7cZTQEWJyyULFwT0V4OetWRgyZfrvdepM3UyNp2wG2T/hMerdXOsSlYbe/G7E8SkVm0VzobsQknh85Ye9ui01w8i95I6U9Vip9fx3RODWHJ35yo9rleAG77OtmTmF/HHudr5snzhSjbJWfnYWGnp7u9KSAcfrHUaziVmcSUzH1trLb0Cy8+A0Gg0tHCzx9vJvKZjWx8n9DotmXlFLN1yBoB7erUwjV9CNAaDgz3RaNT3/KRMyYi+noOR6hjQJ6h6i4u083HC28mGgiIDh+VChxBCiHpWL4GpXbt28c4775h+trW1Zfny5aSmppKdnc13331XYX2phujvH+ztK3G1vV5Y2ajBKZuSqT8aDbg0L9lpAKUYNDrQVzw1qNI8gsHaHgpz1HpWNXX4S3ivJ0TuqdzxxmlmncarNa86T4AnQtWfDUXw+yJYORpWDIY3WsHaSfDleDVAV1l/vgMrboEdr8CVJlbk3RiYatG7Vps1Zkwdv5xOZjkFVqNTcpj40T6mfLKfpIyKv4ScLVn2fkrfAHq1dCMzv4j/W3+EwmJDrfbXUkoLn1dcX8rIGJg6djmdgqKb4/wbMq1WY5ry8svx2snUM07j6xnghq21Dhd7a9NiAQD9gjywsaraOGOt09LeT52iaAzkPjBAVm4UjYuHo42pXtre85I1dT3GwudVrS9lZJbVfL5mWc1CCCFEVVm4MFLjpLfSYl1SU0qj0WBbSxlTBoOBZcuWERwcjI2NDQEBAbz66qsAPPfcc7Rt2xZ7e3tatWrF/PnzKSws/WJ/7Ngxhg8fjpOTE87OzvTq1Yu//voLbJxM9aS27dpHh6ETcHRyYuzYscTH16COgFYHPp3U+zWtM6UosHsZpF6ADVMhOeL6x+dnwukf1Ps9/lG63c5VzZy66301U+zyIUg4oe7TaCElovLT/HJSYedr6rn98QYs7wOfDGs6ASrj76lFn1pttoWbPS097Ck2KKYirdda8vNp8osMFBQbrptVdaYkMNW5uTPvTO6Ok60VR6LTWHcwulb7aymlhc9vHEQO9LDHxc6agiIDF5Oz6rprgtIVrH47nVgrU172XzONz+i2kul8UDqdqao6NSvNjr2ljSetK/H3JERDYwyWlDdmVEexQeF0XAYGQxUuVDVwaTkFnIpTs+L7BXnc4OiKDWwtq+cKIYSwjCYRmFIUhZyColq75RYWo9NoTF9I8gqLyz1OqUp2Durqg6+//jrz58/n9OnTrF27Fh8fdZUlJycnVq9ezenTp3n33Xf59NNPefvtt02PnTp1Ki1atODQoUOEhYXx/PPPY21dUifLzo2c3DzeXPElX678jD/++IPo6Gjmzp1bs1+sb8l0vvhjNWsn5iCklwQU8tJhzb3q9LuKnNqkZmp5tCkbONFooOeD8M8/YPiLMPFzmBsBXe5V95/YWLk+HV2rFo53bw1txqiZZnFHYMuzVT+/xiYzseT10ECznrXevPGD796/XZHddTaJ38NLVwP6+/5rGQNT7Xyd8Xe356mRbQD4+fjNUbTVGGBq5XnjjCmNRkMzVzX4HJ8uU13qQw9/V5q52JJdUMyuszUryqwoCvsvlg1MjeroY5qqem3h86q4dvW9aQMCq99JISzImBV6oynelbXmwCVue28P/954rMqf0xqqP88nY1CgrY8jvi62N35ABQYGq+9Bxy6nk3WTrngrhBCiYWoSxSZyC4vpuGBbvT/v6SVjKl0YPTMzk3fffZcPPviAadOmAdC6dWsGDx4MwEsvvWQ6NjAwkLlz57J+/XqefVYNlERHR/PMM8/Qvn17ANq0aVPauM6awsIiVrz3Fq27DQCNhlmzZrFkyZKanaCxzpQxK6m6Tn6j/ttmNFw5q9aJ2jAVHvxBnZ74d0dKip53v7/iIu5ebWHoNUGkzvfA8Q1qUGvMa6C7zuuiKBC2Wr0/cBb0fggST8FHAyFqD+ReBbvq1XBoFGJLsqW8O4Bt7a+AOSjYg3UHo82uyBYUGVjy02kAuvu7cjQmjb3nk1EUpcwKYslZ+SRn5aPRYFqRbmxnX175JZy/olJJzS7AvRqFXxuS0oypGwemAHydbQiPh0QJTNULrVbD7V39+HRPJD8fjzNbDa+qIpKySMkuwM5aR7cWrqbtbg56Pri/J2k5BbTzrXjVwOvpG+SOVgOBng4Mb+9d7T4KYUk9SwJT5xKzSM8pxMW+/MVpKutQlBrg2nQklk7NnHnkllY17qOl/XFODZAPqWYQ26iFmz0B7vZEp+ZwMDKFEe19aqN7QgghxA01iYypxiA8PJz8/HxGjhxZ7v4NGzYwaNAgfH19cXR05KWXXiI6unTa0pw5c3jkkUcICQnh9ddf58IF87pP9vb2tO4+0BTI8fPzIykpqWadNmZMJRyvWu2maxUXqcEigD6Pwv1fqwXNo0PLz05KuQAx+9Wped2mVP55Wg8HO3fIToKoP65/bNSf6rQ/vWNpppVPJ/Bqr9avOvdr5Z+3Maqj+lJGA1qpV2TPJGSaCpav3BvJxeRsvJxs+PTB3uh1WuLT80y1lq5lrC/V0t3eFPht4WZPp2bOGBTYfk3WVWOUU1Bkynxq5Vm5qVe+JauxJVynLpeoXbd3bQbA9vAkcguqP53PuBpf70A39FbmQ/LYzr7c1zeg2m0Hezvy46zBrH+0/w2L6AvRUHk62hBUkj16OKbmWVMXr5ROeX5tc3ijr12lKIppIYYhbWsWmAIqrDNVdJPUcBRCCNEwNYmMKTtrHaeXjLHI81b6WLuKl4QPDQ1l6tSpLF68mDFjxuDi4sL69ev573//azpm0aJF3H///fzyyy9s2bKFhQsXsn79esaPHw9QOq2vhEajqXkKu3dHdYpbTgpkxF1TaL0Kov6A7Ctq0Kj1cNBZw72r4asJatZSl0kQOKj0+AMr1H9bjwRnv/JaLJ/OGjqNg79WwolvofWIio8NW6X+2+UetUaXUfs74MoZOPMTdJtc+edubOqovpSRh6MN7X2dOJOQyS3LduJsa0VeofqB9/mx7fFysqFXSzdCL6aw93xymTpLxkLO7X3Ns7lGdfThVFwGv51O5N7e/nXS9/pgDMa52VtXeslvX2d16kaiBKbqTbcWLrRws+Py1Vx2nEky1Z2qqr9Kpif1C6peweIb6XzNdD4hGqteLd2ITM4mLOoqw9tVP/vPYFBMGakDWnkQejGFWWsP8+Oswfi729dWd+tVRFIWCRl52Fhp6VsL7yMDgz1ZfyiGvRdKA1MXrmRx//JKLk4jhBBCVEOTyJjSaDTY663q/fb3KUjX06ZNG+zs7Ni+fXuZffv27aNly5a8+OKL9O7dmzZt2nDp0qUyx7Vt25ann36aX3/9lQkTJrBq1aoa/d5uyNoWvNqp96tbAP3Et+q/He9Wg0cAwSOh13T1/s+zoShfvX9uGxz8RL3f719Vfy5j9lP4j1BYwRf47GQ4/aN6v9cM830d7lT/Pb8dCnKq/vyNQXERxB5W79dRYArg8WGt8XFWp2lm5BVRUGygd0s3xvdQg5uDSupclFdn6qypvpT59KZRHdUpB39EXKlRBoulVaXwuZGvi/q7lBpT9Uej0VxTBD2h2u3EXlXfS6QwuRAVM9aZ+utSzQqgJ2TkkVtYjJVWw6fTetO1hQtXcwp5esPRWuilZRin8fUNcse2FlaJNmY1h8dnkJpdQFGxgX9/fUzGFyGEEHWqSQSmGgNbW1uee+45nn32Wf73v/9x4cIF9u/fz+eff06bNm2Ijo5m/fr1XLhwgffee49NmzaZHpubm8usWbPYtWsXly5dYu/evRw6dIgOHTrUfcdNBdCrEZgqyofwn9T7Xe4x3xeyCBy8IPkc7H0P0mJg0z/VfX3/CW1Cqv58/v3BuQXkZ8D538o/5ugaMBSqRb+bdTff59cNXALUwusXdlT9+RuDK+FQmK1Op/RsV2dPc3f35hx4IYTwJWPZNnsIq2f04fPpfdCWTDcaGFy6MlDx31ZOMhY+7+BnHpjq6OdMc1c78goN/HnN1IyY1BxTcenGwBiYCqpE4XMjn5KMqYQG9MUhMzOT2bNn07JlS+zs7Bg4cCCHDh0y7ddoNOXe3njjjQrbXLRoUZnjjXX1LKF/yepXp+Iyqt1GYoYaeK9JwWIhbna9SwJTx2LSKaxgStmeiCvc+u4ejsWkVdiO8f01wMMeRxsrPvpHL3RaDX9dukp0SuO84PRHhDreDa2FaXwAXk42pvqN+y+m8MmeixyNScPRtnZWoBZCCCHKI4GpBmT+/Pn8+9//ZsGCBXTo0IHJkyeTlJTEXXfdxdNPP82sWbPo3r07+/btY/78+abH6XQ6UlJSePDBB2nbti2TJk3i1ltvZfHixXXfab9r6kxVVcRvkJ8OTs0gYKD5Pjs3GLNUvf/HG7B+ilp0vFkPGP1y9fqq1ULnCer9ExuhuBCSz6v9OLIG/nwbDpRkZPWeUfbxGg10uEO9f+bn6vWhoTPWl2reU/191TE7vY52vk4Ma+eNi13pdNOuzV1wsrEiI6/ItAQ2qMt8n0ssXZHvWhqNxpQ1ZcxgiUjM5LZ393DfJ/v5bM/Fuj6dWmFaka+Shc8B/EpqTDWkqXyPPPIIv/32G19++SUnTpxg9OjRhISEEBsbC0B8fLzZbeXKlWg0GiZOnHjddjt16mT2uD///LM+TqdcHfzUv8GLydmmVVqrwmBQTK+ZBKaEqFhrL0dc7KzJLSw2Tee+lsGgsPCHU4THZ/Dl/rIZ5UalK56qgZfmrnb0CVSDXr/WIPPRUvIKizlQcuGlNupLGRlXz/0y9BLv/BYBwPNj6+FipxBCiCZLAlMNiFar5cUXXyQqKoqCggIuXbrEvHnzAFi2bBnJyclkZmayfv16Zs+eTVpaGgB6vZ5169YRHR1Nfn4+sbGxvP/++9jaql90pk+fbjrWaNy4cbWzTHJNMqaMq/F1nlB+EKTLPdBqOBTnqyv/2bio9afKW6mvsozT+U7/CK/4wAe9YM098MMT8PsiyLisPk/nCr4cty8JTJ3doga2bjZ1XF+qsqx0WvqVTCe4NvspKiWb/CIDdtY6AsqpBzK6kxqY2h6exJXMfB764hCZJUtev/JLON8dvlwPva8Z01S+ShY+h9IaU1dzCqsVIKltubm5fPvttyxbtowhQ4YQHBzMokWLCA4O5qOPPgLA19fX7PbDDz8wfPhwWrW6/gpZVlZWZo/z9PSsj1Mql4+zDW721mYB06pIzs6nyKCg1YCXYw3e14S4yWm1GnoGuAIQdqlsAfTfwhO5WFKf71BUxdP9LiSpganW3qWB/1Ed1VU1fzvd+BbOOBiZSn6RAV9nW9p41950YGMB9NCLKRQUGwjp4MPd3ZvVWvtCCCHE30lgStSMbxf13/RoyKlC7YecVDW4AxUHgTQauP2/YFWSSTBuObgFVrurgNpfv26AAkoxWNuDdye1mHq3KTDwSZj6NegryFYJ6A/2npCXpq7e11DFHYEdr8KP/wdr74Mv7oTLYTd+nGlFPssGpgAGB5ddGehMvPrlv62PY7mrjPUNdMfFzpqU7AImfLSXmNRcAtztub+furLZs98cZ+fZGq5GWYcURTEVP29dhYwpZzsrbK3Vt/OGkDVVVFREcXGxKThuZGdnV26GU2JiIr/88gsPP/zwDduOiIigWbNmtGrViqlTp5qtTlqe/Px8MjIyzG61RaPR0LGZmjVVXhaHqc+JmYz/cC/fH4k1256Yrk7j83KywUonw7EQ19M7UC3s/dffAlOKorBid+lKxJdSckiq4H3QGLxqfU3gf3RJpu2hqFSuZhfUap/rmrG+1JC2nlWqa3oj/Vp5YBxiXe2teW1C51ptXwghhPg7+SQsasbOFVxbqvcTTlT+cWGroSgPfDqr0/Mq4tEaZmyGf3xXWny8JjQaeOB7mLEV5oTDC3HwxD544DsYvwJGv6IGnyqi1UH729T7DXU6X3EhrLkX/lgGh7+Ac1sg8g/YMFUt7n6ts1th+xI1kJV7Va3pBdC8V/33+28GldSZOhSVasoCOptQ/op8RlY6LSPaqys2xaTm4mRrxcrpvXnl7s6M79GcIoPC41+FceJyermPt7Qrmflk5Reh1ag1UCpLo9GYsqYaQp0pJycnBgwYwMsvv0xcXBzFxcV89dVXhIaGEh8fX+b4L774AicnJyZMmHDddvv168fq1avZunUrH330EZGRkdxyyy1kZlacrbR06VJcXFxMN3//2l2xsYOvMTBVfh8Kigz83/qjHIlO46u/TTGKT88FSjPehBAV6xmgTrkLi7pqlvH916WrHIlOQ6/T0sJNndZ8KKpsVhVcu7hEaeDf392e9r5OGBTYcab0wkVWfhGr9kY26NpTf0QYA1O1N40PwMXOmv4lWcuvjOuMt5O8RwkhhKhbEpgSNVfVOlPFhXDwU/V+/yfUYNH1NO+lrtRXW+zdoeUAcG524+cuT/uSANmhz+C9nvDto7B/hRrcKS6qvX5WV+QfkH1FrdM17AW44x3wbAuZ8fDdo2AoKRx7+EtYdx/s+S98Mgw+HKBudwsCB8tNjzIK9nbE28mG/CIDe0um84VXsCLftYxXv3VaDcvv70mwtxNarYZl93RlaFsv8goNLN95vu5PoBoulHxpauFmj41V1QrNGmsUJTSAjCmAL7/8EkVRaN68OTY2Nrz33ntMmTIFbTnTdleuXMnUqVPLZFj93a233sq9995L165dGTNmDJs3byYtLY2vv/66wsfMmzeP9PR00y0mJqbG53YtY52p0xVkTL2/I8KUTRVz1fwLrjG7zUcCU0LcUHd/V6y0GhIy8oi7JgD/8W61fuDEXs0ZWXJhorzpfLkFxcSmqcHgv696OtpUn7B0Ot9z3xxn8U+nuWv5nxyMrNlqgHUhPj2Xc4lZaDUwOLj2x+wPp/Zk8//dwh1dZQqfEEKIuieBKVFzvt3Uf89sLg16XM+p7yEzDhy8y67G1xi0GlZarD31Apz4GrY+pwZ3Xg+AL+6CqL2W69+p79R/O02AYc+phdzv/QKs7NTVBPf8Fw59Dj/OAhR1BUIrWzVwBQ1iGh+oWUAjO6hfMmatPcLmE/GcLQlMtfe7TmCqky+zhgfz0dSeZleRrXVanr9VXcFtx5kk0nMbXo2wE7FpALT1qfj8KtKQMqYAWrduze7du8nKyiImJoaDBw9SWFhYpobUnj17OHv2LI888kiVn8PV1ZW2bdty/nzFgUYbGxucnZ3NbrXJGJgKj88oU7fvWEwaH+4qnWKUmJFvVgPMGET0k8LnQtyQnV5Hp5Kps3+VBJ7OJ2Xye3giGg08cksr03S/8gJTxsLnbvbWuDvozfYZ60z9EXGFvMJifj+dyC8n1DExLaeQf3x2gB+Omk/FtbRVe6MANZPM1V5//YOrwdVeb5qqXJuWL19OYGAgtra29OvXj4MHD1Z47KlTp5g4cSKBgYFoNBreeeedMsfcaAVYUGut/n1F17Fjx9b2qQkhhKgBCUyJmutyjxr0iN4HYSuvf6yiwP7l6v2+j9askLmlWOnhoS3wbCT841sY/hK0GQ22LlCYDZG74auJlqlBVVQA4SVTDDuNL93u01Gt1wWw81X4ZY56v/8T8OgOmHsO7nofej4IQ5+r3z5fx3Nj2zM42JPcwmKeWHOY6FQ146SiqXygZkrNHdOO0Z18y+zr4OdMOx8nCooNbD1ZdkqZpR24qH6Z6hfkXuXH+jSwjCkjBwcH/Pz8uHr1Ktu2bePuu+822//555/Tq1cvunXrVuW2s7KyuHDhAn5+frXV3SoL9nbEWqchM6/IlI0B6mpZ/954jGKDwh1d/XC0sQLg8tXSY+JLgog+EpgSolJ6tlSn863ZH83SLeHM3ahmao/u6ENrL0f6lASmwuMzyMwzv/hQOo2vbJHwzs2d8XOxJaegmF9PJzL/h5MATB8YyNhOvhQUG3hq/VE+/aNhrO6akJ7HF/uiAJg5ItiynamCDRs2MGfOHBYuXMjhw4fp1q0bY8aMISmp/NqPOTk5tGrVitdffx1f37JjOtx4BVijsWPHmq3oum7dulo/PyGEENUngSlRc+5BELJIvf/rArgaVfGx0fvVKW86G+j9UH30ru7Yu0NwCAx9BqZuhGej4PFQCB4FRbmwdjLEHLphM7UqcrdamN3BG1oONN/XYyp0nwqUZHUMegrGvKZOZ7R1UYNSd70Png3nQ66rvZ7VM/rw2JDSLBtvJ5syV7ur4u4e6rSE74/E1bh/tanYoHCw5Cp/v1ZVD0wZM6YaQvFzgG3btrF161YiIyP57bffGD58OO3bt2fGjBmmYzIyMti4cWOF2VIjR47kgw8+MP08d+5cdu/eTVRUFPv27WP8+PHodDqmTJlS5+dTEb2VltYlX3SvrTP1/o4Izidl4eVkw8t3dzbVvrl2Op/xtZIaU0JUjjHwdDAqlY93X+RoTBoAjw1pDahTmv3d7TAocDg6zeyxpSuell1YQqPRENJBnc73/LfHiU/PI8DdnufGtufDqT1NY9DrW8+QnJVfF6dWJe9ujyC/yEDfQHeG1XJ9qbr01ltv8eijjzJjxgw6duzIihUrsLe3Z+XK8i9q9unThzfeeIP77rsPG5uyFzIrswKskY2NjdmKrm5ubnVyjkIIIapHAlOidvR9DFoOUjOGfphV8ZQ+Y7ZUt8kNoo5RrdJq1cykyV9B0FAoyFIzp+KO1l8fTm1S/+14t1qo/e9uexP6/lP9N2Rx9Wps1TMrnZYXbuvAu/d1x9nWqsb1Lu7qpj5+f2RKg5n2BnAmIYPMvCIcbazo6Ff16RPG6WDxDeSc0tPTmTlzJu3bt+fBBx9k8ODBbNu2DWtra9Mx69evR1GUCgNLFy5cIDm5tGD/5cuXmTJlCu3atWPSpEl4eHiwf/9+vLws+8Xs7yvz5RUW89V+dbXAJXd1ws1Bj7+7Wsz+cmppYMr49+crGVNCVMqojj48NqQVk3q34OHBQTwd0pZPH+xNr5alQQZj8OrQ3+pCGafylZcxZWwbIKdAnW772vgu2Ol1aLUaXritA91auFBsUPj5mGUvakQmZ/P1X2qtvGfGtms0q+UVFBQQFhZGSEiIaZtWqyUkJITQ0NBqtVmVFWB37dqFt7c37dq14/HHHyclJQUhhBANh5WlOyBuElot3L0cPhoIUXvUwuD9HjM/JjUSzvyi3u//RP33sb5Y28KUdWpQKjoUvrgTbl0G3e6r20DQtdP4OlewupneHm5bVnd9qEN3d2/OHV2bodPW7HfYws2ePoFuHIq6yo/HYk1X2i3NWFy3V0s3rHRVv2ZgLKCd2EACU5MmTWLSpEnXPeaxxx7jscceq3B/VFSU2c/r16+vja7Vuo5+znxHLKfj1MDUb6cTSc8tpJmLrWlKqb+bGpiKuWYqnykwJRlTQlSKdcmFiuvpE+jOd4djy9SZunBFDUy19iqbMQXQv5UHTjZWZOYXMaFncwa3Mb94Nr5Hc45dTmfTkVimDwqqwVlUzQc7IjgRm874Hs0J6eDDW7+do9igMLydlykI1xgkJydTXFyMj4+P2XYfHx/OnDlTrTavXQG2Q4cO+Pj4sG7dOkJDQwkOLs3+Hjt2LBMmTCAoKIgLFy7wwgsvcOuttxIaGopOV/5CI/n5+eTnl2bHZWSUv8CFEEKI2iEZU6L2uAfBqCXq/d8XqoGoa/22ABQDtB4J3tf/YNno6R3g/q/VIun5GfD9v+DrByA7+caPraxTm+DtLuqKgIoCF3dCfjo4+oJ//9p7ngakpkEpo7u7Nwca1nQ+Y32pvtWoLwWlWTdJmfkUG5QbHC1qk6kAeoL6xcWYzTCxVwvT36y/uzqVz7j0fGZeIdklmRmSMSVE7TEGa47GpJFfpP4fUxSFyOvUmAJ1Wu682zowppMP82/vWGb/Hd3UCyPHLqebglx1LSUrnzd/Pce2U4n866vDDHx9Bz+VZGzNHdOuXvrQ0FVmBdj77ruPu+66iy5dujBu3Dh+/vlnDh06xK5duypsd+nSpbi4uJhu/v7+9XA2QgjRdElgStSu3g9D4C1QmAM/Plk6pS/iNwj/ETS60uDVzc7WGab9BCPmg9YKwn+CDwdAwsnaaT90OaRHqysCrrsPwlar2zuNUzPYRIVu7+KHlVbD6fgMIhIzb/yAOqYopfWl+lejvhSAl6MNWg0UGRRSGkANlKbEGJi6lJJDRGImf55XA9D39GphOqY0Y0oNTBnrSznbWmGvl+RlIWpLay8H3B305BcZOBmrBosTM/LJLihGp9UQUDKttjz39wvg4wd641ZOHUNPRxuGltRz+v5I/azQd6Akk9bdQY+Hg56kTPW9/c5uzejUzKVe+lBbPD090el0JCYmmm1PTEyssLB5ZVR2BdhrtWrVCk9Pz+uu6Dpv3jzS09NNt5iYmGr3UQghxI3Jt9dGbNeuXWg0GtLS0izdlVJaLdz1Hljbq1P6Dq+GwlzYPFfd3/9x8O1s0S7WK50VDJmrrnzn1R6yk2DdFMi6UrN2s5Lg8l8lz2ED57bC2c3qz9euxifK5eagZ1g79QvGD0ctnzV1PimL1OwCbK21dGnuWq02rHRavJzU4rANbWW+m527gx4fZ/V3/8ov4SiKGmBs6VE6ZchYYyqmpMZUQrr6BVOypYSoXRqNht4lNaeM0/kulmQ4Bbjbo7eq/kff8T3UbNtNR2Ix1ENmaugFtQ7SXd2aETpvJO9P6cEjg4NYeGfZjK6GTq/X06tXL7Zv327aZjAY2L59OwMGDKhx+zdaAfZaly9fJiUl5borutrY2ODs7Gx2E0IIUXckMCVqn3srGLlAvf/rAtj8jLpSn1MzGPa8RbtmMX7dYMYW9XeTHq1O6ysqqH5757YBCvh1V4NeniUp/c4toEXf2ujxTe+ukul8v5yIt3BPYH/JVfGeAW41+tJkrFXUkIq6NxXGrKnd59Sg86Te5tM+jFP5MvKKSM8tJD5drTXlI/WlhKh1xul8O88kUVhsuGF9qcoa1dEHRxsrLl/N5a9LV2vczxsJvagGpvq38kBvpeXObs146Y6OeDqWXaGuMZgzZw6ffvopX3zxBeHh4Tz++ONkZ2ebVmt98MEHmTdvnun4goICjh49ytGjRykoKCA2NpajR4+aZTrdaAXYrKwsnnnmGfbv309UVBTbt2/n7rvvJjg4mDFjxtTvL0AIIUSFJDDVgAwbNownn3yS2bNn4+bmho+PD59++qlp0HZyciI4OJgtW7YQFRXF8OHDAXBzc0Oj0TB9+vQqt1Nn+j4G/v2gIBOOfKluu/V1sHGqu+ds6OzdYcoGsHFWi6L/MketDVUd57aq/7a7Vc1Ae2wXjH4F7l0l0/gqaUhJYdvI5Gwy8got2hdj4fN+QR41ascY5JCMqfp37UqKjjZW3NrZ/Eq8vd4KT0d1elBMao5pKp+fZEwJUeuGtPVCo1Gnwt3z0T52n1On11ZUX6qybK113NpZnXa26cjlGvfzepIy8jiflIVGU/0p3g3N5MmTefPNN1mwYAHdu3fn6NGjbN261VQQPTo6mvj40otFcXFx9OjRgx49ehAfH8+bb75Jjx49eOSRR0zH3GgFWJ1Ox/Hjx7nrrrto27YtDz/8ML169WLPnj3Y2DTOAJ8QQtyMav0b7NKlS+nTpw9OTk54e3szbtw4zp49a3ZMXl4eM2fOxMPDA0dHRyZOnFhmznmtUhQoyK7/WzWCDl988QWenp4cPHiQJ598kscff5x7772XgQMHcvjwYUaPHs0DDzyAl5cX3377LQBnz54lPj6ed999t8rt5OTkVNSVmtHq1FX6rEq+dAWPgg531c1zNSZebeGelaDRqgG7/R9VvY3CPLiwQ73f7lb1X709DHwS/CVbqrJc7fU0KwkKnIm3XJ0pRVE4UHJVvLqFz42MQQ7JmKp/Ha4JTN3ZrRl2+rIrPbUoqTN1+WqOKXgoK/IJUfva+Trx3n09cLa14tjldH4PVz9jtvKsWcYUlE7n+/l4PHmFxTVuryLGbKmOfs642petedVYzZo1i0uXLpGfn8+BAwfo16+fad+uXbtYvXq16efAwEAURSlzu7Zo+aRJk7hw4QL5+fnEx8fzwQcf4OJSWn/Lzs6Obdu2kZSUREFBAVFRUXzyySdlVgcUQghhWbVecXX37t3MnDmTPn36UFRUxAsvvMDo0aM5ffo0Dg7qB4Knn36aX375hY0bN+Li4sKsWbOYMGECe/fure3uqApz4LVmddP29bwQp67OVgXdunXjpZdeAtTCi6+//jqenp48+uijACxYsICPPvqIEydO4O6ufon19vbG1dW1Wu0cP36c/v3raAU3zzZw1/twbB3c8RZoamdFtUavzSgY9TL8+qJ682gNbauQTh75h/o37dwcfLvWXT+bgA5+zsSl53E6Lr3GQaHqupSSQ1JmPnqdlh4BrjVqy8dFMqYs5drA1KTeLco9xt/dnqMxaUSn5piChz6SMSVEnbizWzP6BLrzzDfH2BOhZky18alZxhSo0+r8XGyJT88j9GIKw9t517jN8uwvCUwNaFWzTFohhBCiMaj1wNTWrVvNfl69ejXe3t6EhYUxZMgQ0tPT+fzzz1m7di0jRowAYNWqVXTo0IH9+/fXXZCkkejatTTQoNPp8PDwoEuXLqZtxis8SUlJ1y3EWJV26lTXSepNmBswE66cUbOmvnkIHtpW+aLwxiLnbcdKsK+GOjZzZvuZJMItmDF1IFL98tHN3wVb67JZNlVhzL5JlMBUvWvl6cC9vVpgbaWlu79rucf4u6l1pmJSc03BQ5nKJ0Td8XWx5X8P9WVj2GUuX82lh79bjdvUajX0DHDjlxPxXEjKqrPAlLHw+YDWEpgSQghx86vzNarT09MBTNk9YWFhFBYWEhISYjqmffv2BAQEEBoaWjeBKWt7NXupvllXvCRxhQ8pmRNvpNFozLZpSgIRBoOhXtoRdUSjgdvfUovCR+2BtZPVIuZO5aSWX40CB291up6imNeXEjVizHIJT8io0+cxGBR+D0+kd6A77tcsQ64oCj8fV+tp1LS+FJQGpuJlKl+902o1vHFvt+seY1qZ72qOaVU+KX4uRN3SaDRlFiOoqUBP9f9yVEp2rbZrFJeWS1RKDloN9LFQNq8QQghRn+o0MGUwGJg9ezaDBg2ic2c1GyQhIQG9Xl9m6pmPjw8JCQnltpOfn09+fr7p54yMKn6J1GiqPKWuMdDr1S+4xcV1V+NA1CErPUz+Ej4LgZTzsH4KTN8M1td8UT35nZpR5dwcJnys/h1nxoO1AwTeYrm+3ySMgakzCZkUFRuw0tVN4fhvD1/mmW+OE+hhz8Z/DcTLSS24unJvFHsiktHr1NWWasq3JPsmUQJTDVJASWAqMjmb5Cx1TJMaU0I0Pi091M+Ul1Lqpk6nMVuqSwtXnG2tb3C0EEII0fjV6fJdM2fO5OTJk6xfv75G7SxduhQXFxfTzd+/dq98NVYtW7ZEo9Hw888/c+XKFbKysizdJVFVdm5w/9fqv7FhsOWZ0n1XL8FPswEFMi7D6jvghyfVfa2HmwewRLW0dLfHXq+joMhAZHLdXPkG2HQkFoColBymrTxIRl4hR6KvsnRzOAAv3t6Bdr41X7HSGJjKLigm08IrDYqy/EuKnxu/zOp1WrMMOiFE4xBYEpiqq3EjVOpLCSGEaGLqLDA1a9Ysfv75Z3bu3EmLFqWFYH19fSkoKCAtLc3s+MTERHx9fctta968eaSnp5tuMTExddXtRqV58+YsXryY559/Hh8fH2bNmmXpLonq8GgNEz8HNHD4fxD2BRQXwXePQX46tOgDPf4BKJB4Qn1Mu9ss2eObhlaroX1JQOh0fN1M57uSmW8qYutmb83p+AweWf0Xs9YeocigcHsXPx4c0LJWnsteb4WTrZoIKyvzNTx+rrZorykL5+NiY5pWLYRoPIxT+eLScskvqt2sdUVRpL6UEEKIJqfWp/IpisKTTz7Jpk2b2LVrF0FBQWb7e/XqhbW1Ndu3b2fixIkAnD17lujoaAYMGFBumzY2NtjY2NR2Vxuca5e/NYqKiiqzTVEU0/358+czf/78GrcjLCx4JIx4CXa8DJvnQtSfELMf9E4w8TNwC4TgUfDTU2AoVgufi1rRsZkzh6PTOB2fwd3dm9d6+1tOxmNQoJu/K6+O68x9n+znYFQqAC097Fk6sUutBid8nW3JzMsiISOPNj41z8IStcdap8XPxY7YtFxApvEJ0Vh5OdrgoNeRXVBMTGouwd41X+3PKCY1l9i0XKy0Gnq3rHmxdiGEEKIxqPWMqZkzZ/LVV1+xdu1anJycSEhIICEhgdxc9YO4i4sLDz/8MHPmzGHnzp2EhYUxY8YMBgwY0ORX5BNN3OA5aiZUcQGc+FrddsfbalAKoNM4mH0C/u8wOMhV1NpirDN1Oq5uMqZ+OqYuvHBnVz86N3fh0wd7o7fSYmOlZfn9PWu9fohxOp9kTDVM/u52pvu+LnbXOVII0VBpNJpr6kzV7nS+nWfV1ZK7+7viYFPnaxQJIYQQDUKtj3gfffQRAMOGDTPbvmrVKqZPnw7A22+/jVarZeLEieTn5zNmzBg+/PDD2u6KEI2LVgvjV8AnwyH1AnSdDF3vNT/G1hlwtkj3blYdjSvzxWfWetvx6bkciroKwG1d/AB1asbOucMwGBTTKm21yZiFI4GphsnfzZ79qBlzvs43fyawEDerQE97TsdnEFXLBdB/KVmpdWzn8stbCCGEEDejOpnKdyO2trYsX76c5cuX1/bTC9G42brAjC1wYTt0mmDp3jQJ7Xyd0GggOSufpMw8vJ1sCbt0lRc3nWDu6HaEdPSpdtvGLxh9At1o5lqaHdPcte4yZVqUFNiOTq2b1aJEzVwbjPSRqXxCNFrGAuhRtVgAPSE9j0OX1MC18WKGEEII0RTU6ap8QohqcPKB7vfLqnv1xF5vRZCn+gUjPD6TgiIDz3xzjDMJmbz4/QlyC6pf2PbnksDUHV2b1UpfK6OlR8nKbxKYapACrglM+clUPiEaLVNgqhan8m05GY+iQK+W5hczhBBCiJudBKaEEE3etXWmVu2N5OIV9YtGYkY+K/dGVqvNmNQcjsakodXArV3qb0qGMTAVXcvTS0TtMK8xJVP5hGisjO+1tRmYKr2YIdlSQgghmhYJTAkhmjxjnand55J4b3sEAKNKpvCt2HWB1OyCKrf5ywn1C0a/IA+8neov+81YkDchI4+8wtpdxlzUnL+bTOUT4mZgzLSNvZpLQZHBtH313kjWHLhU5fbi0nIJu3QVjQZu7SyBKSGEEE2LBKaEEE2eMTC1/2Iq2QXF9AhwZcU/etG5uTOZ+UW8vyOiSu2l5xSy8k810+rObvU3jQ/Azd4aJ1u1fKDUmWp4vJxs6N3SjS7NXWQqnxCNmJeTDfZ6HQYFYq6q77URiZks+uk0L246SXh81VZ63VxyMaNPS3fT6qpCCCFEUyGBKSFEk2ecygeg0cDiuzqh02p4fmwHAL7af6lKU+Ne/uU0SZn5tPJ0YELP5rXe3+tRlzEvmWJSi0V5Re3QaDRs/NcAfpg5CJ1WY+nuCCGqSX2vVbOmLpVM5/v1dKJp/6d7LlapPWOW7e0yjU8IIUQTJIEpIUST5+Nsg7uDHoDJvf3p2sIVgMFtPLmljSeFxQrPf3ec03E3vgK+82wS34RdRqOBN+7tiq21ri67Xi7jlyXJmGqYNBoNWglKCdHoBZZcBIhMVt9rf7smMPXj0Tji03Mr1c7lqzkciU4rmcZXfzUJhRBCiIZCAlNN1PTp0xk3bpyluyFEg6DRaPi/EcEMb+fFs2Pbm+17/tb26LQa9l1I4bb39nDXB3/y3eHL5baTkVfIC9+dAGDGwCB6tXSv876Xp2XJym+XLFgAPTMzk9mzZ9OyZUvs7OwYOHAghw4dMu2fPn06Go3G7DZ27Ngbtrt8+XICAwOxtbWlX79+HDx4sC5PQwghKhToWZoxlZSRx9GYNADa+zpRZFBYvS+qUu1sNtUkdMdbas8JIYRogiQw1YAMGzaM2bNn1/ljhBBlTR8UxKoZfU2ZU0admrnw9T/7c3sXP6x1Go5fTmfO18fYUvJF4lpLN4cTn55HSw97nhnTrr66XkZdLGNeVY888gi//fYbX375JSdOnGD06NGEhIQQGxtrOmbs2LHEx8ebbuvWrbtumxs2bGDOnDksXLiQw4cP061bN8aMGUNSUlJdn44QQpRRmjGVzW/harZUd39X0/v/2v3RZOYV3rCdPRHJAIztJNlSQgghmiYJTAkhxA30aunO8qk92T9vJBN7tgDg85Li5kan4zJYdzAGgP9M7Iqdvv6n8BkFlHxZstRUvtzcXL799luWLVvGkCFDCA4OZtGiRQQHB/PRRx+ZjrOxscHX19d0c3Nzu267b731Fo8++igzZsygY8eOrFixAnt7e1auXFnXpySEEGUEmmpM5Zim8Y3q6MPwdt609nIgM7+IDYdirtuGoiicjE0HoGfL678HCiGEEDcrCUw1ENOnT2f37t28++67pmktUVFR7N69m759+2JjY4Ofnx/PP/88RUVF131McXExDz/8MEFBQdjZ2dGuXTveffddC5+hEI2fh6MNz41th5VWw1+XrnLicrpp3/Kd5wF1Fb7+rTws1UUAU/Hzy1dzKSw23ODo2ldUVERxcTG2tuZTUuzs7Pjzzz9NP+/atQtvb2/atWvH448/TkpKSoVtFhQUEBYWRkhIiGmbVqslJCSE0NDQCh+Xn59PRkaG2U0IIWqDcSrf5as57Duvvn+N7uiDVqvh0VtaAbDyz0g2n4jnu8OX2fhXDMlZ+WZtxKXncTWnECuthna+TvV7AkIIIUQDYWXpDtQHRVHILapcAcraZGdlh0ZTuQK37777LufOnaNz584sWbIEgOLiYm677TamT5/O//73P86cOcOjjz6Kra0tixYtKvcxXl5eGAwGWrRowcaNG/Hw8GDfvn089thj+Pn5MWnSpDo7XyGaAm9nW27v6scPR+NYvS+K/07qxvmkTDafVKf2zRoebOEego+TLTZWWvKLDMSl5ZqKodcXJycnBgwYwMsvv0yHDh3w8fFh3bp1hIaGEhys/n7Gjh3LhAkTCAoK4sKFC7zwwgvceuuthIaGotOVzTZLTk6muLgYHx8fs+0+Pj6cOXOmwr4sXbqUxYsX1+4JCiEE4O1kg521jtzCYgqKDQR62BPs7QjAuB7NefPXs8Sl5/HEmsOmx4zp5MPHD/Q2/Wy8wNHWxwkbK8tl2gohhBCW1CQCU7lFufRb26/en/fA/Qewt7av1LEuLi7o9Xrs7e3x9VVrDLz44ov4+/vzwQcfoNFoaN++PXFxcTz33HMsWLCg3McA6HQ6sy9iQUFBhIaG8vXXX0tgSohaMH1gID8cjeOnY3HMu609H+w4j6KoXzgawhVvrVZDgLs9EUlZXErJqffAFMCXX37JQw89RPPmzdHpdPTs2ZMpU6YQFhYGwH333Wc6tkuXLnTt2pXWrVuza9cuRo4cWWv9mDdvHnPmzDH9nJGRgb+/f621L4RoujQaDS097DmTkAmo0/iMFyRtrXW8fHdnPt1zESutFjRwMDKVvedTKCo2YKVTJy2cilMDU52bO1vmJIQQQogGQKbyNWDh4eEMGDDALOtq0KBBZGVlcfly+auCGS1fvpxevXrh5eWFo6Mjn3zyCdHR0XXdZSGahB4BbnTzd6Wg2MDSzWf48VgcAE+OaGPhnpVq6VG6WpQltG7dmt27d5OVlUVMTAwHDx6ksLCQVq1alXt8q1at8PT05Pz58+Xu9/T0RKfTkZiYaLY9MTHRLDD/dzY2Njg7O5vdhBCitgReE/gf/bfi5bd28eO7Jwbx9b8GsO7R/jjZWpGVX0R4fKbpGGN9qc7NXeqnw0IIIUQD1CQypuys7Dhw/wGLPK8lrF+/nrlz5/Lf//6XAQMG4OTkxBtvvMGBA/X/OxDiZjVjYCCzNxzl28NqkHhEe+8G9cXCWGfqUoplCqAbOTg44ODgwNWrV9m2bRvLli0r97jLly+TkpKCn59fufv1ej29evVi+/btjBs3DgCDwcD27duZNWtWXXVfCCGuy1hnysNBT8+AiouX67Qa+gS6s+NMEgciU+jSQh0vTsapde8a0vghhBBC1LcmkTGl0Wiwt7av91tl60sZ6fV6iouLTT936NCB0NBQFEUxbdu7dy9OTk60aNGi3McYjxk4cCBPPPEEPXr0IDg4mAsXLtTgNyiE+Lvbuvjh5WRj+nnWCMvXlrqWcRnzKAsFprZt28bWrVuJjIzkt99+Y/jw4bRv354ZM2aQlZXFM888w/79+4mKimL79u3cfffdBAcHM2bMGFMbI0eO5IMPPjD9PGfOHD799FO++OILwsPDefzxx8nOzmbGjBmWOEUhhGBga3Wxi3t6tUCnvf7nvr5B7gAciEwFIDEjjyuZ+Wg10MFXsjmFEEI0XU0iMNVYBAYGcuDAAaKiokhOTuaJJ54gJiaGJ598kjNnzvDDDz+wcOFC5syZg1arLfcxBoOBNm3a8Ndff7Ft2zbOnTvH/PnzOXTokIXPToibi95KywP9WwJwSxvP614pt4SAkukl0amWmcqXnp7OzJkzad++PQ8++CCDBw9m27ZtWFtbo9PpOH78OHfddRdt27bl4YcfplevXuzZswcbm9Jg34ULF0hOTjb9PHnyZN58800WLFhA9+7dOXr0KFu3bi1TEF0IIerLkLZe7H1+BM+MaXfDY/uVBKYORaViMCimaXzB3o7Y6aXwuRBCiKarSUzlayzmzp3LtGnT6NixI7m5uURGRrJ582aeeeYZunXrhru7Ow8//DAvvfTSdR/zz3/+kyNHjjB58mQ0Gg1TpkzhiSeeYMuWLRY8OyFuPo8Pa42fiy0j2ntbuitlGDOmolNzMBgUtDe4kl/bJk2aVOFiC3Z2dmzbtu2GbURFRZXZNmvWLJm6J4RoUJq7Vq50Q+fmLtjrdaTlFHIuKZOTsSXT+JrJND4hhBBNmwSmGpC2bdsSGhpqti0wMJCDBw9W6TEAq1atYtWqVWbbli5darq/evXqmnVWCIG1Tsu9vRvmCm/NXO3QaTXkFRpIyszH18XW0l0SQogmzVqnpVdLN/ZEJHMwMpUTUvhcCCGEAGQqnxBC3JSsdVrTVXxLrcwnhBDCXN/A0jpTp+IkMCWEEEKABKaEEOKm1VBW5hNCCKEyFkD/4+wV4tPzAOjYTAqfCyGEaNokMCWEEDcpU2DKQgXQhRBCmOvm74reSktmfhEArTwdcLRpOpU1li9fTmBgILa2tvTr1++65SpOnTrFxIkTCQwMRKPR8M4775Q5JjMzk9mzZ9OyZUvs7OwYOHBgmQV/FEVhwYIF+Pn5YWdnR0hICBEREbV9akIIIWpAAlNCCHGTCixZmS9KMqaEEKJBsLXW0d3f1fRzU5rGt2HDBubMmcPChQs5fPgw3bp1Y8yYMSQlJZV7fE5ODq1ateL111/H19e33GMeeeQRfvvtN7788ktOnDjB6NGjCQkJITY21nTMsmXLeO+991ixYgUHDhzAwcGBMWPGkJeXVyfnKYQQouosFpiqyhUTIYQQVRfgrmZM7TufzMo/I0nPLbRwj4QQQvQvmc4H0Ll505nG99Zbb/Hoo48yY8YMOnbsyIoVK7C3t2flypXlHt+nTx/eeOMN7rvvPmxsbMrsz83N5dtvv2XZsmUMGTKE4OBgFi1aRHBwMB999BGgZku98847vPTSS9x999107dqV//3vf8TFxfH999/X5ekKIYSoAosEpqp6xaQ6FEWptbaaKvkdCtG49Qhww83emqs5hSz5+TQj/rvL0l0SQogmr2+Qh+l+52ZNI2OqoKCAsLAwQkJCTNu0Wi0hISHlri5dGUVFRRQXF2Nra77qrJ2dHX/++ScAkZGRJCQkmD2vi4sL/fr1u+7z5ufnk5GRYXYTQghRdywSmKrqFZOqsLa2BtT0X1Ezxt+h8XcqhGhcvJxs+OPZ4bw8rjPtfZ3ILzRYuktCCNHk9WzpipOtFfZ6HZ2ayFS+5ORkiouL8fHxMdvu4+NDQkJCtdp0cnJiwIABvPzyy8TFxVFcXMxXX31FaGgo8fHxAKa2q/q8S5cuxcXFxXTz9/evVh+FEEJUTr1XWzReMZk3b55p242umOTn55Ofn2/6+XpXLXQ6Ha6urqbsK3t7ezQaTS31vmlQFIWcnBySkpJwdXVFp9NZuktCiGpysrXmgf4t+Ue/AHafvMTwdyzdIyGEaNrs9VZs/NcAiooVXOzk4l9NfPnllzz00EM0b94cnU5Hz549mTJlCmFhYTVqd968ecyZM8f0c0ZGhgSnhBCiDtV7YOp6V0zOnDlT7mOWLl3K4sWLK/0cxgKJtTk1sClydXWtsNikEKJx0Wg09GzpfuMDhRBC1Ln2vk2nthSAp6cnOp2OxMREs+2JiYk1+qzZunVrdu/eTXZ2NhkZGfj5+TF58mRatWoFlH4nSExMxM/Pz+x5u3fvXmG7NjY25da1EkIIUTcaxfq0Vb1qodFo8PPzw9vbm8JCKfZbHdbW1pIpJYQQQgghakyv19OrVy+2b9/OuHHjADAYDGzfvp1Zs2bVuH0HBwccHBy4evUq27ZtY9myZQAEBQXh6+vL9u3bTYGojIwMDhw4wOOPP17j5xVCCFE76j0wVZ0rJtW9aqHT6SS4IoQQQgghhIXNmTOHadOm0bt3b/r27cs777xDdnY2M2bMAODBBx+kefPmLF26FFDLf5w+fdp0PzY2lqNHj+Lo6EhwcDAA27ZtQ1EU2rVrx/nz53nmmWdo3769qU2NRsPs2bN55ZVXaNOmDUFBQcyfP59mzZqZAmRCCCEsr94DU3V9xUQIIYQQQgjRsEyePJkrV66wYMECEhIS6N69O1u3bjWV94iOjkarLV2XKS4ujh49eph+fvPNN3nzzTcZOnQou3btAiA9PZ158+Zx+fJl3N3dmThxIq+++qrZwj3PPvss2dnZPPbYY6SlpTF48GC2bt1aZjU/IYQQlqNRFEWp7yfdsGED06ZN4+OPPzZdMfn66685c+ZMmdpT5cnIyMDFxYX09HScnZvWHH0hhKguee+U34EQQlRHU3/vbOrnL4QQ1VGV906L1Ji60RUTIYQQQgghhBBCCHHzs1jx81mzZlV76p4xySsjI6M2uySEEDc143umBRJlGwwZP4QQouqa+vghY4cQQlRdVcaORrEq39+lpKQAXHdlPiGEEOVLSUnBxcXF0t2wCBk/hBCi+prq+CFjhxBCVF9lxo5GGZhyd3cH1CKJVR0c+/Tpw6FDh6r1vBkZGfj7+xMTE1PuHMmatH0jddl2XbdfX32/0etTk7brys3we7+e6r4mDaHvN2Pb6enpBAQEmN5Dm6Lqjh81/d1f7/+C/L1bpv1r225s48fN8nuviIwdDa/9pj5+NMSxozbav56G/jdpqbavbb+xjR113b6l267J62HpvjfU9utz7GiUgSnjih0uLi5V/qPT6XQ1fuNwdnYut43aaLsiddl2Xbdf332v6PWpjbZr2830e7+eqr4mDanvN2Pb16561NRUd/yord99ef8X5O/dMu2X13ZjGT9utt97RWTsaHjtN9XxoyGOHbXZfnkay99kfbddXvuNZeyo6/YbStvVeT0aSt8bWvv1OXY0udFl5syZ0nY9ty99t0z70nfLtN9Y2xbX15hfV+l7/bdd1+1L3+u/7bpuvzH3XVSsMb+u0nfLtC99r/+267p96XvlaJRGWMXQUku2ylKxDZu8Pg2PvCYNi7weMn6I8snr07DI69HwNPXXRMYOUR55fRoWeT0anqq8Jo0yY8rGxoaFCxdiY2PTJJ5XVI68Pg2PvCYNi7weMn6I8snr07DI69HwNPXXRMYOUR55fRoWeT0anqq8Jo0yY0oIIYQQQgghhBBCNH6NMmNKCCGEEEIIIYQQQjR+EpgSQgghhBBCCCGEEBYhgSkhhBBCCCGEEEIIYRESmLpGTEwMDz30EM2aNUOv19OyZUueeuopUlJSKvX4Xbt2odFoSEtLq9uONiHTp09Ho9Hw+uuvm23//vvv0Wg0FupV02Z8TTQaDdbW1vj4+DBq1ChWrlyJwWCwdPeEqHcydjQ8MnY0PDJ2CFGWjB8Nj4wfDYuMHU2HBKZKXLx4kd69exMREcG6des4f/48K1asYPv27QwYMIDU1FRLd7HJsrW15T//+Q9Xr161dFdEibFjxxIfH09UVBRbtmxh+PDhPPXUU9xxxx0UFRVZuntC1BsZOxouGTsaHhk7hCgl40fDJeNHwyJjR9MggakSM2fORK/X8+uvvzJ06FACAgK49dZb+f3334mNjeXFF18EID8/n+eeew5/f39sbGwIDg7m888/JyoqiuHDhwPg5uaGRqNh+vTpFjyjm0dISAi+vr4sXbq0wmO+/fZbOnXqhI2NDYGBgfz3v/817XvhhRfo169fmcd069aNJUuW1Emfb3Y2Njb4+vrSvHlzevbsyQsvvMAPP/zAli1bWL16NQBpaWk88sgjeHl54ezszIgRIzh27JhZOz/99BN9+vTB1tYWT09Pxo8fb4GzEaL6ZOxouGTsaHhk7BCilIwfDZeMHw2LjB1NgwSmgNTUVLZt28YTTzyBnZ2d2T5fX1+mTp3Khg0bUBSFBx98kHXr1vHee+8RHh7Oxx9/jKOjI/7+/nz77bcAnD17lvj4eN59911LnM5NR6fT8dprr/H+++9z+fLlMvvDwsKYNGkS9913HydOnGDRokXMnz/f9EY1depUDh48yIULF0yPOXXqFMePH+f++++vr9O46Y0YMYJu3brx3XffAXDvvfeSlJTEli1bCAsLo2fPnowcOdJ0BfCXX35h/Pjx3HbbbRw5coTt27fTt29fS56CEFUiY0fDJmNH4yBjh2iKZPxo2GT8aPhk7LgJKULZv3+/AiibNm0qd/9bb72lAMqBAwcUQPntt9/KPW7nzp0KoFy9erXuOtvETJs2Tbn77rsVRVGU/v37Kw899JCiKIqyadMmxfjne//99yujRo0ye9wzzzyjdOzY0fRzt27dlCVLlph+njdvntKvX7867v3N6drX5O8mT56sdOjQQdmzZ4/i7Oys5OXlme1v3bq18vHHHyuKoigDBgxQpk6dWtfdFaLOyNjRcMnY0fDI2CFEKRk/Gi4ZPxoWGTuaDsmYuoaiKNfdHxUVhU6nY+jQofXUI3Gt//znP3zxxReEh4ebbQ8PD2fQoEFm2wYNGkRERATFxcWAeuVi7dq1gPo6r1u3jqlTp9ZPx5sQRVHQaDQcO3aMrKwsPDw8cHR0NN0iIyNNV4+OHj3KyJEjLdxjIWpOxo6GTcaOhk/GDtFUyfjRsMn40bDJ2HFzsbJ0BxqC4OBgNBoN4eHh5c41DQ8Px83NrUyqrahfQ4YMYcyYMcybN6/Kc+inTJnCc889x+HDh8nNzSUmJobJkyfXTUebsPDwcIKCgsjKysLPz49du3aVOcbV1RVA/j+JRk/GjsZBxo6GT8YO0dTI+NE4yPjRsMnYcXORjCnAw8ODUaNG8eGHH5Kbm2u2LyEhgTVr1jB58mS6dOmCwWBg9+7d5baj1+sBTJFyUftef/11fvrpJ0JDQ03bOnTowN69e82O27t3L23btkWn0wHQokULhg4dypo1a1izZg2jRo3C29u7Xvt+s9uxYwcnTpxg4sSJ9OzZk4SEBKysrAgODja7eXp6AtC1a1e2b99u4V4LUX0ydjQeMnY0XDJ2iKZIxo/GQ8aPhknGjpuQxSYRNjDnzp1TPD09lVtuuUXZvXu3Eh0drWzZskXp3Lmz0qZNGyUlJUVRFEWZPn264u/vr2zatEm5ePGisnPnTmXDhg2KoijK5cuXFY1Go6xevVpJSkpSMjMzLXlKN4Xy5hU/8MADiq2trWmed1hYmKLVapUlS5YoZ8+eVVavXq3Y2dkpq1atMnvcp59+qjRr1kzx9PRUvvzyy3o6g5vPtGnTlLFjxyrx8fHK5cuXlbCwMOXVV19VHB0dlTvuuEMpKipSDAaDMnjwYKVbt27Ktm3blMjISGXv3r3KCy+8oBw6dEhRFLUuglarVRYsWKCcPn1aOX78uPL6669b+OyEqBoZOxomGTsaHhk7hDAn40fDJONHwyJjR9MhgalrREVFKdOmTVN8fHwUa2trxd/fX3nyySeV5ORk0zG5ubnK008/rfj5+Sl6vV4JDg5WVq5cadq/ZMkSxdfXV9FoNMq0adMscBY3l/IGh8jISEWv1yvXxlW/+eYbpWPHjoq1tbUSEBCgvPHGG2Xaunr1qmJjY6PY29vLwF0D06ZNUwAFUKysrBQvLy8lJCREWblypVJcXGw6LiMjQ3nyySeVZs2amf4/TZ06VYmOjjYd8+233yrdu3dX9Hq94unpqUyYMMESpyREjcjY0fDI2NHwyNghRFkyfjQ8Mn40LDJ2NB0aRblB1T0hhBBCCCGEEEIIIeqA1JgSQgghhBBCCCGEEBYhgSkhhBBCCCGEEEIIYRESmBJCCCGEEEIIIYQQFiGBKSGEEEIIIYQQQghhERKYEkIIIYQQQgghhBAW0eQCU0uXLqVPnz44OTnh7e3NuHHjOHv2rNkxeXl5zJw5Ew8PDxwdHZk4cSKJiYmm/ceOHWPKlCn4+/tjZ2dHhw4dePfdd83a+O677xg1ahReXl44OzszYMAAtm3bVi/nKIQQonbJ2CGEEKI6ZPwQQogba3KBqd27dzNz5kz279/Pb7/9RmFhIaNHjyY7O9t0zNNPP81PP/3Exo0b2b17N3FxcUyYMMG0PywsDG9vb7766itOnTrFiy++yLx58/jggw9Mx/zxxx+MGjWKzZs3ExYWxvDhw7nzzjs5cuRIvZ6vEEKImpOxQwghRHXI+CGEEDemURRFsXQnLOnKlSt4e3uze/duhgwZQnp6Ol5eXqxdu5Z77rkHgDNnztChQwdCQ0Pp379/ue3MnDmT8PBwduzYUeFzderUicmTJ7NgwYI6ORchhBD1Q8YOIYQQ1SHjhxBClNXkMqb+Lj09HQB3d3dAvSJRWFhISEiI6Zj27dsTEBBAaGjoddsxtlEeg8FAZmbmdY8RQgjROMjYIYQQojpk/BBCiLKsLN0BSzIYDMyePZtBgwbRuXNnABISEtDr9bi6upod6+PjQ0JCQrnt7Nu3jw0bNvDLL79U+FxvvvkmWVlZTJo0qdb6L4QQov7J2CGEEKI6ZPwQQojyNenA1MyZMzl58iR//vlntds4efIkd999NwsXLmT06NHlHrN27VoWL17MDz/8gLe3d7WfSwghhOXJ2CGEEKI6ZPwQQojyNdmpfLNmzeLnn39m586dtGjRwrTd19eXgoIC0tLSzI5PTEzE19fXbNvp06cZOXIkjz32GC+99FK5z7N+/XoeeeQRvv76a7MUXSGEEI2PjB1CCCGqQ8YPIYSoWJMLTCmKwqxZs9i0aRM7duwgKCjIbH+vXr2wtrZm+/btpm1nz54lOjqaAQMGmLadOnWK4cOHM23aNF599dVyn2vdunXMmDGDdevWcfvtt9fNCQkhhKhzMnYIIYSoDhk/hBDixprcqnxPPPEEa9eu5YcffqBdu3am7S4uLtjZ2QHw+OOPs3nzZlavXo2zszNPPvkkoM7nBjWFdsSIEYwZM4Y33njD1IZOp8PLywtQU2inTZvGu+++a7bcq52dHS4uLnV+nkIIIWqPjB1CCCGqQ8YPIYSoBKWJAcq9rVq1ynRMbm6u8sQTTyhubm6Kvb29Mn78eCU+Pt60f+HCheW20bJlS9MxQ4cOLfeYadOm1d/JCiGEqBUydgghhKgOGT+EEOLGmlzGlBBCCCGEEEIIIYRoGJpcjSkhhBBCCCGEEEII0TBIYEoIIYQQQgghhBBCWIQEpoQQQgghhBBCCCGERUhgSgghhBBCCCGEEEJYhASmhBBCCCGEEEIIIYRFSGBKCCGEEEIIIYQQQliEBKaEEEIIIYQQQgghhEVIYEoIIYQQQgghhBBCWIQEpoQQQgghhBBCCCGERUhgSogaGjZsGLNnz7Z0N4QQQjQiMnYIIYSoDhk/xM1IAlNCCCGEEEIIIYQQwiIkMCVEDUyfPp3du3fz7rvvotFo0Gg0HDlyhKlTp+Ll5YWdnR1t2rRh1apVlu6qEEKIBkLGDiGEENUh44e4WVlZugNCNGbvvvsu586do3PnzixZsgSAxYsXc/r0abZs2YKnpyfnz58nNzfXwj0VQgjRUMjYIYQQojpk/BA3KwlMCVEDLi4u6PV67O3t8fX1BSA2NpYePXrQu3dvAAIDAy3YQyGEEA2NjB1CCCGqQ8YPcbOSqXxC1LLHH3+c9evX0717d5599ln27dtn6S4JIYRo4GTsEEIIUR0yfoibgQSmhKhlt956K5cuXeLpp58mLi6OkSNHMnfuXEt3SwghRAMmY4cQQojqkPFD3AwkMCVEDen1eoqLi822eXl5MW3aNL766iveeecdPvnkEwv1TgghREMkY4cQQojqkPFD3IykxpQQNRQYGMiBAweIiorC0dGR9957j169etGpUyfy8/P5+eef6dChg6W7KYQQogGRsUMIIUR1yPghbkaSMSVEDc2dOxedTkfHjh3x8vJCr9czb948unbtypAhQ9DpdKxfv97S3RRCCNGAyNghhBCiOmT8EDcjjaIoiqU7IYQQQgghhBBCCCGaHsmYEkIIIYQQQgghhBAWIYEpIYQQQgghhBBCCGEREpgSQgghhBBCCCGEEBYhgSkhhBBCCCGEEEIIYRESmBJCCCGEEEIIIYQQFiGBKSGEEEIIIYQQQghhERKYEkIIIYQQQgghhBAWIYEpIYQQQgghhBBCCGEREpgSQgghhBBCCCGEEBYhgSkhhBBCCCGEEEIIYRESmBJCCCGEEEIIIYQQFiGBKSGEEEIIIYQQQghhERKYEkIIIYQQQgghhBAWIYEpIYQQQgghhBBCCGEREpgSQgghhBBCCCGEEBYhgSkhhBBCCCGEEEIIYRESmBJCCCGEEEIIIYQQFiGBKSFuYNGiRWg0mio/bvr06QQGBtZ+h4QQQgghhBBCiJuEBKaEqCc5OTksWrSIXbt2WborQgghhBBCCCFEgyCBKSHqSU5ODosXL5bAlBBCCCGEEEIIUUICU0IIIYQQQgghhBDCIiQwJcQ1/vzzT/r06YOtrS2tW7fm448/Lve4r776il69emFnZ4e7uzv33XcfMTExFbYbFRWFl5cXAIsXL0aj0aDRaFi0aBEAx48fZ/r06bRq1QpbW1t8fX156KGHSElJqfVzFEIIcWO7du2id+/eZuPB32sOrlq1ihEjRuDt7Y2NjQ0dO3bko48+KtNWYGAgd9xxh6lNOzs7unTpYsqg/e677+jSpQu2trb06tWLI0eOmD1++vTpODo6Eh0dzR133IGjoyPNmzdn+fLlAJw4cYIRI0bg4OBAy5YtWbt2rdnjU1NTmTt3Ll26dMHR0RFnZ2duvfVWjh07Vsu/NSGEEJXxzTffoNFo2L17d5l9H3/8MRqNhpMnTwJw5swZ7rnnHtzd3bG1taV37978+OOPZR53/Phxhg4dip2dHS1atOCVV15h1apVaDQaoqKiTMf98MMP3H777TRr1gwbGxtat27Nyy+/THFxcZ2drxA3olEURbF0J4RoCE6cOEG/fv3w8vLi8ccfp6ioiA8++AAfHx+OHz+O8b/Kq6++yvz585k0aRJDhw7lypUrvP/++zg6OnLkyBFcXV0B9YvErl27iIqKIjs7my+//JLHH3+c8ePHM2HCBAC6du1K165d+e9//8sPP/zAqFGj8PX15dSpU3zyySd06dKF/fv3V6v4uhBCiOo5cuQIAwYMwM/Pj3/9618UFxezfPlyvLy8OHbsmGk86Nu3L506daJbt25YWVnx008/8euvv/LBBx8wc+ZMU3uBgYHY2tqSkZHBP//5T1xcXHjzzTdJT09nxYoVvPDCCzzxxBMALF26FC8vL86ePYtWq14/nD59Ohs2bKBVq1YMGTKELl26sGbNGvbt28eqVat48cUXmTp1KgEBAaxYsYIzZ84QERFBUFAQAH/99Rf33Xcf9957L0FBQSQmJvLxxx+TlZXF6dOnadasWT3/hoUQomnLzc3F29ubBx980HSRwWjEiBEkJSVx8uRJTp06xaBBg2jevDnTpk3DwcGBr7/+mj179vDtt98yfvx4AGJjY+natSsajYb/+7//w8HBgc8++wwbGxuOHTtGZGSkaVGm8ePHo9fr6dOnD46OjuzYsYONGzcyd+5c3njjjfr+VQihUoQQiqIoyrhx4xRbW1vl0qVLpm2nT59WdDqdYvyvEhUVpeh0OuXVV181e+yJEycUKysrs+3Tpk1TWrZsafr5ypUrCqAsXLiwzHPn5OSU2bZu3ToFUP74448anpkQQoiquPPOOxV7e3slNjbWtC0iIkKxsrJSrv3oVN5795gxY5RWrVqZbWvZsqUCKPv27TNt27ZtmwIodnZ2ZuPOxx9/rADKzp07TdumTZumAMprr71m2nb16lXFzs5O0Wg0yvr1603bz5w5U2asycvLU4qLi836FBkZqdjY2ChLliypxG9ECCFEbZsyZYri7e2tFBUVmbbFx8crWq3W9N48cuRIpUuXLkpeXp7pGIPBoAwcOFBp06aNaduTTz6paDQa5ciRI6ZtKSkpiru7uwIokZGRpu3ljV3//Oc/FXt7e7PnEaI+yVQ+IYDi4mK2bdvGuHHjCAgIMG3v0KEDY8aMMf383XffYTAYmDRpEsnJyaabr68vbdq0YefOndV6fjs7O9P9vLw8kpOT6d+/PwCHDx+u5lkJIYSoquLiYn7//XfGjRtnlkkUHBzMrbfeanbste/d6enpJCcnM3ToUC5evEh6errZsR07dmTAgAGmn/v16weoV8avHXeM2y9evFimb4888ojpvqurK+3atcPBwYFJkyaZtrdr1w5XV1ezx9vY2Jiyr4qLi0lJScHR0ZF27drJGCOEEBYyefJkkpKSzBZG+uabbzAYDEyePJnU1FR27NjBpEmTyMzMNH3vSElJYcyYMURERBAbGwvA1q1bGTBgAN27dze15e7uztSpU8s877Vjl7HdW265hZycHM6cOVNn5yvE9VhZugNCNARXrlwhNzeXNm3alNnXrl07Nm/eDEBERASKopR7HIC1tXW1nj81NZXFixezfv16kpKSzPb9/cuNEEKIupOUlERubi7BwcFl9v192969e1m4cCGhoaHk5OSY7UtPT8fFxcX087XBJ8C0z9/fv9ztV69eNdtua2trqlV47bEtWrQoM93bxcXF7PEGg4F3332XDz/8kMjISLM6Ih4eHmXOUwghRN0bO3YsLi4ubNiwgZEjRwKwYcMGunfvTtu2bTl48CCKojB//nzmz59fbhtJSUk0b96cS5cumV38MCpvLDt16hQvvfQSO3bsICMjw2yffO8QliKBKSGqwGAwoNFo2LJlCzqdrsx+R0fHarU7adIk9u3bxzPPPEP37t1xdHTEYDAwduxYDAZDTbsthBCill24cIGRI0fSvn173nrrLfz9/dHr9WzevJm33367zHt3eWPG9bYrfysBWpPHv/baa8yfP5+HHnqIl19+GXd3d7RaLbNnz5YxRgghLMTGxoZx48axadMmPvzwQxITE9m7dy+vvfYagOn9ee7cuWYzOK5VXuDpetLS0hg6dCjOzs4sWbKE1q1bY2try+HDh3nuuedkTBAWI4EpIQAvLy/s7OyIiIgos+/s2bOm+61bt0ZRFIKCgmjbtm2VnqOiAuZXr15l+/btLF68mAULFpi2l9cXIYQQdcvb2xtbW1vOnz9fZt+123766Sfy8/P58ccfzbKhqjuluy598803DB8+nM8//9xse1paGp6enhbqlRBCiMmTJ/PFF1+wfft2wsPDURSFyZMnA9CqVStAnZEREhJy3XZatmx5w3EL1BVnU1JS+O677xgyZIhpe2RkZE1PRYgakRpTQqBecR4zZgzff/890dHRpu3h4eFs27bN9POECRPQ6XQsXry4zNVsRVFISUmp8Dns7e0B9YvA35/b+PhrvfPOO9U5FSGEEDWg0+kICQnh+++/Jy4uzrT9/PnzbNmyxew4MH/vTk9PZ9WqVfXX2UrS6XRlxpiNGzeaapMIIYSwjJCQENzd3dmwYQMbNmygb9++phVVvb29GTZsGB9//DHx8fFlHnvlyhXT/TFjxhAaGsrRo0dN21JTU1mzZo3ZY8obuwoKCvjwww9r87SEqDLJmBKixOLFi9m6dSu33HILTzzxBEVFRbz//vt06tSJ48ePA2rG1CuvvMK8efOIiopi3LhxODk5ERkZyaZNm3jssceYO3duue3b2dnRsWNHNmzYQNu2bXF3d6dz58507tyZIUOGsGzZMgoLC2nevDm//vqrXLkQQggLWbRoEb/++iuDBg3i8ccfp7i4mA8++IDOnTubPvSPHj0avV7PnXfeyT//+U+ysrL49NNP8fb2LvcLhCXdcccdLFmyhBkzZjBw4EBOnDjBmjVrTFfjhRBCWIa1tTUTJkxg/fr1ZGdn8+abb5rtX758OYMHD6ZLly48+uijtGrVisTEREJDQ7l8+TLHjh0D4Nlnn+Wrr75i1KhRPPnkkzg4OPDZZ58REBBAamqqaebGwIEDcXNzY9q0afzf//0fGo2GL7/8sszFCyHqm2RMCVGia9eubNu2DS8vLxYsWMDKlStZvHgx48ePNzvu+eef59tvv0Wr1bJ48WLmzp3Ljz/+yOjRo7nrrruu+xyfffYZzZs35+mnn2bKlCl88803AKxdu5YxY8awfPly5s2bh7W1tdmVeSGEEPWnV69ebNmyBTc3N+bPn8/nn3/OkiVLGDlyJLa2toC6MMY333yDRqNh7ty5rFixgscee4ynnnrKwr0v64UXXuDf//4327Zt46mnnuLw4cP88ssvZQqvCyGEqH+TJ08mKysLwGyVVVBXdP3rr7+4/fbbWb16NTNnzmTFihVotVqzEiD+/v7s3LmTDh068Nprr/HOO+8wbdo0HnroIQDT2OXh4cHPP/+Mn58fL730Em+++SajRo1i2bJl9XS2QpRPo0h4VAghhBDihsaNG8epU6ekBqAQQohGYfbs2Xz88cdkZWVVuFiGEA2BZEwJIYQQQvxNbm6u2c8RERFs3ryZYcOGWaZDQgghxHX8fdxKSUnhyy+/ZPDgwRKUEg2eZEwJIYQQQvyNn58f06dPp1WrVly6dImPPvqI/Px8jhw5Qps2bSzdPSGEEMJM9+7dGTZsGB06dCAxMZHPP/+cuLg4tm/fbrYCnxANkRQ/F0IIIYT4m7Fjx7Ju3ToSEhKwsbFhwIABvPbaaxKUEkII0SDddtttfPPNN3zyySdoNBp69uzJ559/LkEp0ShIxpQQQgghhBBCCCGEsAipMSWEEEIIIYQQQgghLEICU0IIIYQQQgghhBDCIhpljSmDwUBcXBxOTk5oNBpLd0cIIRoFRVHIzMykWbNmaLVN87qEjB9CCFF1TX38kLFDCCGqripjR6MMTMXFxeHv72/pbgghRKMUExNDixYtLN0Ni5DxQwghqq+pjh8ydgghRPVVZuxolIEpJycnQD1BZ2dnC/dGCCEah4yMDPz9/U3voU2RjB9CCFF1TX38kLFDCCGqripjR6MMTBlTaJ2dnWVwEEKIKmrK0xBk/BBCiOprquOHjB1CCFF9lRk7mt4kcSGEEEIIIYQQQgjRIEhgSgghhBBCCCGEEEJYhASmhBBCCCGEEEIIIYRFSGBKCCGEEEIIIYQQQliEBKaEaGAik7P5YEcEWflFlu6KEEIIIW5SWflFfPrHRVKy8i3dlUbjj3NXSMzIQ1EUS3dFCCFuKhKYEqIByS0oZsaqg7z56zkW/3jK0t0RQgghxE3q/R0RvLo5nBW7L1i6KzWydOlS+vTpg5OTE97e3owbN46zZ8+aHZOXl8fMmTPx8PDA0dGRiRMnkpiYWOXnemLNYfq9tp0+r/7OP7/8i8/2XORoTBp5hcW1dTpCCNEkSWBKiAZk2bYzRKXkALAx7DKHolIt3CMhqm/58uUEBgZia2tLv379OHjwYIXHfvrpp9xyyy24ubnh5uZGSEhImeMVRWHBggX4+flhZ2dHSEgIERERdX0aQghxU9p3PgXA9Lmjsdq9ezczZ85k//79/PbbbxQWFjJ69Giys7NNxzz99NP89NNPbNy4kd27dxMXF8eECROq/FzB3g5oNZCcVcC2U4m88ks445bvpcOCrdyybAczVh3krd/OcTj6KsUGyaoSQojK0iiNMBc1IyMDFxcX0tPTcXZ2tnR3hKgV+y+mcN8n+wHoEeDKkeg02vk48fP/DcZapyU7v4jFP50iM6+I96f0wEoncWVRNfX53rlhwwYefPBBVqxYQb9+/XjnnXfYuHEjZ8+exdvbu8zxU6dOZdCgQQwcOBBbW1v+85//sGnTJk6dOkXz5s0B+M9//sPSpUv54osvCAoKYv78+Zw4cYLTp09ja2tbqX7J+CGEEJCRV0j3xb9iUKBrCxd+nDX4+sc3ovfOK1eu4O3tze7duxkyZAjp6el4eXmxdu1a7rnnHgDOnDlDhw4dCA0NpX///jds89rz19s5cDI2nb8uXeVQZCph0VdJyyks8xh3Bz1D2ngyuI0Xg4I98HOxq/VzFUKIhqwqY4dVPfVJCHEd2flFPPPNMQDu6+PPc2PbM/Kt3ZxNzGTV3khu6+LHI1/8xZmETADCLl2lXysPS3ZZiOt66623ePTRR5kxYwYAK1as4JdffmHlypU8//zzZY5fs2aN2c+fffYZ3377Ldu3b+fBBx9EURTeeecdXnrpJe6++24A/ve//+Hj48P3xf/u8gAAlEVJREFU33/PfffdV/cnJYQQN4m/olIxJvQkpOdZtjO1LD09HQB3d3cAwsLCKCwsJCQkxHRM+/btCQgIqHRg6lq21jp6B7rTO9Cdfw1tjaIoJGcVcD4pi/NJmey/mMof566Qml3A90fj+P5oHACtvByY2q8lDw5oibVcXBRCCDO18q5YlekaAO+88w7t2rXDzs4Of39/nn76afLybq5BUYiqWLolnJjUXJq72vHi7R1wc9Dz/K3tAXjn9wju/mCvKSgFsO9CiqW6KsQNFRQUEBYWZvYlQKvVEhISQmhoaKXayMnJobCw0PTFIjIykoSEBLM2XVxc6NevX6XbFEIIoTpwsbRUQHJWPkXFBgv2pvYYDAZmz57NoEGD6Ny5MwAJCQno9XpcXV3NjvXx8SEhIaHcdvLz88nIyDC7VUSj0eDlZMOA1h48MCCQ5VN7cnjBKDY81p8nhrWmm78rWg1cvJLNyz+f5vb39hAqn+OEEMJMjQNTGzZsYM6cOSxcuJDDhw/TrVs3xowZQ1JSUrnHr127lueff56FCxcSHh7O559/zoYNG3jhhRdq2hUhGqUdZxL5an80AP+Z2BUnW2sA7unZgj6BbuQUFJOSXUBHP2eeHBEMQOhF+UAjGq7k5GSKi4vx8fEx2369LwF/99xzz9GsWTNTIMr4uKq2WZUvF0II0VTsjywNTBkUuHKTrMw3c+ZMTp48yfr162vUztKlS3FxcTHd/P39q/R4a52Wfq08eHZse36YOYgjC0bz6vjOuDvoOZeYxZRP9/PsN8cwSB0qIYQAaiEwde10jY4dO7JixQrs7e1ZuXJlucfv27ePQYMGcf/99xMYGMjo0aOZMmXKDbOshLgZJWXkMXfjcQCmDwxkcBtP0z6tVsNr47sQ5OnAhB7N+ebxAUzo2QKAo9Fp5BbICjDi5vT666+zfv16Nm3aVOnaURWp6ZcLIYS42WTlF3EyVp3uZq/XATfHdL5Zs2bx888/s3PnTlq0aGHa7uvrS0FBAWlpaWbHJyYm4uvrW25b8+bNIz093XSLiYmpUd9c7KyZ2q8lO/49lH/0D0Cjga//uszXf9WsXSGEuFnUKDBVnekaAwcOJCwszBSIunjxIps3b+a2226r8Hnkire4GRkMCv/eeIzU7AI6+Dmbpu5dq42PEzvnDuOtyd2x11sR6GGPr7MtBcUGwi5dtUCvhbgxT09PdDpdmaW4r/clwOjNN9/k9ddf59dff6Vr166m7cbHVbXN2v5yIYQQjd1fUakUGxT83e1o7+sENO7AlKIozJo1i02bNrFjxw6CgoLM9vfq1Qtra2u2b99u2nb27Fmio6MZMGBAuW3a2Njg7OxsdqsNrvZ6XhnXhRdv6wDAa5vDuZJ5c2SrCSFETdQoMFWd6Rr3338/S5YsYfDgwVhbW9O6dWuGDRt23al8csVb3Iw+/zOSPRHJ2Fpree++7tha6274GI1Gw8DWatHz0IvJdd1FIapFr9fTq1cvsy8BBoOB7du3V/glAGDZsmW8/PLLbN26ld69e5vtCwoKwtfX16zNjIwMDhw4cN026+rLhRBCNFYHSqbx9QvywNdFzUpNyGi8gamZM2fy1VdfsXbtWpycnEhISCAhIYHc3FxArUf48MMPM2fOHHbu3ElYWBgzZsxgwIABVS58XlumDwykUzNnMvKKePWX02b78gqLiUnN4WhMGjvOJHIm4cYX5HMLiskrlEx6IUTjVe+r8u3atYvXXnuNDz/8kH79+nH+/HmeeuopXn75ZebPn1/uY+bNm8ecOXNMP2dkZEhwqpHYeSaJH47GMv+Ojng42li6Ow3Gydh0lm07A8D8OzrSxsep0o/t39qD747ESuFM0aDNmTOHadOm0bt3b/r27cs777xDdna2aZW+Bx98kObNm7N06VIA/vOf/7BgwQLWrl1LYGCg6eKGo6Mjjo6OaDQaZs+ezSuvvEKbNm0ICgpi/vz5NGvWjHHjxlnqNIUQotE5UFKnsl+QO6fj1aBHYw5MffTRRwAMGzbMbPuqVauYPn06AG+//TZarZaJEyeSn5/PmDFj+PDDD+u5p6WsdFqWTujCuOV7+f5oHPf08qetjyMf7b7A2gPR5BeVFqPX67TsmDuUFm72pm2FxQb+++s5jsWkEZWSTXx6HrbWWqYPDOLxoa1xsbe2xGkJIUS11SgwVZ3pGvPnz+eBBx7gkUceAaBLly5kZ2fz2GOP8eKLL6LVlk3isrGxwcZGghqNTXpuIU9/fZS0nELsbax4bXwXS3epQcgrLObpDUcpLFYY08mH+/sGVOnxxoypY5fTycovwtGm3uPLQtzQ5MmTuXLlCgsWLCAhIYHu3buzdetWU4ZtdHS02fv9Rx99REFBAffcc49ZOwsXLmTRokUAPPvss6bxIi0tjcGDB7N169Ya16ESQoimIqegiOOX1fpS/Vt5kJpdAEBiI5/KdyO2trYsX76c5cuX10OPKqdrC1ceHBDI6n1RPLX+CFn5RaaAlN5Ki6eDnuyCYtJzC/nhaBwzhwebHvvTsThW7L5g1l5eoYEVuy+w5sAlHhncCj9XW/ILi8krNBDs48jgYE+sdbWyILsQQtS6Gn2jvXa6hvGKtXG6xqxZs8p9TE5OTpngk06nTmGqzMAiGo8Pd54nLacQgK8PxfD40Nb4u9vf4FE3v/9sPUNEUhZeTjYsndAVjUZTpce3cLPH392OmNRcDkWlMryddx31VIiamTVrVoVjwa5du8x+joqKumF7Go2GJUuWsGTJklronRBCND1hl65SZFBo7mpHCze7m2IqX2P279Ft2XIynsQMtc5Ur5ZuzA5pw+BgTzQaDV8fiuHZb4/z/ZFYnhjW2vSZ0Vg0fVLvFtzXN4AgDwcOR19l2daznE3M5O3fz5V5Lg8HPXd09eOu7s3o7u+GTlu1z59CCFGXapxqUdXpGnfeeSdvvfUWPXr0ME3lmz9/PnfeeacpQCUav8tXc1i1LwqA5q52xKbl8v6OCJbd082yHbOwPyOSWbU3CoBl93TF3UFfrXYGtPIgJvUy+y+kMLydN9n5RXy65yJ9g9wZ2Nrzxg0IIYQQosk5cNFYX8odjUaDr7MamDIGRkT9crK1ZsU/erHmQDR3d29mCkgZje3iy0s/nCQiKYvT8Rl0aubCpZRs9l9MRaOB2SFtaeZqB8DIDj4Ma+fNj8di+eFoHBrA1lqHTqth/8UUkrMK+CL0El+EXsLV3ppb2ngxpI0n7X2dCXC3l+l/QgiLqnFgqqrTNV566SU0Gg0vvfQSsbGxeHl5ceedd/Lqq6/WtCuiAXlz21kKigwMaOXBM2PbMeHDfXx7OJYnhgUT6Olg6e5ZRHpOIXM3HgPgH/0DapTpNLC1J1//dZl9F1JIzMjj4S8OcTI2Az8XW/Y9P6LKWVhCCCGEuPkdiCypL9XKHcCUMRWfnouiKPL5wQJ6BLjRI8Ct3H3OttaMbO/NlpMJ/HA0jk7NXEzZUre08TIFpYx0Wg3je7RgfI8WZtuLig38eT6Z74/Esv1MEmk5hfx0LI6fjsWZjnGytWJYO29evK2D6e9CCCHqS60Up6nKdA0rKysWLlzIwoULa+OpRQN04nI63x9VB7oXb+9A5+YuDG/nxc6zV3hvewRvTe5u2Q5awNXsAh5fE0ZCRh6tPB14oWSZ4OoaUFJn6lRcOuOW7yW+pDZEfHoe5xKzaOdb+WLqQgghhLj5FRQZOFZSX6pPoBqY8inJmMorNJCRWyRZMw3Q3d2bs+VkAj8ejeOZMe34JuwyAJN7V34hKCudlmHtvBnWzpuiYgNHY9LYdfYK+y+mcCk1hyuZ+WTmFfHTsTh2nkli7ui2PDAgUKb7CSHqjVRNFrVKURRe2xwOwPgezenc3AWAOaPasfPsFb4/GssTw4MJ9na0ZDfr1bnETB79319cSsnBXq/j7cndsdfX7L+ej7MtrTwduJisrsTS2ssBRxsrjl1O549zVyQwJYQQQggzp+LSKSgy4O6gJ6gke93WWoervTVpOYUkZORJYKoBGt7eC2dbKxIy8nhj21kSM/Jxs7cmpGP1Mu+tdFp6B7rTuyQ4CWpR/PD4TF795TSHo9NY9NNpVu+Lws1Bj0EBrQb6BrpzV/dmdPRzlsw6IUStk6UZRK3aeTaJ0Isp6K20/Ht0W9P2Li1cGNXRB4OiFkVvKraHJzLhw31cSsmhhZsd3z0xkG7+rrXS9oj26geS/q3c+e7xQdzdvTkAu89dqZX2hRBCCHHzOBKdBkAPf1ezwIKxzpQUQG+YbKx03N7VD4BP/rgIwLgezbGxqr3avPZ6K3q1dOObfw3k5XGdcbKxIiolhyPRaRyLSeNIdBof/3GR29/7k5C3dvP1oZhae24hhADJmBK1qKjYwGubzwDw0KAgWriZr8D3xLDW/HY6kc0n41kyrjOONjf3n9+Biyn888swigwK/YLc+egfvapd7Lw8/x7djuHtvekb5I61TsuQtl4AHIxMJaegqMZZWUIIIYS4eRyOvgpAjwBXs+0+zracScgkMV0CUw3V3d2bs+5gaTBocp/KT+OrCq1WwwP9W3JbZ18OlwQytRrIyi9i26kEfg9P4sKVbJ799jjOdtaM7exbJ/0QQjQ98s1V1JoNf8VwPikLN3trnhjeusz+7v6upulnW08mcE+vFuW0cnOIS8tl5trDFBkUbu/ixzv3dcdaV7sJinZ6HYOCS1fga+3lYFoB8cDFVIa3r35xdSGEEELcXIwZUz3/Vmjbz0Uyphq6voHuNHOxJS49j24tXGjv61ynz+fhaMOojj5m2+7u3pzMvEL+s/UMX+2P5plvjtHBz4mWHk1zUSMhRO2SqXyiVmTlF/H2b+cAdelaZ9uyNQo0Gg3jeqjTzb4/Eluv/atPeYXF/OurMJKzCujo58yb93ar9aBUeTQaDUPbqVlTFU3nKzYofPrHRXacSazz/gghhBCiYUjMyCM2LRethjIlBYwF0OMlY6rB0mo1TB8UCMBjQ8pe/K0vTrbWLLyzEz0DXMnMK2Lm2sPkFRZbrD9CiJuHBKZErfh49wWSswoI8nTg/n4BFR43viQwtfdCMgk34Qcgg0HhxU0nOX45HVd7az5+oBd2+tqrAXAjQ9qogak//r+9+w5vslz/AP59s7v33qWlpYyWWTYi24mLISriHrg4jh8eBefR4zrq0eNAERdDHLgQlL33LqV00r33TJu8vz8yoHbQNmmTtN/PdfVSkjdvnpCSJ+/93M99txGY+mp/Bl7dmIh7vzra5jFERETUuxy7oNvGF+XrDIe/lVLw1WdMFTBjyqrdOyEcJ5dNN9abshS5VIIPbh0GN3s5zuRU4vkNZ7AvtRhbEwuw6UweKuoaWzymsLIe3x3JwuGMUlTVt7yfiIhb+chkeRV1WLFbV4zxmZnR7WYHBbnbY2SoGw5nlOHnEzm4f5LlVn3MpbCyHvtSS7DzfBF2JxehuFoNiQB8MH8YgtztL38CMxob4QGZREBacQ0yS2oR7HHx+fMq6vDW5iQAusyph789hh8fGotIn4sd/ERRZKcVIiKiXuZ4VjkAYNjf6ksBlxQ/74ULhr2JIAhW0zXR39UO/5kbhzu/OIz1R7Ox/mi28b5hwa747v4xkOmvB+obNbj980NIKqgyHhPiYY/ZcQG4f1I4a6ISEQAGpsgMfj+Vh/pGLYYFu2LGQJ/LHn/D0EAczijDT8dtNzC1J7kYv5/Ow8H0EqQV1TS7z0EhxXPXxGB8pGcbj+4+zio5hoW44VB6KXYmF+F2jxDjfct/TkCNWoOhwa6QSQQczijDXV8exo8PjsPxzDKs3JuOA2mlePuWWNzUi+t/ERER9TWGjKmhf6svBVzcyseMKeqMK6K88c+rBuDrAxeglElgp5AipbAaxzLL8f7WZCyZHgUA+Pemc0gqqIKTSgYnpQy5FfW4UFKL97Ym47sjWfi/WdGYHO2NA6kl2J1cjLTiasQFuWJipBeGhbj1SDkMIrI8BqbIZCmF1QCA8RGeHcq2uXqwH174JQHn8qtwNrcSMf7dW8DR3PIq6nDHyoPQiro/CwIQ4+eMCZFemNTfC8ND3KCQWW4SndTfC4fSS7HrfBFuH60LTG1OyMefZwsgkwh47cbB8HZSYfaHe5FZWotxr2+DWqM1Pn7j6TwGpoiIiHoJdZMWp3IqALSRMaXfyldSo0ZDkwZKWc+VICDbdu/EcNw7Mdz4519O5uLRNcfxwfYUjIvwREOTFl/szQAAvD9vKCZHe6OsRo1dyUV4c3MSssvq8NjaEy3OuzelBB9uT4WTUoaHJkfgwStscyGbiDqOgSkymSFjKNzLsUPHu9jLcWW0NzYl5GPDiRybC0ztSS6GVgTCPR3w7FUDMDLU3WpSqwFdYOrNzUnYm1KMd7ech7+LHf6zRVeY/t6J4cZOLivvHIEb/rcPVfVNcLGTY3ykJ34/lYdz+VXtnZ6IiIhsyNm8SqibtHCzlyPMs2UHNTd7ORQyCdRNWhRWNvR4GQLqPa6L9ceu80X4/mg2nlh3Ao36Vdw7xoQYu0W7OShwfVwAZgz0xWe70/Dh9lTUNWoQ5umAiZGeiPRxwpGMUuxKLkZpjRr/3nQO9gopFo4NteArI6LuxsAUmSytWJcx1a+DgSkAuGFYgC4wdTwHz8yMhlTSdqbV3pRilNc2mq3YY1V9Iy6U1CLM06FFAdCO2J9aAgCYNdgXU2Muv3Wxp8X4OcPXWYX8ynq8uyXZeHuwuz0evTLS+OcIbyf89NBYJOZVYeoAH6g1Wvx+Kg855XWorG9stbMiERER2ZZLt/G1ltkuCAJ8nVXILK1FQWU9A1NkkheuG4gjGaXIKKkFAER4O+LZqwa0OE4ll2LxlZFYODYU1Q1N8HOxM9532+gQaLUiPtiegnf+Oo8Xfk2Al5MSVw22bOF3Iuo+DEyRSSrqGlFcrQYAhHm1XIVry+QobzipZCisasDpnArE/a11sUFOeR0WfXEYao0W9sqRmBzlbfKY7/ziMI5eKIMgACHu9ojydUKQmz18XVTwd7XDqDB3eDoqW32sKIrYm1oMABjbr+drSHWERCJg1V0j8VdCAXIr6pBTXo/KukY8f82AFh0CI7ydEOGtK35uByn8XVTIrahHUn4VRoa6W2L4REREZEbtFT43MASm8lgAnUzkqJTh/flDcdNH+wAA782Lg0re9vZQJ5UcTq0shkokAh65MgJFVQ34+sAFPL72BNwdFBgd7tFtYyciy2FgikySVqTLlvJxVsKxE9lHCpkE4/p5YlNCPnadL2ozMPXh9hRj/aPlPydgzBMe7U5ul5NbXoej+pVDUQQySmqNKzoG4Z4O2PqPSa2uKqYV16CgsgEKmQTDQ1oWELUW0b7Oxi17nXqcnzNyK+pxjoEpIiKiXqG9wucGPi4sgE7mMyTQFRseHgcBgkklOwRBwAvXDURRVQM2JeTj/q+PYvczk5nVT9QLsc0BmSTVUF/Ks+Pb+AwmRXkBAHaeL2r1/qzSWnx3OAsA4KySIbO0Fh/tSO3iSHV26Z9rWLArjj43Fd/eE4/l18bg3glhuHqIH5QyCdKKa3Ayu6LVx+/Tb+MbHuxmUoDMWkX56rKnzuVVWngkREREZKrCynrklNdBIgCxbSwCAoCvsy5TPJ8ZU2QmA/1dzFJHVioR8O68OAS42qGirhFHM8rMMDoisjYMTJFJDBlT4Z3Yxmcwsb8uMHU8swwVtY0t7v9wewqatCLGR3ji9ZuGAAA+2pmK9OKaLo93R5IuMHVFlDc8HJUYF+GJRePC8M+rY/DhrcMwTV8z6o8zea0+fr9xG1/vTCOONgSmWACdiIjI5h3KKAUARPk6t5vZ7uOsy5jKZ8YUWSGVXGrcwnc8k4Epot6IgSkyiaEjX2cKnxsEuNohwtsRWhHGuk0GWaW1+P5oNgDgiWmRmDXIFxP7e0HdpMXyXxIgimKnn69Ro8XeFN3zTNIHxf5u1iBdUcU/Tue3eA6tVjQWPh8b0TsDUwP8dCtbSflVXfo7JiIiIutxIE33vWV0ePvb8w2Fp7mVj6zVUH2NNEPNNCLqXRiYIpMYOvJ1JWMKuBgg2pnUfDvff7clo0krYkKkJ4aHuEMQBLx03UAoZBLsOl+ELYmFnX6u45nlqGpogruDAoMDXFo95oooLyhlEmSW1uLs37azJeZXoqy2EfYKKYYEunb6+W1BmKcD5FIB1Q1NyC6rs/RwiIiIyAQH0nQZU5crGO3rotvKx+LnZK0MgakTmeXQarl4StTbMDBFXabRisgo1hUO70rGFHBJYOp8kTFDJ62oGj8cywEAPDGtv/HYUE8H3DE6BACw4UROp59r53ldMGtCpCckkpaFzQHAQSkzjmnTmfxm9xmypUaFuUMu7Z3/dORSibFLH7fzERER2a6iqgakFFZDEID4sPYzptzsFQB03ZaJrFGUjxPs5FJUNTQhVV9KhIh6j955dU09IrusFmqNFgqZBP6udl06x6gwdyhlEuRX1iO5sBoarYinvj8FjVbEldHeGPa3DjJXDdFttduVVAR1k7ZTz3WxvlTr2/iMzzFY9xwbTzevM2UofD6un2enntfWDGABdCIiIpt3MF33vSXa1xmu+sBTW5T6hi6d/W5F1FNkUgmGBOp2PBzPLLfsYIjI7BiYoi4z1JcK83CAtI0MpMu5tJjhzqQirNidhqMXyuColOHl2YNaHB8X6ApPRwWqGppwWF/QsyMKq+qRkKsLtEyIbD8wdeUAb8ilAlKLapBcoMsaatRocVBfp2FMLy18bmDszFfAjCkiIiJb1dH6UgCg0GeCNzRpWWOSrNZQ/YL1MRZAJ+p1GJjqI5b9fAbXfbAHlfXmS9E2pNH28+5afSkDQ3e+dUey8M6f5wEAy66JQUArWVgSiYDJUd4AgC2JBR1+jt3ndUXPBwe4wNNR2e6xzio5xkfosqL+0G/nO5xRihq1Bi52csT4md761ppF618fM6aIiIhsV0frSwGAUn7xkqBRw8AUWSdjAXQzZEwdvVCGVXvT0aRhliCRNWBgqg84l1+Jr/ZfwKnsCuN2NnNIK9ZlTIV7dq2+lIGhplNKYTXUGi2ujPbGLSMC2zx+ygAfAMDWxMI2V/UKq+rx+Z50HMssg1YrYsf5jm3jM5il38730/EcPL72OO74/BAAYGw/jzbrU/UWhq186cU1qG/UWHg0RERE1FmdqS8FXMyYAoCGJs79ZJ0MganzhVWoMmGxvVbdhHu/OoIXfj2L538+wyxBIisgs/QAqPut3JNu/P+DaSW4LtbfLOdNKzKtI59BPy8HBLjaIae8Di52crx+42AIQtvBnwmRnlBIdZ3zUgqrEenj1GJct39+CDnluq5yfi4qYzFPQxDscqYN8IFUIiC9uAbp+gBcfJg7/nn1gK68RJvi5aSEm70cZbWNSCmsxqA2OhgSERGRdepMfSkAUMouBqZYZ4qslbeTCoFudsguq8Op7AqMi+ha3de1h7JQWqMGAKw5lAV/Fzs8MiXyso9LK6rG63+cw/hITyyID+lyKRMiaokZU71cUVUDNhzPNf75YHrH6zJdTqq+xlR4FzvyGQiCgDkjgiCXCnj9xsHwdla1e7yDUmas87QlsbDZfaeyy3Hzx/uRU14HbyclHBRS5FXUo1atgbNKhrgg1w6Nyc1BgRuGBkAmETA7zh+/Lh6PdfePQaCbfZdeoy0RBAHRvrrtfInczkdERGRzOlNfCtDN/ZfWmSKyVoY6U8e7WGdK3aTFit1pAHSL3QDw9l/nsf5IVruPq2/U4KFvj+HPswVY9nMCZn+4F6eyy7s0BiJqiYGpXu7rAxeg1mgRpc8qSimsRnF1g8nnrapvRFGV7jymZkwBwGNTI3H6hRnGLXSXMzXGsJ3vYp2p3clFmP/pAZTWqDE4wAUbH5uAo89Pw4o7RuC20cF485ZYyKQd/5V/46YhOPfyTLw7bygGB/atrKFoP30B9HwWQCciIrI1nakvZWDImmLGFFmzofpF5q7WmdpwPAd5FfXwdlLis4Uj8OAV/QAAS388jX2pxW0+7s3NSTiXXwVXezmcVDKczqnA9R/uxYu/JrD0BZEZMDDVi+xNKcb1H+7FT8ezAegi+98cuAAAeHRKJKL1tYMOmSFrytCRz8tJCWeV3OTzAboOfR01JVpXAP1YZhmKqxvw4fYULFx5CDVqDcZFeGDNfaPh6aiESi7FtBgfvDJ7MGYM9O3UeCQSoVOBrN7E8LuSxMAUERGRTelsfSkDQwF0W8uY2rVrF6699lr4+/tDEARs2LCh2f133nknBEFo9jNz5kzLDJZMZiyAnlXe6dpQGq2Ij3amAgDunRAOpUyKp6ZH4fo4fzRpRSz98XSrNdZ2nS/C5/rSKO/MicXWf0zC7Dh/iCLwxd4M3PC/fcYSJ0TUNX3zqruX+nhnKk5mleOJdSexZN0JfHPgAkpr1AhwtcOMgT7GLycH9endpkgr1teX8jQ9W6or/F3tEOPnDK0IzP5wL97cnAStCNw0LBAr7xwJRyXLp5nCsJUvIbcCWi0LQlLXfPjhhwgNDYVKpUJ8fDwOHTrU5rEJCQm46aabEBoaCkEQ8O6777Y45oUXXmhxcREdHd2Nr4CIyPZ0tr6UwcWtfLaV/VFTU4PY2Fh8+OGHbR4zc+ZM5OXlGX/WrFnTgyMkc4rxd4ZCKkFpjRqZpbWdeuwfZ/KQXlwDFzs5bo0PBqBbiH71hsHwdlLiQkmtMQBlUFqjxj/WnwQA3D46BFdG+8DbSYV35w3FF4tGwsNBgcS8Slzz3z1YdzgTxdUNLKZO1AUMTPUSVfWNxnoCEgH48XgOXvk9EQCwaFwoZFIJ4vXp3Ib0blOkmam+lCmmDtBlTWWX1UEpk+CNm4bgrVuGQCnreOYVtW6AnzOcVDKU1TbieFZ5s/uqG5rw3pZkZHXyywD1LevWrcOSJUuwfPlyHDt2DLGxsZgxYwYKCwtbPb62thbh4eF4/fXX4evbdnbjwIEDm11c7Nmzp7teAhGRTTp6QVd7pzPZUgCg1Geu29pWvlmzZuGVV17BDTfc0OYxSqUSvr6+xh83N7ceHCGZk1ImxcAA3QLqsU7UmRJFEf/brsuWWjQuFA6XLGI7KmVYepVuoeuDbSkoqKwHoPvO+/C3x1BU1YAIb0c8e1XzJkiTo7yx8bEJGBPugVq1Bs/8cBojXtmCIS/+ies/3Ivt51r/zkNELZklMNWZVXEAKC8vx8MPPww/Pz8olUr0798fGzduNMdQ+qxd54vRqBER7umAdfePQYCrHQDdB+3ckUEAgFH6LyhJBVXGThRdlapPV+1nhvpSXXVtrD9kEgHhXg74efE4zBkZ1G43P+o4hUyCyVG6wN+fZ/Ob3fffrcn4z5bzeH3TOUsMjWzEO++8g3vvvReLFi1CTEwMPv74Y9jb22PlypWtHj9y5Ei8+eabmDdvHpRKZZvnlclkzS4uPD271pGHiKi3MiweGrbld1RvLn6+Y8cOeHt7IyoqCg8++CBKStrfPdDQ0IDKyspmP2Q9DNc0Px7L6fBj9qWW4GxeJewVUtw5NrTF/bPjAjAs2BW1ag1e/+McSqobcOuKA9ifVgI7uRTvzYuDnaLl4rePswrf3BOPp2ZEIdDNDoIAVNU34WRWOV74NYE7D4g6yOTAVGdXxdVqNaZNm4aMjAx8//33SEpKwooVKxAQEGDqUPo0QxHwKQO8MTLUHRsfnYAnpvbHR7cNg5O+BpSnoxKR3roMJ1PrTBmKYvfztlzGVKSPEw79cyr+fHyicesZmc/0gboC838lXCww36TR4sfjui8BRzO61g2Fej+1Wo2jR49i6tSpxtskEgmmTp2K/fv3m3Tu5ORk+Pv7Izw8HAsWLEBmZma7x/Pigoj6mvRiXWAqtJPlFgw1pmwtY+pyZs6cia+++gpbt27Fv//9b+zcuROzZs2CRtP2lsXXXnsNLi4uxp+goKAeHDFdzm3xIZBKBOxOLsaZnIoOPebr/bq6uzcPD2x1i6sgCHjhuoEQBOCn4zm49r97cCq7Am72cqy5bzQG+rfdCEkqEfDw5AjseeZKJL40E388NgFOShkulNRiX6rpJVSI+gKTA1OdXRVfuXIlSktLsWHDBowbNw6hoaGYNGkSYmNjTR1Kn6XRitiepAsEThmgCya42Mvx2NRITIj0anZsvL5tsKH+QFdU1DYaV+NiA127fB5zcHdQ9NkC5d1tUn8vKKQSpBXXIKVQlyG3J6XY2I0xv7IeeRV1lhwiWani4mJoNBr4+Pg0u93Hxwf5+fltPOry4uPjsWrVKmzatAkfffQR0tPTMWHCBFRVtV2knxcXRNSXqJu0yC7TbbXvbB1QW60xdTnz5s3Dddddh8GDB2P27Nn47bffcPjwYezYsaPNxyxduhQVFRXGn6ysrJ4bMF1WkLs9rhmi6+T9ya60yx6fV1GHv/SL+LeNDmnzuCGBrpg7Qvc9IbeiHgGudvj+wbGI03cC7AiVXIoBfs6YPVSXdLHmUPsLaESkY9IVfVdWxX/55ReMGTMGDz/8MHx8fDBo0CD861//anfVgive7TuWWYay2ka42MkxIqT9PfPxYbo6UwdbqTOl1Yp49qfTmPL2DhRXN7R5jhPZ5QCAUA97uDt0vKgm2RYnlRxj+ul+Xwzb+X74W8r0sQvlPT0s6sNmzZqFW265BUOGDMGMGTOwceNGlJeX47vvvmvzMby4IKK+JLO0FloRcFBI4eXU9rbo1thqV77OCg8Ph6enJ1JSUto8RqlUwtnZudkPWZf7JoYDAH4/lYvMkvbrnq45mAmNVkR8mDv6+7S/xfXJGVEI93TA0GBX/PDgWPTrYj3d+aN0xdU3J+QbF3Uvp6K2EYVV9V16PiJbZ1Jgqiur4mlpafj++++h0WiwceNGPP/883j77bfxyiuvtPk8XPFu3xb9CsAVUV6XzR4yZEwl5leiorax2X3v/HUeqw9mIrWoBhtP57V5jhOZ5QDQqdUDsk3G7XxnC1BZ34g/E3T/ro2tejtRdJL6Dk9PT0ilUhQUFDS7vaCgoN3C5p3l6uqK/v378+KCiEgvQ7+NL8TDodN1N3tzjalLZWdno6SkBH5+fpYeCplgoL8LJvb3glYEPtvTdtaUukmLNYd1i1J3jAm97Hk9HZXYsmQSfnpoHHxdVF0eX4y/M+KCXNGkFfH90ezLHl9Wo8aMd3dh9L+2YumPp4wF2In6ih7fA6XVauHt7Y1PP/0Uw4cPx9y5c/HPf/4TH3/8cZuP4Yp3+7YmNt/G1x5vJxXCPR0gisD+tIvb+b4/mo0Ptl+8uNuZVNTmOY5n6YIRDEz1flP1v1PHM8uxam8GGpq0iPR2xO36NOi/d0Opb9QYa1tQ36VQKDB8+HBs3brVeJtWq8XWrVsxZswYsz1PdXU1UlNTeXFBRKRnmIPDutCcxtDV2NYCU9XV1Thx4gROnDgBAEhPT8eJEyeQmZmJ6upqPPXUUzhw4AAyMjKwdetWXH/99YiIiMCMGTMsO3Ay2QP6rKnvjmShpI3dHn+e1WUseTkpjQuulyORmKeZ0q3xuqypNYcyL1sE/aXfziK/sh5aEVhzKAuT3tyOtzYnoUljW/8eibrKpMBUV1bF/fz80L9/f0ilF7saDBgwAPn5+VCrW+8UxxXvtmXo6//IJAIm9fe6/AMAxIfrtmctXn0MD397DF/vz8DSH08BAGYO1L1v+9NKWq0xIIoiTmSVAwCGBrPVbm/n46wyBiD/uy0ZAHDT8EAM07/3Z3Irm/2e/OO7k5j81o5Ote+l3mnJkiVYsWIFvvzySyQmJuLBBx9ETU0NFi1aBAC44447sHTpUuPxarXaeGGhVquRk5ODEydONMuGevLJJ7Fz505kZGRg3759uOGGGyCVSjF//vwef31ERNYovUQfmPLoQmDKRoufHzlyBEOHDsXQoUMB6OafoUOHYtmyZZBKpTh16hSuu+469O/fH3fffTeGDx+O3bt3t9sBlmzDmH4eGBLogvpGLb7UFzf/O0PR8/mjgiHv4bq01w7xh5NKhszS9ougbz9XiJ+O50AiAK/eMAjDgl1R36jFB9tT8Pme9B4cMZHlmPSvsyur4uPGjUNKSgq02ouT3vnz5+Hn5weFgvWKOsuwjW9kqDtc7OQdesy9E8IwLFiXWvr76Tw8/3MCGjUirhrsiw8XDIOXkxK1ak2rXdcySmpRXtsIhUyCAX4MEPYF02J0q0uNGhESQddON8TDHm72cqibtEjM0xWezq+oxx9ndFtA97MDSZ83d+5cvPXWW1i2bBni4uJw4sQJbNq0ybj1OzMzE3l5F7cM5+bmGi8s8vLy8NZbb2Ho0KG45557jMdkZ2dj/vz5iIqKwpw5c+Dh4YEDBw7Ay6tjQXkiot4uXd+cJqyThc8B2y1+fsUVV0AUxRY/q1atgp2dHTZv3ozCwkKo1WpkZGTg008/bVGGhGyTIAh4YFI/AMA3By60+N1Nyq/CwfRSSCUC5o/q+VIwdgopbtAXQV+xOw0phVVo/FsGVFV9I5796TQA4K5xYVgQH4IfHhyLp2ZEAQB+/Ft9V6LeSmbqCZYsWYKFCxdixIgRGDVqFN59990Wq+IBAQF47bXXAAAPPvggPvjgAzz22GN45JFHkJycjH/961949NFHO/3cmsukRPYFF7fxeXf4MeFejvjxoXE4m1uJ1YcuYMPxXAz0d8bbt8RBKhEwMdILPxzLxs7zRRgb4dnssSf02/gG+TtDIWM3vL5gxkAfvLk5CQAwLsLTuN9+aLAbtp0rxLELZYgLcsUPx7Jh+CeZlN92lzTqOxYvXozFixe3et/fuyGFhoZCFNv/TF+7dq25hkZE1Ctl6DOmQrsQmLLVjCnq26bH+MDXWYX8ynr8mVCAa2P9jfet2pcBAJg2wAd+LnYWGd+t8cH4av8F7DxfhJ3vFEEmERDu5YC4IFcMDXbD4fRS5FXUI8TDHv+YrgtGCYKA2+JD8O6W80gqqMK5/EpE+zIhgHo3kyMLnV0VDwoKwubNm3H48GEMGTIEjz76KB577DH83//9X6ef+2RWy4yerYkFfabGTVV9Iw5n6LrrTe1Afam/i/F3xiuzB+P0C9Ox9r7RsFPotldOitJlH+w837LO1MXC59zG11f083JEP32tipuHBxpvH2YogJ5VDlEU8cMlhR0ZmCIiIupZdWoN8ip0BZPDu5QxZZs1pqhvk0klmDNSlw215lCm8fbCqnr8cEz33fSu8WEWGRsARPs646kZUYgNdIG9QoomrYjzBdX47kg2lv54Gj8e12VEvX7jEOO1GAC42MtxRZQu8eCXE7kWGTtRTzI5Ywro3Ko4AIwZMwYHDhww+Xm3ny/CFYNDjX/el1KMu788Aj8XFXY8dYWxiGNvtS+1BE1aEaEe9l1aGTP4e9eWCRGeEATgXH4V8ivqm3WkOK6vLxWnD0pQ7ycIAj64dRhOZJXjuktWoQw1xo5nluFYZhnSimsgkwho0opILaqGuknLrDoiIqIeYsiWcrGTw82h8+UxmDFFtmruyCB8sC0Z+1JLkF5cgzBPB3yxNwPqJi2GBbtiZKhlF9QfnhyBhydHQKsVkVdZj7O5lcbvz4l5Vbg1Phhj+nm0eNx1sf7462wBfj2Vi6dmRHW60yaRLbHpq8Yd5wqb/fknfcQ5r6Ie649cvi2nrTNkNHW06HlHuTkoEBvoCgDYdUnWVH2jBmdzKwEAQ9mRr08Z4OeM+aOCm02IQwJdIAhAdlkdPtqRCgC4Ls4fjkoZmrSi8QsyERERdT9jR74uLlbaao0pogBXO2N20dpDmaiqb8Q3B3RFzx+Y1M9qAjoSiYAAVztMi/HB0zOjsfa+MTi5fDqemRnd6vFTB/jAXiFFVmmdMTmAqLey6cBUenEt0oqqAegm0U0J+cb7PtqR2qtXfERRxM4kfWAqyvyFfw3Brku38yXkVqBJK8LTUYFAN8vs0ybr4aSSo7+3EwBgi77W2S3Dg9DfxxGALuOOiIiIeoapgSlmTJEtmz8qGACw/mg2vtyXgar6JvTzcuhSuRNrYaeQYrq+CRG381FvZ9OBKeBiV7pd54tRVd8EH2clvJyUyCmvw4/Hem/WVFpxDXLK66CQSjA6vGXqp6km6gNTu5OL0KTvHnH8kvpS1rLyQJY1LMTV+P+BbnaID3NHlL4443kGpoiIiHpMhj4wFephasYUA1NkeyZHecHXWYXSGjX+syUZAHD/xH6QSGz7muW6OF0Zjd9O5RmvyYh6I9sPTJ3VZWr8elIXRb5miD/unxgOAPhwR0qLlpy24ou96XhvS3KbXaoM2VKjwtxhrzBLqbBmYgNd4GInR2V9E05mlwO4WF9qKOtLkd7QS4rg3zw8EBKJgCh9xlRSAQNTREREPcWYMeXV1YwpffHzRtv87kx926VF0DVaET7OSlw/1P8yj7J+EyK94GYvR3F1Aw6klVp6OETdxuYDU0culCKnvA5/ndVlTl0b648F8SHwdFQgq7QOG/R1p2zJyaxyvPjrWfxny3mcyq5o9Zjuqi9lIJNKMD7SEwDwyOrjeGr9SRxMKwHA+lJ00aUZUzcN03Xs6++r297HznxEREQ9x1DbMayLGVNKfcMStY0u6hLNHRkEQ4LU3ePDekUjLLlUglmD/QAAH+9MRWFlvYVHRNQ9bDowFeXrBK0IPL/hDOoaNQhyt0NsoAvsFFLcp8+a+mB7Cspq1BYe6UVf7svAp7tS28yEAoD/bDlv/H9DwO1S9Y0aHNAHibqjvpTBzcMDIZcKyK2ox/qj2SiuVkMQgMGBLt32nGRbIryd8PTMKLwyexCC3O0BAFE+usBUZmktatVNlhweERFRn1BZ34jiat333VBP+y6dwxCYYvFzslUBrnZ4dEokpkR749b4EEsPx2zmjtAF3PakFGPCG9vx8m9nUVTVYOlhEZmVTQemJuuzhbbpu/NdO8TfWPvottEh8HBQ4EJJLaa8sxM/HM1uNxhkTmdyKvDBtmTUNzaf2E9nV2D5Lwn418Zz+J++i9nfHcssw46kiwXH/zyb3+KYg+mlaGjSwtdZhUhvR/MO/hKTo7xx5J/T8MWdI/HQFf0wtp8HHp/SH04qebc9J9meh66IwG2jL07+Ho5KeDoqAQDJBdWWGhYREVGfYagv5emo7PL3NGPGFGtMkQ17fGp/fH7nSDgqzV/qxFJig1yx+t7RGBHihoYmLT7fk46Jb2zHO38mobqBi8DUO9h0YOqK6ObZQtfGXtxHbK+QYdWiUYjycUJpjRr/WH8S81ccwHeHs5CQW9Fttae0WhGPrjmOt/48jw+3pzS7b8XuNOP/v7k5Cb+fymvx+P/8pcuWmjnQFzKJgPMF1cYvGwa7LtnG191FyF3s5Zgc7Y2nZ0Zj9b2j8djUyG59Puodonz1daa4nY+IiKjbGepLhXexIx8AKGQsfk5krUaHe2D9A2Pw1V2jEBvkirpGDd7floJJb2zHqr3p0Gh7JgGDqLvYdGAqxs8FPs66zIwIb0dE62vbGAwOdMFvj47HMzOjoZJLcCCtFE//cApXv78HA5dtxhubzpl9TLtTipGm/3Lw+Z50Y5plTnkdfj+tC0QZ2pYu+e4ETuoLigPA4YxS7E4uhkwi4J9XD0B8uDuAltv5jPWlunEbH5Ep+uu387EAOhERUfczBKa6uo0PgLEeDzOmiKyTIAiY2N8LGx4ai48WDEO4pwNKatR44dezeOX3s5YeHpFJbDowJZEIuHqwLkvqpmGBrWYPyaUSPHhFP/z1xCTcPzEcY8I94KSSQa3R4n87Uo21mszly30ZAABBAGrVGmPW1Bd7dJHssf088Mntw3FltDcamrS4+8sjeGPTOfx8IgdvbkoCANwyIghB7vaYHuMLoPl2vqzSWqQUVkMqETAuwtOsYycyF0OQ+DwDU0RERN3O2JHPs+slHpgxRWQbBEHArMF+2PzERCy7JgYA8MXeDGPyApEtsunAFAA8PTMKXywaaSx23pYgd3ssvWoA1tw3GieXTcet8cEAgFd/T4TWTKmPF0pqsD1JV+/q5esHAQBWH8xEYl4l1h7OAgDcOzEcUomA9+cPRbSvE4qrG/C/Hal4bO0JHMoohVwqYPGVEQCAaTG6zKojF8pQXN0AURTx4q+6aPjIUDe42LHWE1knQ8bUOW7lIyIi6nYZxsCUKRlTrDFFZEvkUgnuGh+GhWN0tV6fXH8SpVbU9IuoM2w+MKWSSzE5yhtSScdrLUkkApZM6w9HpQyncyqw4USOWcby1f4LEEXgiigv3DY6BGP7eUCt0eK2zw6iuqEJkd6OuEJfsN1RKcN3D4zBy9cPxK3xwRge4gZPRwUemxKJAFc7AIC/qx0GBThDFIGtiQVYfyQbWxILoJBKsPzagWYZM1F3iNQHpoqqGjhBEhERdSNRFI1lJEJNqDFl2MrHrnxEtuX/Zg1APy8HFFU14NkfT/dYwy8ic7L5wFRXeToq8fBkXWbSG5uSUKc2bRKuaWjCd0d0WVELx4YCAJ6eGQ0AKNFfmN87IbzZdkNnlRy3jwnFv24YjB8eHIsjz03D4iubFxc3bOdbfTATL/6aAABYMr0/Bvg5mzReou7kqJQhyF0XYOV2PiIiou5TXK1GVX0TBAEI9TBD8fNGZkwR2RI7hRTvzRsKmUTApoR8rD+SbekhmUzdpG3R4Z56tz4bmAKAReNCEeBqh/zKenx2Sce8rvjpeA6q6psQ6mGPSZG6rKi4IFfMGKjbjufpqMT1Q/3bO0WrpusffzK7AjVqDUaFuuPeCe1vWySyBlGGAujczkdERNRtUouqAQCBbnZQyaVdPo9hK19DN3WuJqLuMyjABUum9wcAPPfzGbPXUe4JoijiUHopnvn+FIa//BfGvr4NZ3IqLD0s6iF9OjClkkvxzCxdVtNHO1NRXN3QpfOIooiv9mcAAG4fEwrJJdsKn7s6BuMjPPHS9QONKdKdEeXjZMw8cVBI8fac2E5tWySyFNaZIiIi6n5pRbptfOEmFD4HLmZMqZu03ApEZIPun9gP02N8oG7S4t4vj+BsbqWlh9RhhVX1mPnubsz5ZD/WHclCVUMTSmvUuP3zgziXbzuvg7quTwemAODaIX6I8XNGrVqDTWfyL/+AVmSW1uJ8QTUUUgluHh7Y7L4gd3t8c088rhrs16VzC4KABfEhkEoEvHLDIAS5d72oJVFPGujvAgA4nllm4ZEQERH1Xmn6jKlwr65v4wMuZkwBgJpZU0Q2x9Bga1SoO6oamrDwi0PIKq219LA6ZOWeDCQVVMFBIcUtwwPx5V2jMCTQBWW1jbjts4NIKaxGZkkt3tuSjKvf341lP5/hVr9eRmbpAViaIAi4JtYPZ/MqsSWxALeNDun0ORLzdBkh/X0du6VT3gOT+mHhmFDYKbqenk3U0+LD3QHoMqZKqhvg4ai08IiIiIh6H0Ph835e5smYAoCGJm2XMv2JyLJUcilWLByBuZ/sx7n8Ktyx8hB+WTwOTqru6+beqNHi9s8PIqe8DuP6eWJCpBfGR3jCxb5jz6lu0uL7o7pazW/PicPMQboay7GBLrh1xUGczavEtf/dg7pLAlEJuZU4lF6K/y0YhnATP/vIOvT5jCkAmDZAV8dpX0oJahqa2jxu/ZEsPP39yRaF0g3phVE+3VeQnEEpsjWejkpjnamD6aUWHg0REVHvZK6MKYX0koypJmZMEdkqFzs5vrxrFPxdVEgvrsGnu0yrpXw5284V4kBaKbJK67D2cBYeXn0MY17f2uE6V3+dLUBxtRreTkpMGeBtvN3VXoFv7olHfx9H1DVqIBGACZGeePaqaHg6KnAuvwrX/ncP1h7KRFFV10rykPVgYApAhLcjQjzsodZosTu5qMX9jRotnttwGk99fwrfHcnGpoS8ZvcbijsP8HPqkfES2Yox/TwAAPtTba8Ao7Upr1Xj15O5TFsmIiKjhiYNMvVbdUzNmBIE4WJnPgamiGyaj7MKy64dCABYsTsNBZX13fZc6/Wd6a8e7Ie7x4chzNMBtWoNnlx/st2kD4M1hzIBAHNGBEEubR6ecHdQYP39Y/HevDjsXzoFX98dj/sm9sPvj05AfJg7atQa/N+PpzHy1S0Y9/o2PLrmuM1sX6TmGJiCbiKeqs+a2pJY2Oy+8lo1Fq48hG8OZBpvO5nVvDuAobhztG/3ZUwR2aLR4brA1L7UYguPxPYt/yUBj6w5jvu/PsqVbCIiAgBkltRCK+oa5Hg7mb5l3tiZj4sgRDZvxkAfDA9xQ32jFv/563y3PEdhVT22J+kSO56Y1h/PXxOD3x4Zj0A3O2SX1eHfm861+/gLJTXYk1IMQQDmjgxq9RgXezmujwuAj7PKeJuPswrf3hOPJ6f3R38fRwgCkFNeh19O5mLhykOoqGs034ukHsHAlJ4hMLXtXCE0Wl0nkoq6Rtz4v33Yl1piLMQGACeyyo2Pq1U3IaNEt7c/mhlTRM2MDneHIACpRTUo7MaVmt6uvFaNP07rmjPsPF+EJ9efhFbLjklERH1dqr4jXz9vRwiC6V2bDXWlWPycyPYJgoBnr9J1oP/uSBaSC8zfKfunYznQaEUMC3ZFhLcua9NBKcO/bxoCAPhq/wXjzomCynr8a2Mi/rUxEVX1usDR2sO6bKsJkV6dbvIlk0qw+MpI/PnEJJx+YQZW3xMPfxcV0opr8Pja48ZrerINDEzpjQh1g4udHKU1amMXsZd/O4u04hr4u6jww0NjsfjKCADA2dxKNDTpVpLOF1RDFHX1dDxZ3JmoGVd7BWL8dJmE+zu4z5xa+vlELtQaLXydVZBJBPxyMhcv/JrAdt5ERH1cWrG+vpSnafWlDC5mTDEwRdQbDA9xx4yBPtCKuGz20uW8vzUZE97YZrxWFkUR3+m38c0Z0TzbaVyEJ26NDwYAPP3DSbz061lMfGM7Pt2Vhk93pWHGf3Zha2IB1h/JBgDcOqr1bKmOclTKMDbCE5/eMQJKmQTbk4rw1p9JJp2TehYDU3pyqQSTo7wAAH8lFmDbuQJ8fzQbggD899ahiPZ1RrC7Pdzs5VBrtDin78SXpC98Hu3LbCmi1owJZ50pU63Xdyp5YFI43p4TC0HQrUB1dzFLIiKybqmFuowpc3WlMgSmmDFF1Hs8PTMaUomALYmFHS5I/neiKOLLfRnIKq3D3V8eQUZxDY5nlSO1qAYquQRXD/Fr8Zils6IR4GqHrNI6rNybjoYmLUaEuCHY3R65FfW4+8sjKK5ugKejElP0u5dMNSjABW/crMvW+mhHKn49mWuW81L3Y2DqElNjdP8g/jidj6U/ngYA3D0uDMNDdG3vBUFAbJArgIvb+RLzDPWlGJgias3YCH1gihlTXXI2txJnciqhkEpwfVwAro8LwD+vGgAA+PrABQuPjoiILMmYMWViRz4DBTOmiHqdfl6OmK/PSHpzc1KXMu5TCqtRUqMGAJTWqLHwi0NYoV8gvWqwH5xU8haPcVLJ8eYtQ2CvkGJosCu+vnsU1j8wBpsen4A7x4Yaj5szIrBF0XNTXB8XgAcm9QOgq9HKxkG2gYGpS0zs7wW5VEBmaS0KKhsQ7umAJ2dENTsmNtAVAHBSH5g6Z8iY8mPhc6LWjAx1h1Qi4EJJLXLK6yw9HJtjyJaaFuMDNwcFAOAWfbp0dlkdKmpZ3JGIqC8SRRFphhpTZs+Y4oUcUW/y6JWRUMokOHqhDDvOt+xCfzmGTKshgS4IdLPDhZJa/HFGV//079v4LjW2nydOvzADPz00DhMivSAIAuwVMrxw3UCsf2AM/jGtv7Fcjjk9Ob0/AlztUFqjxi/MmrIJDExdwlklN3YREwTgzVuGQCWXNjsmLtgVAHAiuxyiKF7SkY8ZU0StcVLJMTjABQC383WWukmLDcdzAAA3jwg03u5iJ0eQux0AICGvotXHEhFR71Zao0ZFXSMEAQgzU40pZkwR9U7ezios1Gcpvf1n57OmDqSVAgCmx/jgy7tGwdVelyEV4mGP+DD3dh8rlbTemGFkqDsemRIJe4WsU2PpCJlUgjvGhAAAVu3NYF1WG8DA1N8YIr6LJ0cYt/BdypAxlVZUg+TCapTXNkIqEYxdCIiopTH9dAHffanFFh6JbdmaWICy2kb4OqswMdKr2X0D/XTBvrO5lZYYWod8+OGHCA0NhUqlQnx8PA4dOtTmsQkJCbjpppsQGhoKQRDw7rvvmnxOIqLeLK1Yly3l72LXYiG1q2yxK9+uXbtw7bXXwt/fH4IgYMOGDc3uF0URy5Ytg5+fH+zs7DB16lQkJydbZrBEFnT/xHDYK6Q4k1OJzQkFHX6cKIrGjKnR4R7o5+WIzxeOxJBAFzw1I8osHUG7w9yRQVDJJTibV4nDGWWWHg5dhlkCU129UFi7di0EQcDs2bPNMQyzuDbWH8efn4Z/TI9q9X53BwVCPHStLL/Tt7cM83Qw2xcCot7IUAD9QGoJVyw6wdDp5MZhAS1Wmwb667YPJ1hpYGrdunVYsmQJli9fjmPHjiE2NhYzZsxAYWFhq8fX1tYiPDwcr7/+Onx9fc1yTiKi3iy10Lz1pQDb7MpXU1OD2NhYfPjhh63e/8Ybb+D999/Hxx9/jIMHD8LBwQEzZsxAfX19D4+UyLI8HJW4a1wYAOA/f52HVtux7+SG+lIquQRD9Ekaw0Pc8Mvi8bhmiH93DddkrvYK3DBUt+Ng1b50C4+GLsfkwFRXLxQyMjLw5JNPYsKECaYOwewMdVzaYsia+lG/xYbb+IjaNyLUDVKJgNyKeuRW8ItgRzRqtNidrMswu3FYYIv7Y4yBKevcyvfOO+/g3nvvxaJFixATE4OPP/4Y9vb2WLlyZavHjxw5Em+++SbmzZsHpVJplnMSEfVmhowpc9WXAi7ZytdkOzWmZs2ahVdeeQU33HBDi/tEUcS7776L5557Dtdffz2GDBmCr776Crm5uS0yq4j6gnsnhMNJJUNSQRV+O53XoccYsqVGhLgbPyNshaHI+uaEAta6tXIm/2Z15UJBo9FgwYIFePHFFxEeHm7qEHpcnL4zX6m+M8EAFj4nape9QmYM4J7ILLfsYGxEXnk9mrQiFDIJwlupHTLQX7eVL7Woxuq6jajVahw9ehRTp0413iaRSDB16lTs37/fas5JRGTL0op0GVP9uiNjqsl2Mqbak56ejvz8/GZzh4uLC+Lj49udOxoaGlBZWdnsh6g3cLGX474Juuvvd7d0LGvKUF9qdHj7taSsUZSvE8aEe0CjFfH1fnaztmYmBaa6eqHw0ksvwdvbG3fffbcpT28xsfrAlAEzpoguzxDQPZHFPd4dkVVWCwAIdLODpJWikT7OSng4KKDRikjSN2GwFsXFxdBoNPDx8Wl2u4+PD/Lz83v0nLy4IKLeytCRL7xbMqZ6R2DKMD90du547bXX4OLiYvwJCmq76xiRrVk0PgxOKhnSimqw7VzzXU57kosx/OW/8PUBXRDn7/WlbNGd40IBAGsPZ+JMTvOdBkcvlOHh1cewYleaBUZGlzIpMNWVC4U9e/bg888/x4oVKzr8PNZ2YTHQ3xmySy4UoxiYIrqsi4GpcouOw1Zk6wNTQW72rd4vCMIl2/kYbGkLLy6IqDdSN2lxoVQ3T5i3xpTUeP6+bOnSpaioqDD+ZGVlWXpIRGbjqJTh1vhgAMDney7WXmrSaLH8lzMoqVHjhV8ScCi9tNX6UrZm6gAfhHrYo7y2Edf8dw/u+fIINifk454vD+Omj/bh91N5eO2PRBRWsdyIJfXoJtGqqircfvvtWLFiBTw9PTv8OGu7sFDJpcbte05KGQJc7Sw6HiJbMDTYFQBwOqcCjWbo9iOKok3VwOisrFLdPvgg97Y/Xwzb+aytzpSnpyekUikKCpp3fCkoKGizsHl3nZMXF0TUG2WW1kKjFWGvkMLXWWW28/a2jCnD/NDZuUOpVMLZ2bnZD1FvsnBMKKQSAfvTSoxZRD8ey0GqPhNToxXxyJpj+O2Urg6VLdaXMpBKBHx9dzyui/WHIABbEgtw/9dHsSWxEFKJAFd7ObQi8NvJjtXcou5h0m9XZy8UUlNTkZGRgWuvvRYymQwymQxfffUVfvnlF8hkMqSmprb6PNZ4YREbpLsgjPZzstoWmUTWJNzTEU4qGeobtThfYPrWs1tXHMTEN7Yjr6J3FjK8uJWv9YwpwHo78ykUCgwfPhxbt2413qbVarF161aMGTOmR8/Jiwsi6o2OXdBti4/0Me/3UEONqd6SMRUWFgZfX99mc0dlZSUOHjzY5fmIqDfwd7XD1YP9AAAr96SjvlGDd7ecBwA8PjUSEd6OKKhswHtbkwHYZn2pSwW52+P9+UPx1xOTMDvOHwqZBFcP8cOfT0zE41MiAQA/n8hp9xxf78/Aj8eye2K4fZLMlAdfeqEwe/ZsABcvFBYvXtzi+OjoaJw+fbrZbc899xyqqqrw3nvvtZkJpVQq2+zSZCnXxQZg9cFMXKX/B01E7ZNIBMQGumJPSjFOZJUbs326oqahCfv1+91f+T0RH946zFzDtBrZZfqMqXYCU4atfOfyK6HRipC2UovKUpYsWYKFCxdixIgRGDVqFN59913U1NRg0aJFAIA77rgDAQEBeO211wDoahaePXvW+P85OTk4ceIEHB0dERER0aFzEhH1FZsSdCUzpkZ7m/W8ttiVr7q6GikpKcY/p6en48SJE3B3d0dwcDAef/xxvPLKK4iMjERYWBief/55+Pv7G69diPqqeyaE4ZeTufjlZC48nZTIraiHn4sKD0zqh6sH++G6D/aiTt9gx1brS/1dhLcj3p03FO9oRWMNVxc7OV7+PREnsyuQXlyDsFaaDp3JqcDzPycAACrrGnHnuLAeHXdfYFJgCujcxYdKpcKgQYOaPd7V1RUAWtxu7UaFuSPl1ataLUpMRK2LDXLRBaYyy7EgPqTL58koqTH+/++n8nDrqGKMi+j49mBbkKWvHdLeVr4wDwfYK6SoVWuQVlSNSB/rqXc3d+5cFBUVYdmyZcjPz0dcXBw2bdpkrEmYmZkJieRi0m5ubi6GDh1q/PNbb72Ft956C5MmTcKOHTs6dE4ior6gqr4Re5KLAQAzB3Vte3RbbLHG1JEjRzB58mTjn5csWQIAWLhwIVatWoWnn34aNTU1uO+++1BeXo7x48dj06ZNUKnMtwWSyBYNCXTFqFB3HMooxaf64t+PTYmESi5FpI8T/nXjIDyx7iSclDKbrS/Vlkuv4T0dlRgf4Ymd54vw84kcPD61f4vjfzmZa/z/F349CzcHBa6PC+iRsfYVJgemOnvx0ZswKEXUOXFBbgDaL4CeWlSNhkatMRuoNenFNc3+vPyXBGx8dILN7n3/u/pGDQqrGgC0nzElkQgY4OeMoxfKcDav0qoCUwCwePHiVrNnARiDTQahoaEQxcu3LG7vnEREfcH2pCKoNVqEezkgwtt8HfmAi1v5bKnG1BVXXNHu/CEIAl566SW89NJLPTgqIttw94QwHMooBQCEezrg5uGBxvtuGBoIB4UMHo6KXvMduy3Xx/nrA1O5eGxKZLMt0lqtiN/0gam4IFecyCrHP747CRc7Oa6IMm/Wal9mlt+wxYsX48KFC2hoaMDBgwcRHx9vvG/Hjh1YtWpVm49dtWoVNmzYYI5hEJGVM3TmSymqRlV9Y4v7i6sbcP0He3HTR/tQWqNu8zzp+sKM02J84OGgQEphNVbtS2/zeFtj2MbnoJDC1V7e7rHWWmeKiIi6x+Yzum18swb5mr3OqS1u5SOirps6wAfh+q1rT82IgkzaPDwwfaAvhofYdn2pjpg+0BcquQTpxTU4ndO8qdCxzDLkVtTDSSnDmntH47pYfzRpRTzwzVGkFFZbaMS9T+8OfRKRVfFyUiLA1Q6iCJzKbtlJ7rPd6ahuaEJdowbHM8vaPI8hYyouyBXPzIoGALy3JRn5Fb2jzWt2mWEbn/1lLzouBqasqzMfERGZX32jBtuTCgEAMweav85pbyt+TkTtk0oEfHX3KHxzdzxm9eHayY5KGabF6LZGbzie2+y+X/XZUtMH+sJOIcVbt8RidLg76hu1+HxPWo+PtbdiYIqIelRcsCuAltv5SmvU+Gp/hvHP7W33S9MHpsI9HXDzsEAMC3ZFjVqDbw5cMPNoLSNLnzHVXkc+A0MR+YTcyg5thSMiItu163wRatUaBLjaYVCA+buMKmxwKx8RmSbQzR7jI3tXrdaumB3nDwD49VQuNFrdd+omjRa/n84DAFwbqwvcKWQSPKGvQ/XT8RyU17a9y4M6joEpIupRQ/Xb+f4eeFq5Jx21ag0MpdvaCkyJooi0Il3abJiXAyQSAfNGBQMA9qUWd8eQe1x2BwqfG0T6OEImEVBe24i8XpIxRkRErTN045sx0Pzb+ADbLH5ORGQOEyK94GovR1FVA97bmgwAOJBWiuJqNdzs5c0aLY0Kc0e0rxPqG7VYfyTbUkPuVRiYIqIeFXdJYMqQ4VNR24gv92UAABZfGWm8X6ttmQFUVtuIyvomAECoh25P/Bh9C9tT2RWoaWjqzuH3iCz9Vr6OZEwpZVL4uug6CzEwRUTUuzy29jimvL0D3xy4gFp1E7acLQBg/m58BrZY/JyIyBwUMgn+MT0KAPD+1mR8uD3FuI1v1mA/yC+pvyUIAu4cGwoA+OpAhjHDirqOgSki6lGDAlwglQgoqmpATrluy9oX+9JR1dCEaF8nLJ4cAZVcgqr6JuOWvUulF+uypQJc7aCS61Z2g9ztEeRuhyatiMP6ziK2zFD8PMjt8hlTgK7NLaArHk9ERL1DSXUDfj6Ri9SiGjy34QzGvr4NlfVN8HRUYniIW7c8J2tMEVFfdvvoEDw9UxecenNzEn48rsuGui7Wv8Wx18cFwMVOjqzSOmw/V9ij4+yNGJgioh6lkksR7esEALjy7Z24+v3d+Gy3rqPeI1dGQiGTYHCArm5SawXQ0/Qd+cL0HUQMDFlT+1NLum3sPSWr9GLx847wdFQAAEqqucediKi3MHSGcrOXw9tJifJaXTfb6QN9IJWYfxsfwK58REQPXRGBx6fqdnA0akT4OCsxMrRlZ0I7hRTzRgYBAL68pE5ufaOGwf0uYGCKiHrcwrGhsFdIoW7SIiG3EtUNTYj0dsQs/daEocG6leDW6kwZOvK1CEz10wem0mw7MFXd0IQy/cVHIDOmiIj6rDP6wNSESC/senoynr8mBrMG+eKhK/p123MaakxxKx8R9WWPTYnE4skRAIB5I4PbXAy4bXQIJAKwO7kYH25PwZ1fHMKQF//ElHd2IK+irieHbPNklh4AEfU9c0YE4eZhgcgqq8W5/CpcKKnB1AE+kOg/9OPaKJAOtBOYCtcVJDyTU4HK+kY4q+Td9wK6kSFbytVeDqcOvgYGpoiIeh9DxtTgABeo5FLcPT4Md48P69bnVMq5lY+ISBAEPDkjCneMDYGng7LN44Lc7TFlgA/+OluANzcnGW/PKq3Doi8OY/0DYzr8fb6vY8YUEVmERCIgxMMBMwb64r6J/RDu5Wi8zxCYOpdfhTp18+0ExsCUV/PAlK+LCmGeDtCKwKG0i3Wm1E1aVNtQQfSL9aU6to0PuLiVj4EpIqLLa9JoUatuQkVdI0pr1MZGHJcSRRHJBVU4X1CFirrGVo/pbmdyKgHoajP2FIWUxc+JiAy8nVTGhfO2PDYlEr7OKowIccMzM6Ox+p54eDoqcS6/Cg99ewyNGn6edgQzpojI6vi5qODjrERBZQNO51RgVJhuX7dWKxoDU+F/y5gCgNHhHkgvrsH+tBJMjfFBQ5MGcz7ej9SiGqy7fzQG+vfcl/uuulhfqmPb+ADAw5AxVcUaU0RE7dl0Jh+PrjkO9SUXCrFBrvh84Qhj9qlWK2Lpj6ex7kiW8Rg7uRSzh/rj1dmDL3uRYg6lNWpjg5CBAc7d/nwGzJgiIuqcQQEuOPDslGa3rbxzBOZ+cgC7k4vx/IYzeO3GwRCE7p87bBkzpojI6giCcMl2vosF0HMr6tDQpIVcKiDAtWXgxlhnSl8A/e0/z+NkdgWqG5qwePVxm8icyirTB6Y6lTGlD0zVMGOKiKg9H25PaRaUAoCTWeWY+8l+5FfUQ6sV8exPuqCURACcVbo13LpGDdYcysLKvek9Mk7DNr4wT4ce3ZpuyJhSa7TQsv05EVGXDAl0xX/nD4VEANYezsLG0/mWHpLVY2CKiKxSXFDLAuiGbKlgd3vIpC0/vgyd+RLzK7HpTB5W7E4DoKvXlF5cg2d/PG2R7RidYdjKF9jBjnwA4OWk38pXxcAUEVFbTmdX4HROBRRSCfb935U4/8osbPvHJPi7qJBaVIM5n+zHP9afxNrDuqDUf+bG4dQLM5D40kwsvzYGAPDGpiScy6/s9rEaCp/35DY+AFDKpcb//3sAj4iIOm5qjA8emKRrVvHNgQsWHo31Y2CKiKySMWMqs9x428XC546tPALwclIi0tsRogg8suY4RBGYPyoIny8cAalEwC8nc7H2cFarj7UWhq18He3IB1zMmKqsb2KLbyKiNqw5nAkAmDHIF/6udlDIJAj3csR3D4xBiIc9Mktr8dPxHGNQ6vq4AAC6luB3jg3FlGhvqDVaPL72BOobu/ez9nS2ofB5z23jAy5mTAGsM0VEZKoF+q59+9NKkFZUbenhWDUGpojIKg0JdIFEAHIr6lFQWQ8ASCvS15fyallfysCwna9RIyLEwx7PXR2D4SHueHJ6FADghV8SkJRf1c2j7xpRFLtU/NzFTg6ZvuZJSTXrTBFR33MgrQRPrj+J8wWtf77XNDTh5+M5AIBbRwU3uy/QzR7f3T8G/X0cIZUIeHtOrDEoZSAIAl6/aQg8HBQ4l1+Ft/9MQnc6k2uZjCm5VIChDArrTBERmSbA1Q6T+nsBANZZ+eK4pTEwRURWyUEpQ38fJwDA3pRiAJdmTLUTmNJv55MIwDtz4uCg1NUHuX9iOCb190JDk9a4xc/alNc2GutgdSZjShAEeOg78zEwRUS9gSiKKK9V43xBFc7mVra5DVsURXy5LwMLPjuI749mY8FnB42Zp5f69WQuatQahHk6YHS4e4v7fZxV2PjoBBx8dgpuGBrY6nN5OSnx75uGAAA+25OOs7nds6WvrEZtXKTo6cCUIAhQygyd+ZiBS0Rkqvn6xZDvj2Yz4N8OduUjIqs1qb8XzuVX4bkNZ+DvatehwNTUGB/cPjoEw0JcMTzEzXi7RCLgvonh2Hm+CDuSiqDVij3SWakzDBci3k5KqC6p89ERno66LobF1awzRUS2q7xWjSfXn8Ku5KJmX+BHhrrh5dmDEO17cWtbQ5MGyzYkGLvnOSllKKpqwMKVh/D9g2Ph7qAwHrvmkG4b3/xRQW12RpJJJcat0W2ZGuODK6K8sCOpCPvTShDjb/6tdoZsqVAP+x4tfG6gkEpQ36jlVj4iIjO4Mtob3k5KFFY14K+zBbh6iJ+lh2SVmDFFRFbriWn9MSHSE7VqDRZ9cRjZ+o514e0EpuRSCV6ePajVFe+Roe5wUEhRXN2AhG5a6TZFRoku8NaZbCkDw8VUEQNTRGSjLpTU4MaP9mFLYoExKOViJ4dSJsHhjDJc/f4evPr7WXxz4AIeX3scV7y5w9g979mrovHXkkkIcLVDWnEN7lp1GLVqXQbqmZwKnMyugFwq4KZhrWdDdUZsoCsAIDGve+aR0xYqfG5gKIDOlX0iItPJpBLMGREE4OIiCbXEjCkisloquRQr7hiBB745ih1JRQAAB4UUXk7tr2i3RSGTYHykJzYnFGB7UiEGB1rmS39bDF2YurICbwhMMWOKiGxBalE1fjuZB39XFcK9HFCn1uLRtcdRWqOGv4sKHy4Yhhh/ZyhlUuSU1+GlXxOwOaEAK3anNzuPi50c782LwxVR3gCAL+8ahZs/3ocTWeWI/9dWBLrZo0FfqHzGQF94XCYjqiMG+Ok+o7srMGWYCwZbKDBlKIDOjCkiIvOYOzIIH+5IwZ6UYmSW1CLYo+O1ZPsKBqaIyKqp5FJ8cvtwPPjNMWw7V4j+vk5tbsPoiMlR3ticUIBt5wrx6JRIM47UdKf0XZiGBLh2+rGeTqwxRUS2IbmgCnM/PYDSmpafV4MCnLFy4Uh4O6uMtwW42uGT20dg+7lC/G9HChQyCUaEuGNkqDuGBrsaawkCQIS3I1beORKLvjiMirrGZsGjBfEhZhl/jD4wlVxQjUaNFnKpeTcgnLZwYEop170eZkwREZlHkLs9JkR6Ydf5Iqw9nImnZ0ZbekhWh4EpIrJ6SpkUH902DN8dzsKI0JZFazvDsKp+MrscJdUNZlk9NwetVry4St6FTC5PB2ZMEZH1Ka9Vw0klh1Rf0y+9uAa3fnYQpTVq9PNygK+LCulFNSioasDMgb544+YhzQJNl5oc7Y3J0d6Xfc5hwW44sHQKLpTWIK+iHnnl9XCzlxu7tpoq0M0OjkoZqhuakF5cY2zUYQ7ltWpklerqDQ60eMYUi58TEZnLTcMCsOt8kbGpEzXHwBQR2QSlTIrbx4SafB5fFxUG+DkjMa8Su5KL2uy+1NMySmpQ1dAEpUyCSG/HTj/ekDHFwBQRWQNRFPHRzlS8uTkJHg4KTIvxwdh+nvjXxkQUVTUg2tcJa+4dDTd9gXKNVjQGr8zBTiFFtK9zs2Lp5iKRCIj2dcKRC2VIzKs0a2DKkDkb4mEPF7ueL3wOsMYUEVF3GOivW2xILqy2yiZMlsbi50TU51wZ7QUA2H6uyMIjuciwdWOgvzNkXdgWYqwxVcWtfERkWU0aLZ7bcAZvbEqCKALF1WqsOZSFR9YcR15FPSK8HfHNPfHGoBQAswaleoKhztRZM9eZ2nauEAAwysTsYFMoWWOKiMjsQj3sIZcKqFVrkFNeZ+nhWB0Gpoioz5ms386383wRmjTW8cX7ZJa+vpS+21Nnsfg5EVmDmoYm3Pf1UXx7MBOCADx/TQy+vnsUFsQHw9tJiWhfJ3x7T7zxM8tWRfvpsqQS86rMdk5RFLE5IR+ArlC7pRhqTHErHxGR+cikEoR76nZFJBeab+7oLbiVj4j6nLggV7jYyVFR14gTWeUm160yh9M55QCAIV3sFOjhqMs8KK1Vm31LDBFRRz39/SlsO1cIpUyC9+YNxcxBugDLhEgvvHrDYAuPznza6sy3O7kICqkE8eGdr2d1KrsCeRX1sFdIMT7S0yzj7AqljMXPiYi6Q6SPI5IKqpBcUI0ro30sPRyrwowpIupzZFIJJvXXb+dLKrTwaHS1Vc7k6C5uuhqYcrdXQBAAUUSrna6IiLpbYl4lfj+dB0EAvrkn3hiU6o2ifZ0gCEBRVYMxU/VCSQ0WrjyEBZ8dRHZZbafPaciWmhzlDZW+zpMlKGTcykdE1B0MNQnPF1RbeCTWh4EpIuqTJuvrTO1IsnydqdSiatQ1auCgkCLMs/OFzwFdsM3dngXQichyPtiWAgC4erAfRlpBJmp3slfIEOrhAOBi1tR3R7KgFYEmrYjPdqd3+pyb9IGp6QMtu4qulLH4ORFRd+jvw618bWFgioj6JMNF0/mCKovXmTqZVQ5A1xrclC14rDNFRJaSXFCFjWfyAACLr4yw8Gh6xgBjnalKNGm0+P5otvG+tYczUdKJz+KUwiqkFdVALhUwOdrb7GPtDAWLnxMRdYsIb928kVyg68xHFzEwRUR9kr+LHZQyCRo1osU7Yxg68g0J6No2PgNPJ13GVEm1dWzl+/DDDxEaGgqVSoX4+HgcOnSo3ePXr1+P6OhoqFQqDB48GBs3bmx2/5133glBEJr9zJw5sztfAhF10AfbUyCKwIyBPoj2dbb0cHrEAF9Dnakq7DxfhILKBrg7KDDQ3xn1jVp8uS+jw+fanFAAABgX4Qlnlbw7htthF4uf957A1AsvvNBi/oiOjrb0sIiojwn1sIdCKkFdIzvz/Z1ZAlOdufhYsWIFJkyYADc3N7i5uWHq1KmXvVghIjI3iURAmKduG0ZacY1Fx3IqWx+YCnI16TweDtaTMbVu3TosWbIEy5cvx7FjxxAbG4sZM2agsLD1ml779u3D/Pnzcffdd+P48eOYPXs2Zs+ejTNnzjQ7bubMmcjLyzP+rFmzpideDhG1I724Br+ezAUAPHJlpIVH03MuLYC+7nAWAOCGoQFYPFmXMfbl/guobmjq0Lk2nbF8Nz6DixlTvasr38CBA5vNH3v27LH0kIioj5FJJQj30l1/cDtfcyYHpjp78bFjxw7Mnz8f27dvx/79+xEUFITp06cjJyfH1KEQEXWKYWJIL7JcYKpRo8VZfX0SkzOm9Fv5iqwgMPXOO+/g3nvvxaJFixATE4OPP/4Y9vb2WLlyZavHv/fee5g5cyaeeuopDBgwAC+//DKGDRuGDz74oNlxSqUSvr6+xh83N7eeeDlEdAl1kxabE/Lx47Fs/HQ8G6/8dhZaEbgy2huDTPwcsyUD/HWBqZTCamw7p/veO3dkEKYP9EW4pwMq6hqx9lDmZc+TU16H0zkVEARgWozluzQZMqZ6W40pmUzWbP7w9LRc50Mi6rsiWQC9VSYHpjp78fHtt9/ioYceQlxcHKKjo/HZZ59Bq9Vi69atpg6FiKhTDBlT6RbMmErKr4K6SQsnlQwhHvYmncuwla+4yrJb+dRqNY4ePYqpU6cab5NIJJg6dSr279/f6mP279/f7HgAmDFjRovjd+zYAW9vb0RFReHBBx9ESUmJ+V8AUR+WUVyDH49l46Vfz2L+pwfwj+9OIin/4qruscwyXPPf3bj/66NY8t1JPLHuJLbqgzKP9JHaUgb+Lio4q2Ro0opo0oqIC3JFfx8nSCUC7p8UDgBYsTsN+RX17Z5nsz5bamSIu3GBwZIUUl3x8960lQ8AkpOT4e/vj/DwcCxYsACZmZcPGhIRmVt/b10B9PMF1pcxVd+ogcZCta9kpjzYcPGxdOlS422Xu/j4u9raWjQ2NsLdvXd3byEi62PogGfJwJSxvlSgCwSh64XPAespfl5cXAyNRgMfn+Yr/z4+Pjh37lyrj8nPz2/1+Pz8fOOfZ86ciRtvvBFhYWFITU3Fs88+i1mzZmH//v2QSltvrd7Q0ICGhot/H5WVlV19WUS93rrDmfi/H09D/Nt30h+OZWN6jA98XVT4+sAFiCLg4aBAjD5jSCuKGBPugaHBfSuDURAEDPBzxsH0UgDAvJFBxvtmDw3AO3+dR0FlA0a/thXB7vYYFeaO+yaGG9uFG+w8r+sOa+lufAbGGlONvScwFR8fj1WrViEqKgp5eXl48cUXMWHCBJw5cwZOTk4tjufcQUTdJVLfmS+l0LoypvamFOPh1cfgbq/AR7cNR5Rvy8/G7mRSYKorFx9/98wzz8Df37/FSvmlODkQUXfoyYypWnUT7OTSFsGnwxm6C5rBAa4mP4eXPjBVUmP5rXzdYd68ecb/Hzx4MIYMGYJ+/fphx44dmDJlSquPee211/Diiy/21BCJAAB1ag3qGi/W53G1k0NiQsfNnlBYWY9XfkuEKAKxgS4YGuyGaF8n7Eouwh9n8vHn2QLjsTcOC8DzV8fAzUFhwRFbB0Ngyl4hxTWx/sbblTIp3p83FC//fhZncyuRWVqLzNJa5JbXYfW9o43HabUijmWWAQDiwzx6fPytUcr0W/ks3LHWnGbNmmX8/yFDhiA+Ph4hISH47rvvcPfdd7c4nnMHEXUXw1Y+Q2c+iURArboJRzLKMCHS0+SF6q748Vg2nvnhFBo1IsprG3HD//birVticdVgvx4bg0mBKVO9/vrrWLt2LXbs2AGVStXmcZwciKg7hOsDUznldahTa2CnaD3rxlRHL5Tilo/346ZhgXjj5iHGCedMTgV+PqErGHxFlJfJz+PhaB1b+Tw9PSGVSlFQUNDs9oKCAvj6tl7Y19fXt1PHA0B4eDg8PT2RkpLSZmBq6dKlWLJkifHPlZWVCAoKavVYInNYfTATL/6a0GwbVIS3I768axQCXO0sOLL2/WtjIqoamhAb6IIfHxoHqT6QNm9UMFIKq/DRjjSkFFZhyfQoTOpv+udVb3FFlBdW7cvA/FHBcFQ2/1odH+6B3x6ZgKr6Rmw7V4jH1p7A0QtlaGjSQCnTzTepRdWoqm+CSi5BtF/Prk63RSEzZEz1ruLnl3J1dUX//v2RkpLS6v2cO4iou4S4N+/MF+hmhwe/OYad54vw4nUDsXBsaI+NRRRF/G9HKt7cnAQAuHqIH8pr1dibUoKHvj2Gh67ohyenR/XI4ppJgamuXHwYvPXWW3j99dexZcsWDBkypN1jOTkQUXdwc1DA1V6O8tpGZJTUGDssmduPx3KgFYH1R7MRF+yKBfEh0GhF/POn09BoRVw9xA+jw01fKfe8JGNKFEWLrLgAgEKhwPDhw7F161bMnj0bAIy1BBcvXtzqY8aMGYOtW7fi8ccfN972119/YcyYMW0+T3Z2NkpKSuDn1/ZqjlKphFJp+ZotfVWTRouSGjVEEfB1aXsBqifVN2rw6u+J2J5UCAeFDM52Mjir5PB2VsHPRQVfZxUq6xtxvqAKyYXVkEslWHZNTIeKev9vRwre2JTU4vaUwmrcuuIAvrt/DHycrePv4VL7U0uw4UQuBAF4efYgY1DKIMLbCW/PibXQ6KzbFVHe2PPMZPi5tB10dFLJcV2sP1769SxKatQ4nV2BEaG6EhaGbKnYQFfIpWZplm0yQ9CsN2VM/V11dTVSU1Nx++23t3o/5w4i6i6Gznzn8qtwvqAKCbkVxi3dq/Zl4PbRIT2WZf3xzjRjUOr+ieF4ZmY0tKKIf286hxW70/G/HamQSyV4Ylr/bh+LSYGprlx8AMAbb7yBV199FZs3b8aIESMu+zycHIiou4R5OuB4ZjnSi7snMCWKonGyAYAXfz2LuCBXHMkow8nsCjgpZVh+TYxZnsuQMdWoEVFR1whXe8tts1myZAkWLlyIESNGYNSoUXj33XdRU1ODRYsWAQDuuOMOBAQE4LXXXgMAPPbYY5g0aRLefvttXH311Vi7di2OHDmCTz/9FIDuIuLFF1/ETTfdBF9fX6SmpuLpp59GREQEZsyYYbHXSc2Jooj9qSX4aGcqEnIrUVarNtYrujLaG0um9bdo17bCqnrc//VRHM8s79Tjbvl4P96bF4fpA1tfdBNFEa//cQ6f7EoDACyeHIEl+i9x+ZX1mPvpflwoqcWtKw5g3f1jLFrgWhRF/HIyFw1NWoyP8ISXkxLLfj4DALh1VDCGBLpabGy2KtDt8o0rBEHAqDB3/HEmHwfTS42BqaMXdIGpYSHWU5/rYsZU7wlMPfnkk7j22msREhKC3NxcLF++HFKpFPPnz7f00IioD4r0ccK5/CqczK7AD0ezjbenF9dgX2oJxkea1jW0sLIe3xzMxIL44DYXxE5mlePtP3VBqX9eNQD3TtQ17ZBAwD+vjkGYpyOe/ek03tuajP4+Trh6SPdu6zN5K19nLz7+/e9/Y9myZVi9ejVCQ0ONhW0dHR3h6Oho6nCIiDrl0sBUd0grrkF2WR0UUgniw92xO7kYD35zDKU1uu12T8+KhreZMiiUMimcVTJU1jehuFpt0cDU3LlzUVRUhGXLliE/Px9xcXHYtGmTsSZhZmYmJJKL2QFjx47F6tWr8dxzz+HZZ59FZGQkNmzYgEGDBgEApFIpTp06hS+//BLl5eXw9/fH9OnT8fLLL3PhohVarYikgiocvVCGyvpGY3DIWSXDiFB3RPk4dWk1rrqhCUn5Vcgpr0NOWR2q6hvh5aSEt5MKEgFYuTcdhzPKmj1GIgAigG3nCrHtXCFmDPTBc1fHIMjdtC6UAFBao8Yrv52FSiHF+AhPjAn3aLPuUUJuBe798ghyK+rhYifHK7MHwdVejqr6JpTXNqKgsh75FfXIq6yHo1KKSG8nRHg74rsjWdidXIz7vzmK/5sZjXERnkgvrkFGcQ0ulNYiu6wWmSW1yNV3Xrv0yx0A+LvaYfU9ozHnk/1ILarBnE/2Y3iwGzRaERpRhFbUBYsMx86OCzAWFe8OO5KK8NjaE8Y/ezkpUVTVAHcHBZ6aEdVtz0swBqYOpZfi4cm6247pg6TDrahwfG+sMZWdnY358+ejpKQEXl5eGD9+PA4cOAAvL25LJaKeZ+jM98nOVDQ0aRHgaodxER747kg2vj6QYXJg6tmfzmBLYgG2JhbghwfHQiVvXq6kpqEJj609jiatiKsH++GeCWEtznFrfDDSiqrx2Z50/GP9CYR42Hfr4qLJganOXnx89NFHUKvVuPnmm5udZ/ny5XjhhRdMHQ4RUacY6kylFXVPYGpnki5bamSYG96fNxRXv78bmaW1AIC4IFcsGBVs1ufzdFTqA1MNiPC2bLB/8eLFbWbP7tixo8Vtt9xyC2655ZZWj7ezs8PmzZvNOTyrUN+oQW55HewVMjipZLCTS1FY1YC04mqkF9egtkFj3GqmlEuQU16P7NJaZJXVoqRajYq6RlTWNUIjinCzV8DNXgGZVMDJrHJU1je1+byu9nLEh7njpmGBmDLAp8XWrdZsTsjHk+tPoqqd8wKAQirBvFFBmDMiCL4uKrjZK5BZWov3tpzHzydzsTmhAMmF1dj46IQWX5Q6o7i6Abd9dhDn8nXtllcfzIQgAEODXHHX+DDMGuQHqURARV0jPt6ZipV70tHQpEW4pwM+v3OksfnB5cwa5IsXfk3ANwcy8dofbTd2kUsFvDp7MOaMbFlqIMjdHt/eE4+5nx5AWlFNu583n+5KwwA/Z9w0LAATIr0Q6e1otpR+URTx323JAABfZxUKq+pRVKVrlvB/s6ItGszuC0ZekiWl0Yqorm8ydmUaGuxqwZE1Z8yYauo9NabWrl1r6SEQERkZCqAb6lE+f00M+nk54Lsj2fjrbAHyKura3SLenjM5FdiSqCu1lJBbiRd+ScDrNzUvnfTirwnIKKmFn4sK/7phcJvlP/5vVjTOF1Zj1/ki3PfVEfy8eDy8nLpnQdgsxc87c/GRkZFhjqckIjKLcC9d8Ca9uHtatu5K1gWmJvX3gpuDAh8sGIY5H+8HALx242Cz7yH3dFQirbgGxdW9szOftaioa0R2WS3yyutR3dCEWrUGteomVNU3oaxWjdIaXdCoRn9fXaMGLnZy+OrrGFU3aJCQW4HkwmpotKJZxlRQ2fw9d1BIMSzEDX762k4CBORW1OHohTKU1zZic0IBNicUIMTDHovGhiLYwx4JOZU4m1eJ+kYNZg7yxVWD/WAnl+LNP5PwyU7dNjUvJyXCPBwQ4GYHZ5UMxdVqFFbVo6y2EeMjPPHApH4t6kmFeTrg3XlD8dDkCNz22UGkFdXg7T+T8M+ru7aNtbCqHgtWHERyYTW8nZS4arAf9qUW43xBNY5lluPY6uMIdk/CtBgffH80GxV1jQCAif298N95Q+FiL+/wc8mkErx8/SCEezriP1vOQyGVIMzTAaGeDghxt0eQuz2C3O3Qz8ux3cBOuJcjNjw8Dr+fykWTVoRMIkAi6H4M3wePZJThr7MFSMyrxCu/VwJIhIudHCNC3HDDsABcNcjPpM+MA2mlOJZZDoVMgl8Wj4NSLsWBtBI0aURcNbj92qBkugF+znBSylDV0ITEvErj53Sohz08LLi98++MGVNNvSdjiojImvT3ubh4PKm/F2YM9IEgCBgd7o4DaaVYczATS6Z3LYv53S26BaghgS44nVOBtYezMCzYDXNGBqFJo8V3R7Lx3ZFsCALwn7lx7X4nkkkl+O/8objhw71IK67BcxtO45PbL1+KqSss2pWPiMjSDFkT3bGVr75RgwNpJQCASf29AQDDgt3ww4NjIQLdUtPK08nQmY+BqfZotSJOZZdDIgjo7+NkzBBo0mhxLr8Kp3MqUFBZj+LqBpRUq1Fe24iqhkZU1TehtFqNqob2s4bacgoVLW6zV0jR0KQ1BqikEgFBbnYI83SAi50clfVNqKhrRH2jBn4udghyt0OQmz28nJRwsZPDxU4OiSCgrFaNslo16tQaxPg7I8bPGbJWiik3arQ4nVOBzQn5WHMwExdKavHCr2dbHLc9qQjLf0lAgKsdUvUZPvdOCMPTM6O7XKS5v48TXrtxMO7+8gg+25OOmYN8MTzEvVPnKKysx/wVB5BaVANfZxXW3Dfa+O+4oLIeqw9m4qv9GcgsrcXne9IBAJHejnh6ZjSmDvDuUlMAQRBw1/gwLBoXalJTgQBXO9w3sV+b9y8aF4byWjV+PZWHTWfycOxCOSrqGrH1XCG2nitEbGAa/m/WAIzp17VmCR9u13UgmzsiyLiFeEYbdbPI/KQSASNC3bA9qQgH00tRUavb0m1N9aWAi8XPGxiYIiLqFsHu9vBxVqKirhEvXDfQ+N3i9tGhusDU4SwsvjLS+P20o05n67KlJPqg08ZTeXj7r/N4/uczOJ1TgU0J+cZM6Qcn9etQ8yUXOzn+d9swXPXebmxOKMDRC6Wd/u7WEQxMEVGfFuqhu6Atq21EWY0abg4KVNQ2YtW+DMwZGdjlNFoAOJReivpGLXydVc1WRmKDXE0ddpu89KvuRcyYateVb+9AaaNuCpRLdcEpJ5UMp7IrUKvu2PYVDwcF/F3t4GInh51CCju5FE4qGdwdFHC1V8DVTg4HpQwOSilUcinKatQoqKxHbkU9FFIJBgW4YFCAM3z1AYK6Rg2qG5rgaqfo9BeRzpBLJRgW7IZhwW54bEokfjiajdWHsqDRahHj54yB/i5Qa7T48Vg2UotqkFpUAweFFG/eEourBpte+HLKAB/cOCwAPx7LwVPrT2HjYx3f0pddVosFnx3EhZJa+LvoglIhHhe35Pk4q/DEtP64f1I41h/JxsH0EkyO8saNwwI7tF3xcnqi06WrvQK3jw7B7aND0KjRIiG3ElsTC7ByTzpOZldg/ooDmBLtjeeviUFoB7cjAsCJrHLsSSmGTCLg/knhl38AdYtRYR7YnlSEQ+klqGnQfdYMs6L6UsDFjKneVPyciMiayKQSbHh4HJo0YrOam9MH+hhrP/55Nh/XDPHv1Hnf23oeAHB9XAD6eTni4ckROJZZhu1JRfj6wAUAgJu9HHNHBneq0160rzPmjAjC2sNZ+NfGc/j+gTFm/07EwBQR9Wl2Cin8XVTIrahHWnENhjso8PLvZ/H90WwczyrDqkWjunxuQze+Sf29euSCFgB89YG0vPL6Hnk+W1VcrYaLiwoSQVeDKCG30nifk1KGuGBXBLrZw9NRAU9HJVzt5XBWyeGkksHVXg5/VzvYK8w7hdorZGY/Z0ee8/Yxobh9TGiL+x66oh9OZldgT3IRrhrsZ9z2ag7LrxmIvSnFSCuuwet/nMPya2Mu+28ko7gGt644gNyKegS66QqKB3u0XkDdXiHDwrGhWDg21GxjtgS5VIK4IFfEBbnijjGheH9rMlYfysTWc4XYnVyM+yaG46HJ/Vr9vfn6wAWczi7HjIG+mBDphQ+26bKlZg8N6FAXOeoeo8J0q8yH0kvRqNFlSQ63uoyp3lf8nIjI2rS2+C2XSjB/ZBDe35aCV39PhL+rXYcXL3TZUoWQCMDiKyMAABKJgP/MjcOS705CKZPghqEBuCLKu0sLoE9M648NJ3Jw9EIZNicUYOYg82ZcMzBFRH1emJcDcivqkV5cAx9nJTYczwGg616VWlSNfl28IDcGpqJ6ruuPv6su+ya3oq7HntMWfXz7cEwdEgq5VEB2WR0ScitRWd+IuCBXRHiZr9i0LRMEwRgUMTcXezlev3EIFq06jFX7MnD0QhmemRndZhea5IIqLPjsIAqrGhDu6YBv7403KZvRFnk5KfHy7EG4c1woXvglAbuTi/HB9hT8eCwbr980BBP7X/yceX9rMt75S7dq+t2RbLjYyVFR1whBAB68ou2thNT9Bge4QCWXoKxWV/fMUSlDf30RXGthLH7e2HuKnxMR2YqFY0Px66k8pBfXYM7H+/HMzGjcMyGs3QU8URTx5p9JAC5mSxm42iuw8s6RJo/Lx1mFe8aH44PtKXhj0zlMGeDd5dIOrem+vQJERDbiYp2panyyMw1NlxSjXrU3o0vnzC6rRUphNaQSAeMiTGv52hmGi/W8CmZMtWd8hCcUMgkEQUCQuz1mDvLFnBFB6O/jxKBUD5ms347moJDidE4Fbvv8IBZ8dgBJ+i57BjuSCnHTR/tQWNWAaF8nrLt/TJ8LSl2qn5cjvrprFD65fTgCXO2QW1GPO1YewmsbE6Fu0jYLSs0Y6ANvJ6Wx+PtVg/y6HGgn81DIJBgadHH1OzbIxSzbTM3JUGOKGVNERD3Pw1GJXxaPw9VD/NCkFfHqxkQsXn0c2naa5Xy6Kw27zhdBJhGM2VLd4f5J4XB3UCCtuAbrDmeZ9dwMTBFRnxfmqbtQO5ReinVHdB+yj+o/1L8/mo0K/cp2Z+w6XwxA17rexa7jHcBMZciYyiuvb3cCI7IGd48Pw86nJ2PROF322t6UElz9/m78e9M51Kqb8MG2ZCxadRiV9U0YFuyKNfeO7rY2xbZEEATMGOiLLUsm4fbRIQCAT3alYfJbO4xBqf+bFY1Pbh+B/UunYPU98XhqRhRenj3IksMmPcN2PgAYbmX1pYCLGVONGpHzCBGRBTip5Phg/lC8PHsQFFIJfj+dhyMXylo9dm9KMf696RwAYPm1Md26AOWkkhuvkd7fmmy2ztIAA1NERAjXZ0wdziiDukmLYcGueGJaf0T7OqGuUYO1hzM7fc5NCfkAdPWlepKPswqCoFvpLqlR9+hzE3WFp6MSy68diG3/uALTY3zQpBXx0Y5UjHxlC9768zxEEbg1Phhr7hsNNweFpYdrVewUUrw8exA+uX04XOzkyCnXbeF9ZmY0Hpik27InlQgYG+GJhydHwJ1/f1Yh/pLA1FArqy8FXKwxBTBriojIUgRBwO2jQ3DVYF0tp23nClsck11Wi8Wrj0ErAjcPD8Rt+sWq7nRrfAiclDIUVjUgIbdlt+muYmCKiPq8sL91tlp8ZYSxPTwAfLX/Apo68eX8cEYpdp0vglQi4Oohpncx6wy5VAJvfUZJHutMkQ0JcrfHp3eMwIo7RsDfRYUatQYKqQSv3zgY/7phsHF7EbU0Y6Av/nhsAuaMCMTrNw5mHSkrNzTYDU4qGewVUgwLsr7A1KVFcdmZj4jIsq4c4AMA2HauoNntDU0aPPjNMZTVNmJQgDNemT2oR5otKWQSjO7nAQDYnVxstvMyMEVEfV6gmx3kUt0H+QA/Z0yO8gYAXBfrDw8HBXLK6/Dn2YL2TmEkiiJe/0OXTjtnRJBZO5l1lL+rrv5ObjkDU2R7psX44K8lk/Dy7EHY8PA4zBsVbOkh2QR/Vzu8cXMs/75sgJ1Ciu8fGIv1D4yBi33PbfXuKJlEgKHsVUMTC6ATEVnSpEgvSCUCzhdUI6u01nj7zydycTqnAm72cnx823Co5D23gDdeXz93bwoDU0REZiOTShDlq+uKtHhyhHG1QSWXYkG87iLvrc1J2J9aAlFsfy/1X2cLcPRCGVRyCR6fGtm9A2+Dv4shMMUC6GSbHJQy3D46BDH+zpYeClG3iPJ1wkB/F0sPo1WCIBgzFBuamDFFRGRJLvZyjNBv+96aeHGh/NsDFwAA904MR6CbfY+OydBF+UhGGerU5lnAYGCKiAjAu3Pj8PFtw4z7uA1uGxMCV3s50oprMH/FAcz5ZH+bqwNNGi3e2Kxr1Xr3+DD4OKu6fdyt8XPRF0DnVj4iIuoCw3Y+BqaIiCxvygDdbo6t+jpTp7MrcDK7AgqpBHNGBPX4eMI9HeDvooJao8XhjFKznJOBKSIiABHeTpg5yK/F3mxvJxU2PjoBt48OgUIqweGMMtz2+UEcvdDyQ/iHY9lIKayGq70c90+yXI2Xi1v5mDFFRESdZyiArmZgiojI4q6M1tWZOphWiuqGJnyjz5aaNdgXno49361YEASM02/n22Om7XwMTBERXYa/qx1enj0Iu5+ZjAmRnhBFYP2R7GbHNDRp8J+/kgHotgM6qyxXN8TfVZcxlcuMKSIi6oKLGVOsMUVEZGn9vBwQ6mEPtUaLjafz8PPJHADokS58bTFs5zNXAXQGpoiIOsjHWYUH9ZlQf5zJb7aS/GdCAfIr6+HtpLToJAEAfvoaU3nMmCIioi5gxhQRkfUQBMGYNfXKb2dR36hFlI+TsfaUJRgyphLzKlFc3WDy+RiYIiLqhPhwD3g6KlFR19is1tS6w1kAgLkjg3q0K0Zr/PQZU4VV9WjU8KKCiIg6x14hAwBU1DVaeCRERARcrDNVWd8EALhtdHCLEiQ9ydNRiQF+uiY15ujOx8AUEVEnSCUCrhniBwD49WQuACCzpBZ7UoohCLBIAcK/83RQQiGVQCsCBZXMmiIios6J8HYEACTlV1l4JEREBAAjQ93hqNQtGtgrpJg9NMDCIwIm6LfzMTBFRGQBhsDUn2cLUN+owbojmQCA8RGeCHLv2XatrZFIBPgaO/MxMEVERJ0To18FP5tXaeGREBERoKv9N6m/FwBg9tAAOFmwnq2BsQB6cjFEUTTpXDJzDIiIqC8ZFuwGfxcVcivqsTWx0FgIfd7IYAuP7CI/FxUyS2uRW84C6ERE1Dkx/gxMERFZm2evHoB+3o64e1yYpYcCABgV6g6FVILcinqkFdegn5djl8/FjCkiok6SSARcrc+aevm3syisaoCHgwLTYnwsPLKLAlx1BdBzWQCdiIg6yVA35EJJLarqWWeKiMgaBLjaYcm0/nCxt3y2FADYKaQYri/Avs/E7XwMTBERdcG1sf4AgHx9Daebhgca22tbA0MB9LwKZkwREVHnuDso4KffEn6OdaaIiKgNY/t5AAD2p5WYdB7ruYoiIrIhgwNcEHxJPam5Iy1f9PxSfi7MmCIioq4z1JlK5HY+IiJqw9gIfWAqtQRabdfrTDEwRUTUBYIg4NpY3Xa+UWHuJu2p7g4Xt/IxY4qIiDrPWGcql4EpIiJq3ZBAV9grpCirbURSQdczbFn8nIioix68IgJSQcCNwwItPZQWuJWPiIhMMYCd+YiI6DLkUglGhrpj5/ki7EstMc4dncWMKSKiLnJUyrBkehRCPR0sPZQWDFv5ymobUafWWHg0RERkawxb+c7lV6FJo7XwaIiIyFqN6XdxO19XMTBFRNQLOatkcFBIAQC5zJoiIqJOCna3h4NCCnWTFhklNZYeDhERWSlDAfSD6SXQdLHOFANTRES9kCAI8NfXmcpjAXQiIuokiUQwbsk4l8fOfERE1LqB/i5wUslQVd+EhNyKLp2DgSkiol7Kz1AAnRlTRETUBYYC6OdMKGhLRES9m1QiID5MlzW1r4vb+RiYIiLqpfxd9AXQmTFFRERdYKgzlcSMKSIiaoepdabMEpj68MMPERoaCpVKhfj4eBw6dKjd49evX4/o6GioVCoMHjwYGzduNMcwiIjoEoatfLnllsmYMvfcIIoili1bBj8/P9jZ2WHq1KlITk7uzpdARNSnGTOm8m2/M19n5yQiIuo4Q52pwxmlaOxCwwyTA1Pr1q3DkiVLsHz5chw7dgyxsbGYMWMGCgsLWz1+3759mD9/Pu6++24cP34cs2fPxuzZs3HmzBlTh0JERJfw02dMWWIrX3fMDW+88Qbef/99fPzxxzh48CAcHBwwY8YM1NczI4yIqDv093GCRNB1eLVlnZ2TiIioc6J8nOBmL0etWoNT2eWdfrwgimLXyqbrxcfHY+TIkfjggw8AAFqtFkFBQXjkkUfwf//3fy2Onzt3LmpqavDbb78Zbxs9ejTi4uLw8ccfd+g5Kysr4eLigoqKCjg7O5syfCKiXmtfSjFu/ewgZBIBNw0LxB0jvDEozK9HPjvNPTeIogh/f3/84x//wJNPPgkAqKiogI+PD1atWoV58+Z1aFycP4iIOmfaOzuRlFWIrHfn2OxnZ2fnpL/j3EFEdHkPfXsUG0/n48ZhAXhian+4yJo6/NlpUsaUWq3G0aNHMXXq1IsnlEgwdepU7N+/v9XH7N+/v9nxADBjxow2jweAhoYGVFZWNvshIqL2DQtxw+QoLzRpRaw7koVr/runR563O+aG9PR05OfnNzvGxcUF8fHxnD+IiLqRYTufrerKnMS5g4io88ZHeAEAfjyWgwlvbMc1/93d4ceaFJgqLi6GRqOBj49Ps9t9fHyQn5/f6mPy8/M7dTwAvPbaa3BxcTH+BAUFmTJsIqI+QSWX4otFo/DDg2Mxqb8XNFqTEmQ7rDvmBsN/OX8QEfUsQwF0W9WVOYlzBxFR5900PABLZ0VjVKg7pBIBGcW1HX6sTXTlW7p0KSoqKow/WVlZlh4SEZHNGB7ihi/vGoVv7xll6aH0OM4fRESmmdjfC/+YHmnpYfQozh1ERJ2nlElx/6R++O6BMTi+bBr+Mze2w4+VmfLEnp6ekEqlKCgoaHZ7QUEBfH19W32Mr69vp44HAKVSCaVSacpQiYj6vNggtx55nu6YGwz/LSgogJ+fX7Nj4uLi2hwL5w8iItMM8HNGgEM4Hrf0QLqoK3MS5w4iItM4q+SYFtN2jOfvTMqYUigUGD58OLZu3Wq8TavVYuvWrRgzZkyrjxkzZkyz4wHgr7/+avN4IiKyLd0xN4SFhcHX17fZMZWVlTh48CDnDyIialNX5iQiIupZJmVMAcCSJUuwcOFCjBgxAqNGjcK7776LmpoaLFq0CABwxx13ICAgAK+99hoA4LHHHsOkSZPw9ttv4+qrr8batWtx5MgRfPrpp6YOhYiIrIS55wZBEPD444/jlVdeQWRkJMLCwvD888/D398fs2fPttTLJCIiG3C5OYmIiCzL5MDU3LlzUVRUhGXLliE/Px9xcXHYtGmTscBgZmYmJJKLiVljx47F6tWr8dxzz+HZZ59FZGQkNmzYgEGDBpk6FCIishLdMTc8/fTTqKmpwX333Yfy8nKMHz8emzZtgkql6vHXR0REtuNycxIREVmWIIpiz7RpMqPKykq4uLigoqICzs623SmEiKin8LOTfwdERF3R1z87+/rrJyLqis58dtpEVz4iIiIiIiIiIup9TN7KZwmGJK/KykoLj4SIyHYYPjNtMFHWbDh/EBF1Xl+fPzh3EBF1XmfmDpsMTJWUlAAAgoKCLDwSIiLbU1JSAhcXF0sPwyI4fxARdV1fnT84dxARdV1H5g6bDEy5u7sD0BXP7ezkOHLkSBw+fLhLz1tZWYmgoCBkZWW1ukfSlHNfTneeu7vP31Njv9z7Y8q5u0tv+HtvT1ffE2sYe288d0VFBYKDg42foX1RV+cPU//u2/u3wN93y5z/0nPb2vzRW/7e28K5w/rO39fnD2ucO8xx/vZY+++kpc596fltbe7o7vNb+tymvB+WHru1nr8n5w6bDEwZOjm5uLh0+pdOKpWa/MHh7Ozc6jnMce62dOe5u/v8PT32tt4fc5zb3HrT33t7OvueWNPYe+O5L+2G19d0df4w1999a/8W+PtumfO3dm5bmT962997Wzh3WN/5++r8YY1zhznP3xpb+Z3s6XO3dn5bmTu6+/zWcu6uvB/WMnZrO39Pzh19bnZ5+OGHee4ePj/Hbpnzc+yWOb+tnpvaZ8vvK8fe8+fu7vNz7D1/7u4+vy2Pndpmy+8rx26Z83PsPX/u7j4/x94xgmiDVQwt1bKVrWKtG98f68P3xLrw/eD8Qa3j+2Nd+H5Yn77+nnDuoNbw/bEufD+sT2feE5vMmFIqlVi+fDmUSmWfeF7qGL4/1ofviXXh+8H5g1rH98e68P2wPn39PeHcQa3h+2Nd+H5Yn868JzaZMUVERERERERERLbPJjOmiIiIiIiIiIjI9jEwRUREREREREREFsHAFBERERERERERWQQDU5fIysrCXXfdBX9/fygUCoSEhOCxxx5DSUlJhx6/Y8cOCIKA8vLy7h1oH3LnnXdCEAS8/vrrzW7fsGEDBEGw0Kj6NsN7IggC5HI5fHx8MG3aNKxcuRJardbSwyPqcZw7rA/nDuvDuYOoJc4f1ofzh3Xh3NF3MDCll5aWhhEjRiA5ORlr1qxBSkoKPv74Y2zduhVjxoxBaWmppYfYZ6lUKvz73/9GWVmZpYdCejNnzkReXh4yMjLwxx9/YPLkyXjsscdwzTXXoKmpydLDI+oxnDusF+cO68O5g+gizh/Wi/OHdeHc0TcwMKX38MMPQ6FQ4M8//8SkSZMQHByMWbNmYcuWLcjJycE///lPAEBDQwOeeeYZBAUFQalUIiIiAp9//jkyMjIwefJkAICbmxsEQcCdd95pwVfUe0ydOhW+vr547bXX2jzmhx9+wMCBA6FUKhEaGoq3337beN+zzz6L+Pj4Fo+JjY3FSy+91C1j7u2USiV8fX0REBCAYcOG4dlnn8XPP/+MP/74A6tWrQIAlJeX45577oGXlxecnZ1x5ZVX4uTJk83O8+uvv2LkyJFQqVTw9PTEDTfcYIFXQ9R1nDusF+cO68O5g+gizh/Wi/OHdeHc0TcwMAWgtLQUmzdvxkMPPQQ7O7tm9/n6+mLBggVYt24dRFHEHXfcgTVr1uD9999HYmIiPvnkEzg6OiIoKAg//PADACApKQl5eXl47733LPFyeh2pVIp//etf+O9//4vs7OwW9x89ehRz5szBvHnzcPr0abzwwgt4/vnnjR9UCxYswKFDh5Cammp8TEJCAk6dOoVbb721p15Gr3fllVciNjYWP/74IwDglltuQWFhIf744w8cPXoUw4YNw5QpU4wrgL///jtuuOEGXHXVVTh+/Di2bt2KUaNGWfIlEHUK5w7rxrnDNnDuoL6I84d14/xh/Th39EIiiQcOHBABiD/99FOr97/zzjsiAPHgwYMiAPGvv/5q9bjt27eLAMSysrLuG2wfs3DhQvH6668XRVEUR48eLd51112iKIriTz/9JBp+fW+99VZx2rRpzR731FNPiTExMcY/x8bGii+99JLxz0uXLhXj4+O7efS906Xvyd/NnTtXHDBggLh7927R2dlZrK+vb3Z/v379xE8++UQURVEcM2aMuGDBgu4eLlG34dxhvTh3WB/OHUQXcf6wXpw/rAvnjr6DGVOXEEWx3fszMjIglUoxadKkHhoRXerf//43vvzySyQmJja7PTExEePGjWt227hx45CcnAyNRgNAt3KxevVqALr3ec2aNViwYEHPDLwPEUURgiDg5MmTqK6uhoeHBxwdHY0/6enpxtWjEydOYMqUKRYeMZHpOHdYN84d1o9zB/VVnD+sG+cP68a5o3eRWXoA1iAiIgKCICAxMbHVvaaJiYlwc3NrkWpLPWvixImYMWMGli5d2uk99PPnz8czzzyDY8eOoa6uDllZWZg7d273DLQPS0xMRFhYGKqrq+Hn54cdO3a0OMbV1RUA+O+JbB7nDtvAucP6ce6gvobzh23g/GHdOHf0LsyYAuDh4YFp06bhf//7H+rq6prdl5+fj2+//RZz587F4MGDodVqsXPnzlbPo1AoAMAYKSfze/311/Hrr79i//79xtsGDBiAvXv3Njtu79696N+/P6RSKQAgMDAQkyZNwrfffotvv/0W06ZNg7e3d4+Ovbfbtm0bTp8+jZtuugnDhg1Dfn4+ZDIZIiIimv14enoCAIYMGYKtW7daeNREXce5w3Zw7rBenDuoL+L8YTs4f1gnzh29kMU2EVqZ8+fPi56enuKECRPEnTt3ipmZmeIff/whDho0SIyMjBRLSkpEURTFO++8UwwKChJ/+uknMS0tTdy+fbu4bt06URRFMTs7WxQEQVy1apVYWFgoVlVVWfIl9Qqt7Su+/fbbRZVKZdznffToUVEikYgvvfSSmJSUJK5atUq0s7MTv/jii2aPW7Fihejv7y96enqKX3/9dQ+9gt5n4cKF4syZM8W8vDwxOztbPHr0qPjqq6+Kjo6O4jXXXCM2NTWJWq1WHD9+vBgbGytu3rxZTE9PF/fu3Ss+++yz4uHDh0VR1NVFkEgk4rJly8SzZ8+Kp06dEl9//XULvzqizuHcYZ04d1gfzh1EzXH+sE6cP6wL546+g4GpS2RkZIgLFy4UfXx8RLlcLgYFBYmPPPKIWFxcbDymrq5OfOKJJ0Q/Pz9RoVCIERER4sqVK433v/TSS6Kvr68oCIK4cOFCC7yK3qW1ySE9PV1UKBTipXHV77//XoyJiRHlcrkYHBwsvvnmmy3OVVZWJiqVStHe3p4TtwkWLlwoAhABiDKZTPTy8hKnTp0qrly5UtRoNMbjKisrxUceeUT09/c3/ntasGCBmJmZaTzmhx9+EOPi4kSFQiF6enqKN954oyVeEpFJOHdYH84d1odzB1FLnD+sD+cP68K5o+8QRPEyVfeIiIiIiIiIiIi6AWtMERERERERERGRRTAwRUREREREREREFsHAFBERERERERERWQQDU0REREREREREZBEMTBERERERERERkUX0ucDUa6+9hpEjR8LJyQne3t6YPXs2kpKSmh1TX1+Phx9+GB4eHnB0dMRNN92EgoIC4/0nT57E/PnzERQUBDs7OwwYMADvvfdes3P8+OOPmDZtGry8vODs7IwxY8Zg8+bNPfIaiYjIvDh3EBFRV3D+ICK6vD4XmNq5cycefvhhHDhwAH/99RcaGxsxffp01NTUGI954okn8Ouvv2L9+vXYuXMncnNzceONNxrvP3r0KLy9vfHNN98gISEB//znP7F06VJ88MEHxmN27dqFadOmYePGjTh69CgmT56Ma6+9FsePH+/R10tERKbj3EFERF3B+YOI6PIEURRFSw/CkoqKiuDt7Y2dO3di4sSJqKiogJeXF1avXo2bb74ZAHDu3DkMGDAA+/fvx+jRo1s9z8MPP4zExERs27atzecaOHAg5s6di2XLlnXLayEiop7BuYOIiLqC8wcRUUt9LmPq7yoqKgAA7u7uAHQrEo2NjZg6darxmOjoaAQHB2P//v3tnsdwjtZotVpUVVW1ewwREdkGzh1ERNQVnD+IiFqSWXoAlqTVavH4449j3LhxGDRoEAAgPz8fCoUCrq6uzY718fFBfn5+q+fZt28f1q1bh99//73N53rrrbdQXV2NOXPmmG38RETU8zh3EBFRV3D+ICJqXZ8OTD388MM4c+YM9uzZ0+VznDlzBtdffz2WL1+O6dOnt3rM6tWr8eKLL+Lnn3+Gt7d3l5+LiIgsj3MHERF1BecPIqLW9dmtfIsXL8Zvv/2G7du3IzAw0Hi7r68v1Go1ysvLmx1fUFAAX1/fZredPXsWU6ZMwX333Yfnnnuu1edZu3Yt7rnnHnz33XfNUnSJiMj2cO4gIqKu4PxBRNS2PheYEkURixcvxk8//YRt27YhLCys2f3Dhw+HXC7H1q1bjbclJSUhMzMTY8aMMd6WkJCAyZMnY+HChXj11Vdbfa41a9Zg0aJFWLNmDa6++urueUFERNTtOHcQEVFXcP4gIrq8PteV76GHHsLq1avx888/Iyoqyni7i4sL7OzsAAAPPvggNm7ciFWrVsHZ2RmPPPIIAN1+bkCXQnvllVdixowZePPNN43nkEql8PLyAqBLoV24cCHee++9Zu1e7ezs4OLi0u2vk4iIzIdzBxERdQXnDyKiDhD7GACt/nzxxRfGY+rq6sSHHnpIdHNzE+3t7cUbbrhBzMvLM96/fPnyVs8REhJiPGbSpEmtHrNw4cKee7FERGQWnDuIiKgrOH8QEV1en8uYIiIiIiIiIiIi69DnakwREREREREREZF1YGCKiIiIiIiIiIgsgoEpIiIiIiIiIiKyCAamiIiIiIiIiIjIIhiYIiIiIiIiIiIii2BgioiIiIiIiIiILIKBKSIiIiIiIiIisggGpoiIiIiIiIiIyCIYmCIiIiIiIiIiIotgYIrIRFdccQUef/xxSw+DiIhsCOcOIiLqCs4f1BsxMEVERERERERERBbBwBSRCe68807s3LkT7733HgRBgCAIOH78OBYsWAAvLy/Y2dkhMjISX3zxhaWHSkREVoJzBxERdQXnD+qtZJYeAJEte++993D+/HkMGjQIL730EgDgxRdfxNmzZ/HHH3/A09MTKSkpqKurs/BIiYjIWnDuICKiruD8Qb0VA1NEJnBxcYFCoYC9vT18fX0BADk5ORg6dChGjBgBAAgNDbXgCImIyNpw7iAioq7g/EG9FbfyEZnZgw8+iLVr1yIuLg5PP/009u3bZ+khERGRlePcQUREXcH5g3oDBqaIzGzWrFm4cOECnnjiCeTm5mLKlCl48sknLT0sIiKyYpw7iIioKzh/UG/AwBSRiRQKBTQaTbPbvLy8sHDhQnzzzTd499138emnn1podEREZI04dxARUVdw/qDeiDWmiEwUGhqKgwcPIiMjA46Ojnj//fcxfPhwDBw4EA0NDfjtt98wYMAASw+TiIisCOcOIiLqCs4f1BsxY4rIRE8++SSkUiliYmLg5eUFhUKBpUuXYsiQIZg4cSKkUinWrl1r6WESEZEV4dxBRERdwfmDeiNBFEXR0oMgIiIiIiIiIqK+hxlTRERERERERERkEQxMERERERERERGRRTAwRUREREREREREFsHAFBERERERERERWQQDU0REREREREREZBEMTBERERERERERkUUwMEVERERERERERBbBwBQREREREREREVkEA1NERERERERERGQRDEwREREREREREZFFMDBFREREREREREQWwcAUERERERERERFZxP8DSpLnod2R1VUAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, axs = plt.subplots(2, 3, figsize=(3 * 4, 2 * 3))\n", - "fig.suptitle(\"Constant Volatility\")\n", - "thc = srr.transaction_history[1:].total.sum()\n", - "srr.book_history.Main.plot(ax=axs[0][0], title=f\"Total Hedge Cost: {thc:.2f}\")\n", - "metrics.price.plot(title=\"price\", ax=axs[0][1])\n", - "metrics.vol.plot(title=\"vol\", ax=axs[0][2])\n", - "metrics.delta.plot(title=\"delta\", ax=axs[1][0])\n", - "metrics.gamma.plot(title=\"gamma\", ax=axs[1][1])\n", - "metrics.vega.plot(title=\"vega\", ax=axs[1][2])\n", - "fig.tight_layout()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Stochastic Volatility" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# gbm params\n", - "r = 0.05\n", - "vol = 0.2\n", - "s0 = 100\n", - "N = 101\n", - "T = N / 365\n", - "\n", - "\n", - "kappa = 4\n", - "theta = 0.02\n", - "v0 = 0.02\n", - "sigma = 0.9\n", - "R = 0.9\n", - "\n", - "\n", - "# simulate data\n", - "rng = np.random.default_rng(12345) # for reproducibility\n", - "ix = pd.date_range(end=\"20221231\", periods=N, freq=\"D\")\n", - "p, vol = heston_simulate_paths(\n", - " S0=s0,\n", - " v0=v0,\n", - " mu=r,\n", - " kappa=kappa,\n", - " theta=theta,\n", - " xi=sigma,\n", - " R=np.array([[1, R], [R, 1]]),\n", - " T=T,\n", - " n_steps=N,\n", - " n_sims=1,\n", - " rng=rng,\n", - ")\n", - "\n", - "df = pd.DataFrame(np.c_[p[:, 0], p[:, 0]], index=ix)\n", - "df.columns = pd.MultiIndex.from_tuples(((\"ACME\", \"Open\"), (\"ACME\", \"Close\")))\n", - "\n", - "# add constant vol to data\n", - "df.loc[:, (\"ACME\", \"IVol\")] = vol\n", - "\n", - "# assets\n", - "assets = [\n", - " OHLCAsset(name=\"ACME\", denom=\"USD\", quantity_round_dp=6),\n", - " BSMOption(name=\"CO_ACME\", data_label=\"ACME\", K=s0, exp=ix[-1], r=r),\n", - "]\n", - "\n", - "# run simulation\n", - "book = Book(name=\"Main\", cash=\"0\", rate=0.05 / 100)\n", - "sr = StrategyRunner(\n", - " data=df,\n", - " assets=assets,\n", - " strategies=[DeltaHedgingStrat()],\n", - " books=[book],\n", - ")\n", - "srr = sr.run(\n", - " {\n", - " \"r\": r,\n", - " \"vol\": vol,\n", - " \"exp\": ix[-1],\n", - " \"K\": s0,\n", - " }\n", - ")\n", - "metrics = pd.DataFrame.from_dict(srr.strategies[0].metrics, orient=\"index\").reindex(\n", - " srr.book_history.index\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJRCAYAAACUbgR+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3hU5daA4Wd6eu+QRugdaSIIqChgRQVEUYoKHhUUsPIpICpiPygqKCpFQbBybHQBCx2kd0iBkIQkpLdp+/sxmYEhhQTSWbfXXGR2fWcSp6y91npViqIoCCGEEEIIIYQQQghRg9S1PQAhhBBCCCGEEEIIcfWRoJQQQgghhBBCCCGEqHESlBJCCCGEEEIIIYQQNU6CUkIIIYQQQgghhBCixklQSgghhBBCCCGEEELUOAlKCSGEEEIIIYQQQogaJ0EpIYQQQgghhBBCCFHjJCglhBBCCCGEEEIIIWqcBKWEEEIIIYQQQgghRI2ToJQQQggh6pQNGzagUqn4/vvva3sowPnxbNiwobaHUiqVSsUrr7xSpcfs27cvffv2ddyPi4tDpVKxYMECx7JXXnkFlUpVpecVQgghxNVFglJCCCGEYN++fQwePJjIyEhcXFxo1KgRN998M7Nnz3ba7o033mD58uW1M8hq9sknnzgFXaraU089hUql4vjx42Vu89JLL6FSqdi7d2+1jcPu4MGDvPLKK8TFxVXZMRvy34cQQgghqp4EpYQQQoir3KZNm+jSpQt79uxhzJgxfPTRRzz66KOo1Wo++OADp20bctChrKBU7969KSgooHfv3ld0/OHDhwOwZMmSMrf55ptvaNeuHe3bt7+ic1XEwYMHmT59eqlBqdWrV7N69epy93/55ZcpKChwWtaQ/z6EEEIIUfW0tT0AIYQQQtSuGTNm4O3tzfbt2/Hx8XFad/bs2doZVB2iVqtxcXG54uN0796dpk2b8s033zB16tQS6zdv3kxsbCxvvvnmFZ/rSun1+ktuo9Vq0Wrlo6QQQgghLp9kSgkhhBBXuRMnTtCmTZsSASmAoKAgx88qlYq8vDwWLlyISqVCpVIxatQox/p///2XgQMH4uXlhYeHBzfddBNbtmwpcczMzEwmTpxIVFQUBoOBxo0bM2LECNLS0py2s1qtzJgxg8aNG+Pi4sJNN91UovTtr7/+YsiQIURERGAwGAgPD2fixIklMniSk5MZPXo0jRs3xmAwEBoayl133eXIEoqKiuLAgQNs3LjR8djsPZXK6im1detWbr31Vnx9fXF3d6d9+/YlMssuNnz4cA4fPsyuXbtKrFuyZAkqlYr7778fsAUEH3nkEYKDg3FxcaFDhw4sXLiw3OMDxMfH88QTT9CiRQtcXV3x9/dnyJAhThlRCxYsYMiQIQDccMMNjsdsf4wX95QqzcU9pcr6+1i/fj0qlYqffvqpzMe8efPmSz4uIYQQQjQ8cnlLCCGEuMpFRkayefNm9u/fT9u2bcvc7quvvuLRRx+lW7dujB07FoCYmBgADhw4wPXXX4+XlxfPP/88Op2OTz/9lL59+7Jx40a6d+8OQG5uLtdffz2HDh3i4Ycf5pprriEtLY2ff/6Z06dPExAQ4Djfm2++iVqt5tlnnyUrK4u3336b4cOHs3XrVsc23333Hfn5+Tz++OP4+/uzbds2Zs+ezenTp/nuu+8c2917770cOHCA8ePHExUVxdmzZ1mzZg0JCQlERUUxa9Ysxo8fj4eHBy+99BIAwcHBZT4Xa9as4fbbbyc0NJSnn36akJAQDh06xK+//srTTz9d5n7Dhw9n+vTpLFmyhGuuucax3GKx8O2333L99dcTERFBQUEBffv25fjx44wbN47o6Gi+++47Ro0aRWZmZrnn2L59O5s2bWLYsGE0btyYuLg45syZQ9++fTl48CBubm707t2bp556ig8//JD/+7//o1WrVgCOfy9HWX8f1157LeHh4SxevJi7777baZ/FixcTExNDjx49Lvu8QgghhKjHFCGEEEJc1VavXq1oNBpFo9EoPXr0UJ5//nll1apVitFoLLGtu7u7MnLkyBLLBw0apOj1euXEiROOZWfOnFE8PT2V3r17O5ZNnTpVAZQff/yxxDGsVquiKIqyfv16BVBatWqlFBUVOdZ/8MEHCqDs27fPsSw/P7/EcWbOnKmoVColPj5eURRFycjIUADlnXfeKfd5aNOmjdKnT58Sy+3jWb9+vaIoimI2m5Xo6GglMjJSycjIKPUxlKdr165K48aNFYvF4li2cuVKBVA+/fRTRVEUZdasWQqgfP31145tjEaj0qNHD8XDw0PJzs52LAeUadOmOe6X9pxs3rxZAZRFixY5ln333XdOj+tCffr0cXouYmNjFUCZP3++Y9m0adOUiz9KlvX3MXnyZMVgMCiZmZmOZWfPnlW0Wq3T2IUQQghxdZHyPSGEEOIqd/PNN7N582buvPNO9uzZw9tvv03//v1p1KgRP//88yX3t1gsrF69mkGDBtGkSRPH8tDQUB544AH+/vtvsrOzAfjhhx/o0KFDiYwZwKkUDGD06NFOvY2uv/56AE6ePOlY5urq6vg5Ly+PtLQ0rrvuOhRF4d9//3Vso9fr2bBhAxkZGRV5Ssr177//Ehsby4QJE0qUPF78GErz4IMPcvr0af7880/HsiVLlqDX6x0ldb///jshISGOUj4AnU7HU089RW5uLhs3bizz+Bc+JyaTifT0dJo2bYqPj0+pZYM1YcSIERQVFfH99987li1btgyz2cyDDz5YK2MSQgghRO2ToJQQQggh6Nq1Kz/++CMZGRls27aNyZMnk5OTw+DBgzl48GC5+6amppKfn0+LFi1KrGvVqhVWq5VTp04Btv5V5ZUIXigiIsLpvq+vL4BTYCkhIYFRo0bh5+eHh4cHgYGB9OnTB4CsrCwADAYDb731FitWrCA4OJjevXvz9ttvk5ycXKFxXOzEiRMAFX4cFxs2bBgajcYxC19hYSE//fQTAwcOdDzG+Ph4mjVrhlrt/FHNXl4XHx9f5vELCgqYOnUq4eHhGAwGAgICCAwMJDMz0/Gc1LSWLVvStWtXFi9e7Fi2ePFirr32Wpo2bVorYxJCCCFE7ZOglBBCCCEc9Ho9Xbt25Y033mDOnDmYTCan3kw1SaPRlLpcURTAlqF1880389tvv/HCCy+wfPly1qxZw4IFCwBbo3S7CRMmcPToUWbOnImLiwtTpkyhVatWjmyqmhQUFMTNN9/MDz/8gMlk4pdffiEnJ4fhw4dXyfHHjx/PjBkzGDp0KN9++y2rV69mzZo1+Pv7Oz0nNW3EiBFs3LiR06dPc+LECbZs2SJZUkIIIcRVThqdCyGEEKJUXbp0ASApKcmxrLTytMDAQNzc3Dhy5EiJdYcPH0atVhMeHg7YGl/v37+/Ssa3b98+jh49ysKFCxkxYoRj+Zo1a0rdPiYmhmeeeYZnnnmGY8eO0bFjR9577z2+/vproGKld/bjAOzfv59+/fpd1tiHDx/OypUrWbFiBUuWLMHLy4s77rjDsT4yMpK9e/ditVqdsqUOHz7sWF+W77//npEjR/Lee+85lhUWFpKZmem0XUUfb2WUd8xhw4YxadIkvvnmGwoKCtDpdNx3331VPgYhhBBC1B+SKSWEEEJc5davX+/IPrrQ77//DuBUlufu7l4iuKHRaLjlllv43//+R1xcnGN5SkoKS5YsoVevXnh5eQG2WfD27NnDTz/9VOJ8pY2hPPZMqgv3UxSFDz74wGm7/Px8CgsLnZbFxMTg6elJUVFRuY+tNNdccw3R0dHMmjWrxPYVfQyDBg3Czc2NTz75hBUrVnDPPffg4uLiWH/rrbeSnJzMsmXLHMvMZjOzZ8/Gw8PDUaJYGo1GU2Ics2fPxmKxOC1zd3cHqNBjrqjynsOAgAAGDhzI119/zeLFixkwYIDTbItCCCGEuPpIppQQQghxlRs/fjz5+fncfffdtGzZEqPRyKZNm1i2bBlRUVGMHj3asW3nzp1Zu3Yt77//PmFhYURHR9O9e3def/111qxZQ69evXjiiSfQarV8+umnFBUV8fbbbzv2f+655/j+++8ZMmQIDz/8MJ07d+bcuXP8/PPPzJ07lw4dOlR43C1btiQmJoZnn32WxMREvLy8+OGHH0o0Mz969Cg33XQTQ4cOpXXr1mi1Wn766SdSUlIYNmyY02ObM2cOr7/+Ok2bNiUoKIgbb7yxxHnVajVz5szhjjvuoGPHjowePZrQ0FAOHz7MgQMHWLVq1SXH7uHhwaBBgxx9pS4u3Rs7diyffvopo0aNYufOnURFRfH999/zzz//MGvWLDw9Pcs89u23385XX32Ft7c3rVu3ZvPmzaxduxZ/f3+n7Tp27IhGo+Gtt94iKysLg8HAjTfeSFBQ0CXHX5ay/j7sRowYweDBgwF47bXXLvs8QgghhGggam/iPyGEEELUBStWrFAefvhhpWXLloqHh4ei1+uVpk2bKuPHj1dSUlKctj18+LDSu3dvxdXVVQGUkSNHOtbt2rVL6d+/v+Lh4aG4ubkpN9xwg7Jp06YS50tPT1fGjRunNGrUSNHr9Urjxo2VkSNHKmlpaYqiKMr69esVQPnuu++c9ouNjVUAZf78+Y5lBw8eVPr166d4eHgoAQEBypgxY5Q9e/Y4bZeWlqY8+eSTSsuWLRV3d3fF29tb6d69u/Ltt986HT85OVm57bbbFE9PTwVQ+vTp4zSe9evXO23/999/KzfffLPi6empuLu7K+3bt1dmz55d4ef9t99+UwAlNDRUsVgsJdanpKQoo0ePVgICAhS9Xq+0a9fO6bHbAcq0adMc9zMyMhz7eXh4KP3791cOHz6sREZGOv2+FEVR5s2bpzRp0kTRaDROj7FPnz6Ox68opT/306ZNUy7+KFne34eiKEpRUZHi6+ureHt7KwUFBRV5moQQQgjRgKkUpZK58kIIIYQQQlwGs9lMWFgYd9xxB1988UVtD0cIIYQQtUx6SgkhhBBCiBqxfPlyUlNTnRrTCyGEEOLqJZlSQgghhBCiWm3dupW9e/fy2muvERAQwK5du2p7SEIIIYSoAyRTSgghhBBCVKs5c+bw+OOPExQUxKJFi2p7OEIIIYSoIyRTSgghhBBCCCGEEELUOMmUEkIIIYQQQgghhBA1ToJSQgghhBBCCCGEEKLGSVBKCCGEEEIIIYQQQtQ4CUoJIYQQQgghhBBCiBonQSkhhBBCCCGEEEIIUeMkKCWEEEIIIYQQQgghapwEpYQQQgghhBBCCCFEjZOglBBCCCGEEEIIIYSocRKUEkIIIYQQQgghhBA1ToJSQgghhBBCCCGEEKLGSVBKCCGEEEIIIYQQQtQ4CUoJIYQQQgghhBBCiBonQSkhhBBCCCGEEEIIUeMkKCWEEEIIIYQQQgghapwEpYQQQgghhBBCCCFEjZOglBBCCCGEEEIIIYSocRKUEkIIIYQQQgghhBA1ToJSosZt2LABlUrFhg0bansoJfTt25e+ffvW9jCEEEJcRVQqFa+88kptD0MIIUQDsmDBAlQqFXFxcbU9FCHKJUGpq4RKparQrSKBojfeeIPly5dX+5jtL6Q7duwodX3fvn1p27ZttY+jJmVnZzN9+nQ6dOiAh4cHrq6utG3blhdeeIEzZ85Uyzk/+eQTFixYcEXHOHPmDA8++CAtWrTA09MTHx8funXrxsKFC1EU5ZL75+bmMm3aNAYMGICfnx8qlarMMc2bN48+ffoQHByMwWAgOjqa0aNHyxuuEEIIIYQQQtQz2toegKgZX331ldP9RYsWsWbNmhLLW7VqdcljvfHGGwwePJhBgwZV5RCveidPnqRfv34kJCQwZMgQxo4di16vZ+/evXzxxRf89NNPHD16tMrP+8knnxAQEMCoUaMu+xhpaWmcPn2awYMHExERgclkYs2aNYwaNYojR47wxhtvXHL/V199lYiICDp06FBucPTff/8lOjqaO++8E19fX2JjY5k3bx6//vore/bsISws7LIfhxBC1IaCggK0WvlIJoQQQoirj3wCuko8+OCDTve3bNnCmjVrSiwXtcNsNnPPPfeQkpLChg0b6NWrl9P6GTNm8NZbb9XS6C6tffv2JQJJ48aN44477uDDDz/ktddeQ6PRlLl/aGgoSUlJhISEsGPHDrp27Vrmtp988kmJZYMGDaJLly4sWrSIF1988bIfhxBC1BSr1YrRaMTFxQUXF5faHo4QQgghRK2Q8j3hkJeXxzPPPEN4eDgGg4EWLVrw7rvvOpVfqVQq8vLyWLhwoaPkz55hEx8fzxNPPEGLFi1wdXXF39+fIUOG1HhZ1ddff03nzp1xdXXFz8+PYcOGcerUqRLbffbZZ8TExODq6kq3bt3466+/Sj1efHw8d955J+7u7gQFBTFx4kRWrVpVarnj1q1bGTBgAN7e3ri5udGnTx/++eefS475hx9+YM+ePbz00kslAlIAXl5ezJgxw2nZd99953icAQEBPPjggyQmJjptk5yczOjRo2ncuDEGg4HQ0FDuuusux+8kKiqKAwcOsHHjRsfv88KeWidOnODEiROXHH9ZoqKiyM/Px2g0lrudwWAgJCTkis4DkJmZednHEEKIy/HKK6+gUqk4fPgwQ4cOxcvLC39/f55++mkKCwsd26lUKsaNG8fixYtp06YNBoOBlStXOtZd3FMqMTGRRx55hLCwMEep8uOPP+70epqZmcmECRMc79tNmzblrbfewmq11shjF0IIUXW+//57VCoVGzduLLHu008/RaVSsX//fgD++OMPrr/+etzd3fHx8eGuu+7i0KFDNT1kIaqEZEoJABRF4c4772T9+vU88sgjdOzYkVWrVvHcc8+RmJjIf//7X8BWBvjoo4/SrVs3xo4dC0BMTAwA27dvZ9OmTQwbNozGjRsTFxfHnDlz6Nu3LwcPHsTNze2yxpaVlUVaWlqJ5SaTqcSyGTNmMGXKFIYOHcqjjz5Kamoqs2fPpnfv3vz777/4+PgA8MUXX/DYY49x3XXXMWHCBE6ePMmdd96Jn58f4eHhjuPl5eVx4403kpSUxNNPP01ISAhLlixh/fr1Jc79xx9/MHDgQDp37sy0adNQq9XMnz+fG2+8kb/++otu3bqV+Rh//vlnAB566KEKPScLFixg9OjRdO3alZkzZ5KSksIHH3zAP//84/Q47733Xg4cOMD48eOJiori7NmzrFmzhoSEBKKiopg1axbjx4/Hw8ODl156CYDg4GDHeW666SaACgcWCwoKyMvLIzc3l40bNzJ//nx69OiBq6trhfavjPT0dCwWCwkJCbz66qtO4xVCiJo2dOhQoqKimDlzJlu2bOHDDz8kIyODRYsWObb5448/+Pbbbxk3bhwBAQGOgPrFzpw5Q7du3cjMzGTs2LG0bNmSxMREvv/+e/Lz89Hr9eTn59OnTx8SExN57LHHiIiIYNOmTUyePJmkpCRmzZpVMw9cCCFElbjtttvw8PDg22+/pU+fPk7rli1bRps2bWjbti1r165l4MCBNGnShFdeeYWCggJmz55Nz5492bVrV5nvLULUWYq4Kj355JPKhb/+5cuXK4Dy+uuvO203ePBgRaVSKcePH3csc3d3V0aOHFnimPn5+SWWbd68WQGURYsWOZatX79eAZT169eXO8b58+crQLm3Nm3aOLaPi4tTNBqNMmPGDKfj7Nu3T9FqtY7lRqNRCQoKUjp27KgUFRU5tvvss88UQOnTp49j2XvvvacAyvLlyx3LCgoKlJYtWzo9BqvVqjRr1kzp37+/YrVanZ6T6Oho5eabby73sXbq1Enx9vYudxs7+/jbtm2rFBQUOJb/+uuvCqBMnTpVURRFycjIUADlnXfeKfd4bdq0cXrMF4qMjFQiIyMrNC5FUZSZM2c6/X5uuukmJSEhocL7K4qibN++XQGU+fPnl7udwWBwnMff31/58MMPK3UeIYSoCtOmTVMA5c4773Ra/sQTTyiAsmfPHkVRFAVQ1Gq1cuDAgRLHAJRp06Y57o8YMUJRq9XK9u3bS2xrf4957bXXFHd3d+Xo0aNO61988UVFo9FU+rVXCCFE7bv//vuVoKAgxWw2O5YlJSUparVaefXVVxVFUZSOHTsqQUFBSnp6umObPXv2KGq1WhkxYoRjmf27VGxsbI2NX4jLIeV7AoDff/8djUbDU0895bT8mWeeQVEUVqxYccljXJgNYzKZSE9Pp2nTpvj4+LBr167LHtvHH3/MmjVrStzat2/vtN2PP/6I1Wpl6NChpKWlOW4hISE0a9bMkd20Y8cOzp49y3/+8x/0er1j/1GjRuHt7e10zJUrV9KoUSPuvPNOxzIXFxfGjBnjtN3u3bs5duwYDzzwAOnp6Y5z5+XlcdNNN/Hnn3+WW06RnZ2Np6dnhZ4P+/ifeOIJpz4kt912Gy1btuS3334DbL8PvV7Phg0byMjIqNCxLxYXF1ep8sv777+fNWvWsGTJEh544AHAlj1VHVasWMHvv//Oe++9R0REBHl5edVyHiGEqIgnn3zS6f748eMB2/urXZ8+fWjdunW5x7FarSxfvpw77riDLl26lFivUqkAWwn39ddfj6+vr9N7Xr9+/bBYLPz5559X+pCEEELUsPvuu4+zZ886tQj5/vvvsVqt3HfffSQlJbF7925GjRqFn5+fY5v27dtz8803O73nCFFfSPmeAGx9k8LCwkoERuyz8cXHx1/yGAUFBcycOZP58+eTmJjo1IsqKyvrssfWrVu3Uj+Y2z+I2x07dgxFUWjWrFmpx9HpdMD5x3LxdjqdjiZNmjgti4+PJyYmxvElwK5p06ZO948dOwbAyJEjy3wcWVlZ+Pr6lrrOy8uLkydPlrnvxWMCaNGiRYl1LVu25O+//wZsfZreeustnnnmGYKDg7n22mu5/fbbGTFixBX1bypPZGQkkZGRgC1ANXbsWPr168eRI0eqvITvhhtuAGDgwIHcddddtG3bFg8PD8aNG1el5xFCiIq4+D0lJiYGtVrtFNiPjo6+5HFSU1PJzs6mbdu25W537Ngx9u7dS2BgYKnrz549e+lBCyGEqFPsvWmXLVvmaEuxbNkyOnbsSPPmzdmyZQtQ+veAVq1asWrVKvLy8nB3d6/RcQtxJSQoJarM+PHjmT9/PhMmTKBHjx54e3ujUqkYNmxYjTRdtVqtqFQqVqxYUepMbx4eHtV6boB33nmHjh07lrpNeedv2bIl//77L6dOnXLqaXWlJkyYwB133MHy5ctZtWoVU6ZMYebMmfzxxx906tSpys5TlsGDBzNv3jz+/PNP+vfvX23niYmJoVOnTixevFiCUkKIOuHiixlAlQbnrVYrN998M88//3yp65s3b15l5xJCCFEzDAYDgwYN4qeffuKTTz4hJSWFf/75hzfeeKO2hyZEtZGglABsGS5r164lJyfHKVvq8OHDjvV2pX3QBltq6ciRI3nvvfccywoLC2tsRrSYmBgURSE6OrrcD+P2x3Ls2DFuvPFGx3KTyURsbCwdOnRw2vbgwYMoiuL0uI8fP17i3GDLeOrXr1+lx37HHXfwzTff8PXXXzN58uRyt7WP/8iRI07jty+78HdlH9szzzzDM888w7Fjx+jYsSPvvfceX3/9NVD277Mq2Ev3riRTrjLnKioqqvbzCCFEaY4dO+aUCXX8+HGsVmulG84GBgbi5eXlmGGpLDExMeTm5l7We44QQoi667777mPhwoWsW7eOQ4cOoSgK9913H+D8PeBihw8fJiAgQLKkRL0jPaUEALfeeisWi4WPPvrIafl///tfVCoVAwcOdCxzd3cvNdCk0WicSvYAZs+ejcViqZYxX+yee+5Bo9Ewffr0EuNQFIX09HQAunTpQmBgIHPnznWaWnvBggUlHlf//v1JTEx0zI4HtkDbvHnznLbr3LkzMTExvPvuu+Tm5pYYW2pqarljHzx4MO3atWPGjBls3ry5xPqcnBzH7HhdunQhKCiIuXPnOgVhVqxYwaFDh7jtttsAyM/Pd5qOHGxfYjw9PZ32K+v3CXDixAlOnDhR7tjLe3xffPEFKpWKa665xrEsLS2Nw4cPk5+ff8njXsxsNpfaH2vbtm3s27ev1DJPIYSoCR9//LHT/dmzZwM4vX9WhFqtZtCgQfzyyy/s2LGjxHr7+9vQoUPZvHkzq1atKrFNZmYmZrO5UucVQghRN/Tr1w8/Pz+WLVvGsmXL6Natm+OiR2hoKB07dmThwoVOn9/379/P6tWrufXWW2tp1EJcPsmUEoAtU+eGG27gpZdeIi4ujg4dOrB69Wr+97//MWHCBEcmENgCMGvXruX9998nLCyM6Ohounfvzu23385XX32Ft7c3rVu3ZvPmzaxduxZ/f/8aeQwxMTG8/vrrTJ48mbi4OAYNGoSnpyexsbH89NNPjB07lmeffRadTsfrr7/OY489xo033sh9991HbGws8+fPL9FT6rHHHuOjjz7i/vvv5+mnnyY0NJTFixc7Gozbs4zUajWff/45AwcOpE2bNowePZpGjRqRmJjI+vXr8fLy4pdffilz7Dqdjh9//JF+/frRu3dvhg4dSs+ePdHpdBw4cIAlS5bg6+vLjBkz0Ol0vPXWW4wePZo+ffpw//33k5KSwgcffEBUVBQTJ04E4OjRo9x0000MHTqU1q1bo9Vq+emnn0hJSWHYsGGOc3fu3Jk5c+bw+uuv07RpU4KCghwZWPZa9ks1O58xYwb//PMPAwYMICIignPnzvHDDz+wfft2xo8f79SD66OPPmL69OmsX7+evn37Oi3PzMzkzJkzAPzyyy+cPn0asJWGent7k5ubS3h4OPfddx9t2rTB3d2dffv2MX/+fLy9vZkyZUq54xRCiOoSGxvLnXfeyYABA9i8eTNff/01DzzwgFP2bUW98cYbrF69mj59+jB27FhatWpFUlIS3333HX///Tc+Pj4899xz/Pzzz9x+++2MGjWKzp07k5eXx759+/j++++Ji4sjICCgGh6pEEKI6qTT6bjnnntYunQpeXl5vPvuu07r33nnHQYOHEiPHj145JFHKCgoYPbs2Xh7e/PKK6/UzqCFuBK1Ne2fqF1PPvmkcvGvPycnR5k4caISFham6HQ6pVmzZso777zjmH7a7vDhw0rv3r0VV1dXBVBGjhypKIqiZGRkKKNHj1YCAgIUDw8PpX///srhw4eVyMhIxzaKoijr169XAGX9+vXljtE+jWlpU2IriqL06dNHadOmTYnlP/zwg9KrVy/F3d1dcXd3V1q2bKk8+eSTypEjR5y2++STT5To6GjFYDAoXbp0Uf7880+lT58+Sp8+fZy2O3nypHLbbbcprq6uSmBgoPLMM88oP/zwgwIoW7Zscdr233//Ve655x7F399fMRgMSmRkpDJ06FBl3bp15T5Wu4yMDGXq1KlKu3btFDc3N8XFxUVp27atMnnyZCUpKclp22XLlimdOnVSDAaD4ufnpwwfPlw5ffq0Y31aWpry5JNPKi1btlTc3d0Vb29vpXv37sq3337rdJzk5GTltttuUzw9PRXA6fFHRkYqkZGRlxz36tWrldtvv93xt+Pp6an07NlTmT9/fom/H/v06Rf//iMjIxWg1Jt9KtuioiLl6aefVtq3b694eXkpOp1OiYyMVB555BGZ7lYIUSvsr2kHDx5UBg8erHh6eiq+vr7KuHHjlIKCAsd2gPLkk0+WegxAmTZtmtOy+Ph4ZcSIEUpgYKBiMBiUJk2aKE8++aRSVFTk2CYnJ0eZPHmy0rRpU0Wv1ysBAQHKddddp7z77ruK0WislscrhBCi+q1Zs0YBFJVKpZw6darE+rVr1yo9e/ZUXF1dFS8vL+WOO+5QDh486LSN/buUfEYWdZ1KUS6qcxJCXNKsWbOYOHEip0+fplGjRrU9HCGEELXklVdeYfr06aSmpkpmkhBCCCFEJUlPKSEuwd6s266wsJBPP/2UZs2aSUBKCCGEEEIIIYS4TNJTSohLuOeee4iIiKBjx45kZWXx9ddfc/jwYRYvXlzbQxNCCCGEEEIIIeotCUoJcQn9+/fn888/Z/HixVgsFlq3bs3SpUsdU7MKIYQQQgghhBCi8qSnlBBCCCGEEEIIIYSocdJTSgghhBBCCCGEEELUOAlKCSGEEEIIIYQQQogaVy97SlmtVs6cOYOnpycqlaq2hyOEEPWaoijk5OQQFhaGWt3wrlXIe4YQQlSdhvyeIe8XQghRdSr6flEvg1JnzpwhPDy8tochhBANyqlTp2jcuHFtD6PKyXuGEEJUvYb4niHvF0IIUfUu9X5RL4NSnp6egO3BeXl51fJohBCifsvOziY8PNzx2trQyHuGEEJUnYb8niHvF0IIUXUq+n5RL4NS9nRaLy8vecMQQogq0lBLFeQ9Qwghql5VvGd8/PHHvPPOOyQnJ9OhQwdmz55Nt27dSt123rx5LFq0iP379wPQuXNn3njjDaftR40axcKFC53269+/PytXrqzQeOT9Qgghqt6l3i8aViG4EEIIIYQQos5btmwZkyZNYtq0aezatYsOHTrQv39/zp49W+r2GzZs4P7772f9+vVs3ryZ8PBwbrnlFhITE522GzBgAElJSY7bN998UxMPRwghxGWSoJQQQgghhBCiRr3//vuMGTOG0aNH07p1a+bOnYubmxtffvllqdsvXryYJ554go4dO9KyZUs+//xzrFYr69atc9rOYDAQEhLiuPn6+tbEwxFCCHGZJCglhBBCCCGEqDFGo5GdO3fSr18/xzK1Wk2/fv3YvHlzhY6Rn5+PyWTCz8/PafmGDRsICgqiRYsWPP7446Snp5d5jKKiIrKzs51uQgghapYEpYQQQgghhBA1Ji0tDYvFQnBwsNPy4OBgkpOTK3SMF154gbCwMKfA1oABA1i0aBHr1q3jrbfeYuPGjQwcOBCLxVLqMWbOnIm3t7fjJjPvCSFEzauXjc6FEKKhs1qtGC1mCkxG8kxGisxG8kyFFBhNFJiLKDQbz99MRoosRorMJtu/FhNFZtsyo9WE0WzEZDVjshoxWU2YLCasmGkW5IGPm57C3MLafrh1Wk6hia+3JHB7+1DC/dxqezhCCHHVe/PNN1m6dCkbNmzAxcXFsXzYsGGOn9u1a0f79u2JiYlhw4YN3HTTTSWOM3nyZCZNmuS4b58pqqYpisKK/ckkZRWSV2Qmr8hMTKAHQ7tKkEwI0fBJUEoIcdWxWC0UWYowWU0YLUaMViMmi8kWsCleZv/ZZDFhtBqdlpmtZkwWE2bF7LSf2Wp2+te+f3ZhIbnGIvKMReQXB5jsx7MqZqwqC2BBwYyiMgMWUFlQqZRqfR6OxBc/HwWlX0EWNj/9m8hbKw8Tl5bHW4Pb1/ZwhBCi3gsICECj0ZCSkuK0PCUlhZCQkHL3fffdd3nzzTdZu3Yt7duX/5rcpEkTAgICOH78eKlBKYPBgMFgqPwDqGJfbYln6v8OlFjeJcqXJoEetTAiIYSoOZUOSv3555+888477Ny5k6SkJH766ScGDRrkWK8oCtOmTWPevHlkZmbSs2dP5syZQ7NmzRzbnDt3jvHjx/PLL7+gVqu59957+eCDD/DwkBddIeqrizN7CkxFFJiLKDCayDcXUmCyZfUU2bN7LCZMFiNmqy24Y7aaKTQXUWAyUmC2Zf04MnusJixWMxbFjFmxBXIUzFixoFFbCPLSolJbzgeCigNDRsv5YNOFgSeF6g32VIgK0JS+uCyKogFFg0rRAFpUihYVWlRoUKNFrdKiRoNapUOjst3XoEWr1qFV6dCotejUenILrSSkFxHu685dHRtRmFvIC7xQTQ+0/kvMKAAgI99YyyMRQoiGQa/X07lzZ9atW+f4HmFvWj5u3Lgy93v77beZMWMGq1atokuXLpc8z+nTp0lPTyc0NLSqhl7lMvKMvLf6KAC9mwfSyMeVPw6nkJJdxNGUHAlKCSEavEoHpfLy8ujQoQMPP/ww99xzT4n1b7/9Nh9++CELFy4kOjqaKVOm0L9/fw4ePOhIrx0+fDhJSUmsWbMGk8nE6NGjGTt2LEuWLLnyRyREPaUoinOGTXFgxWw1o1KpsP+noJTIyiktQ8dsNZNbVERiZg4pOXmo1FZc9AouOgWTxURaXj7p+QVkFxZitBixKGYsVlvQx6KYsSgmLNiCPwqW4ps9GGS2ZfhcsL4mMnvKcir18vdVq9To1Xp0Gh06tQ6tWut03/6zxaIht1DBatWgKGoUqwaTWUWhSUWBEQqNYDKrsSpqUDSgaIuDSGo0Kh1+rq74ubvh7+6Kv5sbvm6u+Lu74mlwwVWnx1VnwKDR4aYz4Koz4Kor/llrKF6mQ62umjaAv+1N4sklu/B39+Opa3qQ/f61EpIqR2pOEQAFJskoE0KIqjJp0iRGjhxJly5d6NatG7NmzSIvL4/Ro0cDMGLECBo1asTMmTMBeOutt5g6dSpLliwhKirK0XvKw8MDDw8PcnNzmT59Ovfeey8hISGcOHGC559/nqZNm9K/f/9ae5yX8t6aI2QVmGgV6sX8UV3RqFVMWGpm+e4znEjNq+3hCSFEtat0UGrgwIEMHDiw1HWKojBr1ixefvll7rrrLgAWLVpEcHAwy5cvZ9iwYRw6dIiVK1eyfft2xxWO2bNnc+utt/Luu+8SFhZ2BQ9HCGdmi4UCs9EpS0dRmTHoKLX8qswgT/G2FqsFBVvwyKJYnLa9sOzLaDE6ysLsP1+43mw1O62zl5LVKeWl7Fy0vqxNFasG0KBStMX/alChQ43GluGj0qBWtFCc7aNV6dCqzweHbD/r0ag0jmwfrUqLWq1DU5wZFJdWyMmzRaBoUKs0XN80hHuviSTQw80WVNLoHf/aA0xalRadWkdqtoVtcVkkpOcT4KEnxNuFIC8XLFaF3EIz2YUm9idmsWZ/CnHp+ZV6+poGeXBjyyBuaBFElyhfdJq6M6+ETmP7jZmsVtuC9OPVcp6qyKy988472b17N2fPnsXX15d+/frx1ltv1eh7RWquLShVZLLW2DmFEKKhu++++0hNTWXq1KkkJyfTsWNHVq5c6Wh+npCQ4HQxZs6cORiNRgYPHux0nGnTpvHKK6+g0WjYu3cvCxcuJDMzk7CwMG655RZee+21OlGiV5qDZ7JZsjUBgFfuaI1GbXt/tmdHnZSglBDiKlClPaViY2NJTk52mgXD29ub7t27s3nzZoYNG8bmzZvx8fFxSrnt168farWarVu3cvfdd5c4blFREUVFRY77VTFda44xBwUFL71XududKzxHan4qnnpPfAw+uGpdUaku9W29YTNbLOSZiigw2frjFBSXahVZTI6fCxxlWsWNl81GjBZzcQDGiNFiwmgvq7LYg0H2ZswmzFZbto4t+GPP3LFl51guyNKxl3EpWFBUxRk7mFFU9syd+v0lUqvSolXb/jdVUFAUBZVKhc4pcHP+plPrQNFwJCkfi9WWsaPX6HDT61GsWoxmFYVGFSgavFxc8HZxwcfVBYPWgF6tQ6vRYlDr0Wv1tvtqLRqVDo1Khwo1OrUencZWAmbQ6PBxdcXXzRVvFxc8DS7FGT16XLVVm9lzKdtizzH7j2P8dSyNdbvgn335jO4ZzOieUQS4G1CrVSiKwsm0PLbHnmNb7Dm2xp4jMbOgwufQa9R0b+JHiJcLrnoNrjoN3m46wrxdCfF2IdDTgLte61in19adINTF7AEyk6X4/49qCohWRWbtDTfcwP/93/8RGhpKYmIizz77LIMHD2bTpk3VMubSSKaUEEJUj3HjxpVZrrdhwwan+3FxceUey9XVlVWrVlXRyKqfoii88ssBrArc1j6U7k38HeuaBLoDcDItt7aGJ4QQNaZKg1L2NNrypndNTk4mKCjIeRBaLX5+fmVOATtz5kymT59e6fFYFStpBWkcOXeEIxlHOHLuCAk5CZzOOU22MRsVKlr5t6JnWE+6hnQl15RLQnYCp3JOEZsVy8msk2QWZTodU6/WE+EVQQu/FrTwbUFr/9Z0COyAi9al9EFcxGw1k5ibiF6tJ8gtCI26lKYyQL4pn8yiTHKMORRZihw3e4aOxWpx9MixZ9lcmL1jVayOmz0byJ65c2H2z4UZQrlFRWQXFpFnLKTAbCvnspdrobIU/2utvUCPiktn71ywaWkURQ3F5VWKogVFjYvWQKi3e6mBHvsy+3KVSoVGpUGtUjtt69jugpIvveaCW/H9CzN3tGotBo0Bg8bgWHZhCZlWpb2sAOiM3w6yMy6W9o29+erh7ni76S56Dmwldg0puNot2o+vHunO9rhzvLXiMDviM5iz4QRzNpxApQIPvRaVCrILzU77adUqOob70CLEk4x8I8lZhZzNKUKnUeNh0OJh0BLq40K/VsH0bh6Ih6FhzA1hD0qZLQpYLVBNPbauNLMWYOLEiY59IiMjefHFFxk0aBAmkwmdTlfqsataWq6tl5QEpYQQQlSV3/YlsS32HC46Nf93ayundU0CzmdK2S9ICiFEQ1UvvmGVNV3rtE3TULmoMFqMFJgLyDflk2/OJ9eUS54pjzxT+SmvCgoH0w9yMP0g8/bNK3M7Pxc/cow5jmbJxzOPczzzOL/xGwA6tY6OQR3pGtIVfxd/R4DBaDGSUZRBRmEGKfkpnMw8SWxWLEar7QuOVqUlxD0Ef1d/x2MoMBeQVZRFoaWWp2gvJcmj7ECPChRtcfPl4rIsxVaOpXI0X9aiVmnQoLPdV9mCLhqVPRtHe75sS6VF5wjSaIsDOjrHzRbE0aLXaHHRuuCi1WHQ6h39eAxaPS5aPW46A256PS5aHe56FwwaHXqNlox8I1tjz7HlZDpLt58iz2zlrRFd6Nc6uIxHWH+k5hTx1RbblGoT+zUvEZCChhWMuljXKD+++08P1h06y3trjnIoKRtFgZwiWzBKr1XTMdyHblF+dIv2o0uUL276evEyWKW0xeV7RosVLLXTvLsimbUXO3fuHIsXL+a6666rsYCUxapwLs+WKVUoQSkhhBBVZNFm2+e1x3rH0MjH1WlddIAtUyqrwMS5PCP+HnWz/FAIIapClX4bs0/hmpKS4jTLRUpKCh07dnRsc/bsWaf9zGYz586dK3MK2LKma10VtwqNa+mZRnZqlZooryha+LWgpV9Lor2iaezZmEYejcg357PpzCb+Tvybval78XfxJ9wrnAjPCCK9Imni3YQo7yhcta4oikKBuYD0wnRis2I5fO4wh88dZs/ZPZwtOMv25O1sT95eoefJRePimG3sdO5pTueeLnU7nVqHp94TF42tvMqgMaBT6xyZOvYsHIPG4MjW0ag0aNQaxzZqlRqNSuPUT8ee1XMu18LqA2kcPJMHigatWkuUnzfNgrxpFuRDkKc7bjo9rvYgj95QHPSxBXns67Sa8n8HdY2/h4Fb24Vya7tQ3A1a5mw4wRu/H6JPi8A61ffncny68QSFJisdw33o2yKwtodTK1QqFf1aB9OvdTBFZgs5hWayC0wUma00CXTHoK1ff6/VwSlTylI7vcwqkllr98ILL/DRRx+Rn5/Ptddey6+//lrusauy5Ds9rwhrcSKZBKWEEEJUleNnbaV5N5dyUdRVr6GRjyuJmQWcTMuToJQQokGr0qBUdHQ0ISEhrFu3zhGEys7OZuvWrTz++OMA9OjRg8zMTHbu3Ennzp0B+OOPP7BarXTv3r1S53uq01N4e3ujV+tx07nhpnXDVeuKu94dD50HHjoPPPWe6DX6Uvd307lxZ8yd3Blz5yXPpVKpbOfQuRHuGU7vxr0BWwlKfHY8W5O2sid1D3mmPEdZnVajxc/gh6+LL/6u/jTxbkKMTwyNPBqhKAqpBamczjlNVlEWBq0BF40LrlpXvAxe+Ln44aZ1q7asln2nsxi8eBNFZj80ahX3dwvnqZuaEeRZsTLEhuKJvjF8u/0UJ9PyWLwlnlE9o2t7SJftbE4hX2+1XXWb0K9Zg86IqiiDVoPBQ0OAfJhz4mh0brGC1XyJrWvfc889xyOPPEJ8fDzTp09nxIgR/Prrr2X+jV9uyXdp0nLOZ5IVGCUoJYSomN/2JqFRqxjQtvQLruLqlplv5Fye7f3FnhV1sSaB7ragVGouXaP8anJ4QghRoyodlMrNzeX48fMzNcXGxrJ79278/PyIiIhgwoQJvP766zRr1szRuDYsLMwx41KrVq0YMGAAY8aMYe7cuZhMJsaNG8ewYcMqPZvSA60ewMur/Ebl1U2lUhHlHUWUdxT3tbyvEjtCiHsIIe41/2ElI8/If77eSZHZSvdoP2be084xy8fVxtNFx6RbmvPST/uZte4Yd3dqXGrJW30wd8NJCk1WOkX40Kf51ZklJSrmfKNzpdbK9yqSWWsXEBBAQEAAzZs3p1WrVoSHh7NlyxZ69OhR6rHLKvm+HPaZ9wAKzVbp7SGEuKRzeUbGf7MLjVrFnmm3XJVl4qJ8J9NsLUaCvQy4l9GvskmAO38dS3NsK4QQDVWla5V27NhBp06d6NSpEwCTJk2iU6dOTJ06FYDnn3+e8ePHM3bsWLp27Upubi4rV650zKQEsHjxYlq2bMlNN93ErbfeSq9evfjss8+q6CGJ8lisCk8v201iZgGR/m58NqLLVRuQsruvSzgtgj3JzDfx4R/Hans4laYoCv/bnejIkprYr7l8aRblcsqUqqXyvQsza+3smbVlBZsArFbbRAsXluddzGAw4OXl5XS7XGk5589jsSq2QJ4QQpTj4JlsrIot8J9wLr+2hyPqoNhUW6DJ3tC8NPbP5ydTJSglhGjYKn3ppm/fvo7Zu0qjUql49dVXefXVV8vcxs/PjyVLllT21KIKfLD2KH8eTcVFp2bug53xdq2fWUFVSatR89JtrRjx5TYWbopjePeIehOoy8w38tLy/fy2NwmAG1sGcX2zgFoelajrtGp7T6nqbXR+pZm1W7duZfv27fTq1QtfX19OnDjBlClTiImJKTdwVZUuzJQC2wx8em397j0nhKheB5OyHD/Hp+fTMqR2s/pF3XMyzdZPqklg6aV7F647mZpbI2MSQojaIp+sryKbjqfx4R+2L4gz72lHq1D5kGTXu3kgN7YMwmxVeOWXg+UGXuuKXQkZ9J/1p6NvxcR+zfnsoc6SJSUuSVccVDFZlWrtKXWlmbVubm78+OOP3HTTTbRo0YJHHnmE9u3bs3HjxlInv6gOqTnOQakiaXYuhLiEg2fOT64Qny5ZLqKk2OKSvLL6ScH5TKmEc/m2i0hCCNFASZH7VeT7XbZZ/oZ0bszdnRrX8mjqnqm3t+bvY2n8eTSV1QdT6N+m7jYnPZmay8MLtpOZbyIm0J3/3teR9o19antYop7QqS8s36u+TKkrzaxt164df/zxR3UNr0LSSsmUEkKI8hxKynH8HJ8u5XuiJHtJXkw5mfmhXi646NQUmqycyigoN4AlhBD1mWRKXUV2xGUAcHuHyjWUv1pEBbgztncTAF795WClp38vNFl45ts93DH7b8cVsOqQnlvE6OKAVIdwH34Z30sCUqJS7I3OFQUs5trpKVVfXJwpVWiSq9VCiLIVmiwcv6DcSoJS4mJWq1KhTCm1WkV0gL2vlJTwCSEaLglKXSVSsgtJOJePWgXXRPjU9nDqrCduiCHM24XEzAI+2XCiwvtl5Bl5YN4Wfth1mn2JWQyft4XTGVX/QbTQZOHRRTuIT88n3M+Vz0d0kVl9RKVpNedLPM2mwlocSd0nmVJCiMo4fjYXi/V8hmj8OSnfE87OZBVQZLai06ho7Ota7rbn+0rJ35EQouGSoNRVwp4l1SrUC08XaW5eFje9lpdvbw3A3I0nSKjAFc5T5/K5d+4mdiVk4uWiJcrfjTNZhTz4+VbOZp//wp+eW0RO4eVnpeQUmhi3ZBf/Fp9n/qhuBHrWTF8d0bDYM6UALKbqK99rCOyZUsUVjxQYJSglhCibvZ9U0yBbhktiRgFGs2RYivPsWVIRfm5oNeV/FWtSnEllb4wuhBANkaRYXCW2x50DoGuUXy2PpO4b2DaEnk39+ed4Oo8u2s6SMdcS4FF68CcuLY8hn24mNaeIMG8XFjzcDU8XLUPmbiYuPZ/hn2/lmghftsed42RaHr5uOhaM7kaHcB+n4+yMzyDQw0CEv1up59kRd44Jy3ZzOqMAnUbFZyO6OD7wClFZFwalzBKUKpPJYiUj3xZIDvV2JTGzgEKzBKWEEGU7mGQLSvVpHsjpjHwKTVYSM6UfkDjPnvVUkZme7ZlSJyRTSgjRgEmm1FViR7wtKNUlyreWR1L3qVQq3rynPcFeBo6m5PLAvC0lSngAcovMjFm0g9ScIlqGePLjEz1pHuxJqLcrSx69lmAvA8fO5rJsxylOFl8Vy8g38cC8LWw6kWa7n2dk3JJd3DtnE33fXc+TS3axP9E2lbTJYuVwcjbvrjrC0E83czqjgMa+riwdey3XNvGvuSdENDgatcqR+WOVoFSZ0nNtz41GrSLE2zYjYKFkSgkhymEPSrUJ8yLSzxZQkBn4xIXs/aGaVCBQ2cTRU0r+hoQQDZdkSl0FcgpNjnTyLpGSKVUR4X5uLB3bg2GfbeZoSi7D521l8Zjujowpq1Vh0rLdHDubS5CngYUPdyPYy8Wxf4S/G0vGXMv7a47S2MeVbtF+tAr14rnv9/DP8XRGzd/Ok32bsnhrPGdzilCrwKrAb3uT+G1vElH+biRmFmCynO9LcU+nRky/q42UX4oqodWoMZqtmM1G9LU9mDrKXroX4KHHTa8BpKeUEKJsiqJwqPjzVqtQLyL93TiSkiPNzoUT+4VKexZUeezbpOUWkV1owks+AwohGiAJSl0F/k3IxKpAuJ+r42q/uLToAHdHYOpISg63ffgX93WNYEjnxny/8zSrD6ag16j59KHOTgEpu5hADz5+4BqnZV+O6spT3/zLqgMp/Hft0eLt3Hl/aEf0WjWfbjzBL3uTiCv+AOtp0NIy1JOR10Vxe3uZNVFUHX1xUMpqlkypstgzJAM8DLjobEEpmX1PCFGW0xkF5BSZ0WvUxAR6EFlcki9BKXEhe9aTfWa98ni66Aj0NJCaU8TJ1Dw6XtT+QQghGoJ6HZS6cHYTUbYd9n5SkiVVadEB7nwz5loe+mIbiZkFfLjuGB+uO+ZYP+PutnSKqHhJpEGr4eMHrmHK//bz3Y7TPNQjkhcGtHR84Z01rBPPDWjJsZQcYgI9aOzrikqlusRRhag8+wx8EpQqmz1TKtDTgKtOMqWEEOWzl+41C/ZAr1UT6S/le8JZocnCmawCoGKZUmAr87MFpXIlKCWEaJDqdVBqX2ImvX28a3sYdd724pn3ukiT88vSJNCDdc/0YfXBFL7bcYq/j6ehKDDquiiGdAmv9PG0GjUz72nP9DvboteWbOvWyMeVRj7lTxEsxJXSqm1/ezL7XtlSL8iU0hQHhwslKCWEKMPBC0r3gPOZUuckU0rYxKXnoSjg5aLF371ixfNNAj3YGntO+koJIRqseh2U+vNIGr3bRNb2MOo0k8XKv6dsQamu0uT8srnoNNzZIYw7O4Rx6lw+J1Jz6d0s8IqOWVpASoiaoi/OlFIsploeSd11YaZUfpEZkKCUEKJsh4ozpVoXB6WiijOlEs7lY7UqqNWS+Xy1i7WX7gV6VDgTvrGv7UJlcnZhtY1LCCFqU73+VrzxWGptD6HO25+YRaHJio+bjpgKTD0rLi3cz42+LYLkw6Wo17Qa28u/1VxyZklhY8+UCvQw4GJvdC6z7wkhymAv37NnSoV6u6BVqzCarRJQEMD5JucxFZh5zy7Aw5ZRlV7KTNBCCNEQ1Oug1JHkHM5kFtT2MOq0HfbSvUhfCaIIIRx0jp5SkilVljT77HuV6Cl1ODlbvjgIcRXKKjBxOsP2mdSeKaXVqAn3s5XwxUlfKcGFTc4rE5Syzfyclivl9kKIhqleB6UA1h85W9tDqNO2Fzc5l35SQogL6YozpRRpdF4mp0ypCsy+d+pcPgM/+IuHF+6okfEJIeqOw8VZUo18XPF20zmWRxQHpRJkBj4BnEzLBWx9oirK3xGUkgseQoiGqd4Hpf44JEGpshSZLWyNLZ55T/pJCSEu4AhKSU+pMqU5ekrpHZlS5fWUOnY2B0WxlU2bLGUHr4QQDUu+0cy8v2KB86V7dlHS7LxcH3/8MVFRUbi4uNC9e3e2bdtW5rbz5s3j+uuvx9fXF19fX/r161die0VRmDp1KqGhobi6utKvXz+OHTtWxhFrlqIol5kpZS/fM6IoMvO4EKLhqfdBqb+Pp111PT4sVoWP1x/n2+2nyn1zWrk/mawCEyFeLnRo7FNzAxRC1Hlae/meBKVKVWiykF1oa24e6OFSofK9s9m2IJbFqjjKeIQQDdupc/nc88km1h5KQadR8eC1EU7rI4qbncdL+V4Jy5YtY9KkSUybNo1du3bRoUMH+vfvz9mzpV9w3rBhA/fffz/r169n8+bNhIeHc8stt5CYmOjY5u233+bDDz9k7ty5bN26FXd3d/r3709hYe339MrIN5FVYHvPvZzyPaPF6nhfEkKIhqReB6VCvAwUma1sPplW20OpUQs2xfHOqiM8/8NeXl6+H4u19MDU11viARjWLdzR1FgIIeB8phRSvlcqe5mEXqPGy1WLQWd7vsrLlDqbc760Ira4REMI0XBtPpHOHR/9zeHkHAI8DCwZcy19WwQ5bePIlJLyvRLef/99xowZw+jRo2ndujVz587Fzc2NL7/8stTtFy9ezBNPPEHHjh1p2bIln3/+OVarlXXr1gG2TKRZs2bx8ssvc9ddd9G+fXsWLVrEmTNnWL58eQ0+stIdTraVeDb2dcW1ePKMinDRafAw2CZMl56FQoiGqF5HKvq0CARg3VVUwnc6I5/3Vh9x3F+8NYH/fL2zRLbYkeQctsdloFGrGNY14uLDCCGucvZG54pVMqVKY28oG+ChR6VSVSxTKuf8lXh7iYYQomFKyS5k7Fc7yMw30aGxN7+M70nXUvp3Rl4QlJLSq/OMRiM7d+6kX79+jmVqtZp+/fqxefPmCh0jPz8fk8mEn5/teY+NjSU5OdnpmN7e3nTv3r3MYxYVFZGdne10qy77E7MAaBvmXel97SV80uxcCNEQ1e+gVHPb1ag/Dp+9Kt7oFUXh5eX7yTda6BblxyfDr0GvVbPmYAoPfL6FrPzzXy4Xb7VlSd3cKpgQb5faGrIQoo7SqiVTqjypjn5StrIJ+1Xt8srFU50ypSQoJURDNvV/+8kpNNOhsTfLHutBqLdrqds19nVDpYLcIjPn8uT11i4tLQ2LxUJwcLDT8uDgYJKTkyt0jBdeeIGwsDBHEMq+X2WOOXPmTLy9vR238PDwyj6UCtufaAt4tW3kdYktS7I3O5dMKSFEQ1TlQSmLxcKUKVOIjo7G1dWVmJgYXnvtNaegUVU1IewW7YeLTk1SViGHk3Oq8mHUST/vOcOGI6noNWreuKcdt7YLZfGj3fF21fFvQiajF2wjr8hMXpGZH3fZ6uuHXytZUkKIkhzle1bpT1Eae/mevZeHffa9InPZDczPSlBKiKvCyv1JrDqQglat4q3B7R2vD6Vx0WkI9bJdHIyTEr4q8+abb7J06VJ++uknXFwu/+Lr5MmTycrKctxOnTpVhaN0tv9McaZUoyvJlJKglBCi4anyoNRbb73FnDlz+Oijjzh06BBvvfUWb7/9NrNnz3ZsU1VNCF10Gno1DQBg7cGUKn0cdU1GnpFXfzkIwJM3NKVpkG0q2a5Rfiwdey3erjp2JWQy9qsdfLfjFLlFZqL83egZE1CbwxZC1FH28j0scuW+NCUypXSXzpSyNzoHCUoJ0VBl5ZuY8r8DADzeN4aWIZfOeoksbnb+zbYEyXQpFhAQgEajISXF+fN7SkoKISEh5e777rvv8uabb7J69Wrat2/vWG7frzLHNBgMeHl5Od2qQ26R2fG+cDlBKXumVKqU7wkhGqAqD0pt2rSJu+66i9tuu42oqCgGDx7MLbfc4piytaqbEPZrZUvRXbG/Yqm+9dG22HPcM2cT6XlGmgV58HjfGKf1rUK9WDC6K256Df8cT2f6r7bg1fDukajVqtoYshCijjufKSU9pUpjD0pdnClVVk8pRVGcyveSsgqvuplhhbgazFxxiNScImIC3Rl3Y9MK7dO9ia3n0fc7T9PrrfW8/uvBqz7jRa/X07lzZ0eTcsDRtLxHjx5l7vf222/z2muvsXLlSrp06eK0Ljo6mpCQEKdjZmdns3Xr1nKPWRMOnslGUSDU28XxvlIZAVK+J4RowKo8KHXdddexbt06jh49CsCePXv4+++/GThwIHB5TQjLc0ubEDRqFQeTsolrYFemc4vMTP3ffoZ+upnYtDyCvQz8976O6LUlf22dInz5fGQX9Fo1igJ6rZrBnRvXwqiFEPWB1pEpJUGp0ti/MNozpVwuMfteVoEJo8VW2mefJSlOpoAXokE5lJTN0u228q43722PQVuxGdSeurEZnz3UmfaNvSkwWfj871j+89XO6hxqvTBp0iTmzZvHwoULOXToEI8//jh5eXmMHj0agBEjRjB58mTH9m+99RZTpkzhyy+/JCoqiuTkZJKTk8nNtc12qlKpmDBhAq+//jo///wz+/btY8SIEYSFhTFo0KDaeIgO+4qbnLe5jCbnIOV7QoiGTVvVB3zxxRfJzs6mZcuWaDQaLBYLM2bMYPjw4cDlNSEsKiqiqOj8i/CFM2P4ueu5Lsafv46l8du+JJ68oWJXreqD0fO3sT0uA4BhXcOZfGsrvF11ZW5/XUwAc4Zfw9NLd/NA9wh83fU1NVQhRD2jL86UUkmmVKnKKt8rMluxWpUSWaj2flLerjqaBLrzb0ImsWl5tAqtnlIQIUTN25Vg+0x2fbOAUmfaK4tareKWNiHc3DqY3/cl8+SSXew/k1Xqa8nV5L777iM1NZWpU6eSnJxMx44dWblypeM7QkJCAmr1+Quxc+bMwWg0MnjwYKfjTJs2jVdeeQWA559/nry8PMaOHUtmZia9evVi5cqVV9R3qiocKA5KtbuM0j24MFNKyveEEA1PlQelvv32WxYvXsySJUto06YNu3fvZsKECYSFhTFy5MjLOubMmTOZPn16metvaxfKX8fS+L0BBaUy842OgNRXj3Tj+maBFdrvplbB7Jl2C5qr+EOOEOLS7JlSKsmUKlV68SxZ/sXBffvsewCFZgtueue3T3s/qSBPA9EB54NSQoiG42Sq7f/pZkGel7W/SqWif5tgdBoVhSYrSdmFNPIpfda+q8W4ceMYN25cqes2bNjgdD8uLu6Sx1OpVLz66qu8+uqrVTC6qmPPlLqcmffgfFBKMqWEEA1RlZfvPffcc7z44osMGzaMdu3a8dBDDzFx4kRmzpwJXF4TwkvNjGEv4TtwJpv4BlIuEV88Q0uQp6HCASk7CUgJIS5F58iUktn3SpNdYAvWebvZslNdLijTKTSVnIHvbI5too4gLwNNAmxNje1fYIUQDcPJVFuZWJNA98s+hlajJsLPzel4omHLN5o5Ufy7vtxMKX9H+Z5kSgkhGp4qD0rl5+c7pdoCaDQarFbbh/jLaUJ4qZkx7CV8AL/tS6rKh1Nr7L1IIv3dankkQoiGyBGUUiRT6mKKopBdaHtevFxsQSm1WuXo51das3N7+V6QpwvRAbbZUWPT5AunEA3JyeLsxysJStn2t71GSOD66nAoKQerYisHD/K6vDJCe6ZUbpG5zN6GQghRX1V5UOqOO+5gxowZ/Pbbb8TFxfHTTz/x/vvvc/fddwPV14Tw1nahAPzeQIJSCcWZUvZphIUQoirpisv31NJTqoRCkxWTRQHA64I+fi72oFQps+pdWL4XFWC7mCDle0I0HEVmC6fO2T6bxRQHlS6XPaglrxFXh/1X2E8KwMtF6+gFKSV8QoiGpsqDUrNnz2bw4ME88cQTtGrVimeffZbHHnuM1157zbHN888/z/jx4xk7dixdu3YlNzf3ipsQ9i8u4duf2DBK+OKKg1JRkiklhKgGWrWU75UlpzhLSq0C9wt6Sdn7SpV2ldpevhfoaSCq+GJCRr6JzHwptRCiIUhIz8eq2F4TgoonQLhc9hLfE1K+d1WwB6Xahl3+xBcqlcpRwifNzoUQDU2VB6U8PT2ZNWsW8fHxFBQUcOLECV5//XX0+vMzwdmbECYnJ1NYWMjatWtp3rz5FZ3Xz11PjyYNp4Qv3lG+J5lSQoiqJ5lSZbOX7nm66FCpzvfos8/AV3pQqjhTyssFd4OWkOISDcmEEKJhOJFqL93zcHpduBz28j15fbg6nG9yfvmZUnBhXynJlBJCNCxVHpSqTbe1t5Xw/bonCUVRank0Vyb+nL18TzKlhBBVz95TSq1IptTFsgpsz4mXq/MMey7FQanSekql5pwv3wOIDpDyHCEakpNpV97k3M7++pCYWSD9gRq4QpOFY2dtfztXGpSy95WSTCkhREPToIJS/duEoNeqOZiUzT/H02t7OJctr8js+IIT6SeZUkKIqqctDkppqrHR+Z9//skdd9xBWFgYKpWK5cuXO61XFIWpU6cSGhqKq6sr/fr149ixY471cXFxPPLII0RHR+Pq6kpMTAzTpk3DaKzeD+QXNzm3c3FkSpUy+1528ex7xUGpKAlKCdGg2JuSNwm4sn5SAP7uerxctCjK+YltRMN0ODkHi1XB311PqPfltymB80GpVMmUEkI0MA0qKOXnrmd49wgA3l9zpN5mS8UX95PyddM5piMXQoiqpHeU71VfplReXh4dOnTg448/LnX922+/zYcffsjcuXPZunUr7u7u9O/fn8JCW4Dn8OHDWK1WPv30Uw4cOMB///tf5s6dy//93/9V25gBcgqLM6UuCkq5lpEplVdkJq+4+bl9ZiV7z5iTEpQSokE4mVp1mVIqlep8CZ/MwNeg2ftJtWnkfcVln1K+J4RoqLSX3qR+ebxvDN9sS2BXQiYbjqZyQ4ug2h5Spdn7SUVIPykhRDU5nylVfUGpgQMHMnDgwFLXKYrCrFmzePnll7nrrrsAWLRoEcHBwSxfvpxhw4YxYMAABgwY4NinSZMmHDlyhDlz5vDuu+9W27izC+w9pS4u37M9Z4UXzb5nz2x102vwMNj2cZTvyRdOIRoEe4D5Smfes2sS4M7uU5kSuG7AFEXh591nAOjQ+MpK9wACpXxPCNFANbigVJCnCw9dG8m8v2L575qj9G0eeMVXJmqavZ+UzLwnxHlWq7Xay7YaKp1Oh0ajcV5Wyz2lYmNjSU5Opl+/fo5l3t7edO/enc2bNzNs2LBS98vKysLPz69ax+Yo33O9KFPKPvue2TkodfaiflIA0cXZFHHpeSiKUu/eh4QQ553LM5KZb3tdsAecr5Q940pm4Gu41hxMYVvcOQxaNQ8UV3JcCcmUEkI0VA0uKAXwWJ8Yvt6SwN7TWaw7dJZ+rYNre0iVIjPvCeHMaDQSGxuL1Vqyl4+oGB8fH0JCQhzBEfvsexrFTG0UOicnJwMQHOz8+hwcHOxYd7Hjx48ze/bsS2ZJFRUVUVR0/kN7dnZ2pcaWXVB6+Z6j0bnx4qCUvZ/U+X4h4b5uaNQq8o0WzuYUEex1Zb1EhBC1x16618jH1RGcvlLRATIDX0Nmslh5c8VhAMZc34RQb9crPqY0OhdCNFQNMigV4GFg5HVRzN14gvfXHCWkuLGgRq0iJtADvbZut9KKSyueec9PMqWEUBSFpKQkNBoN4eHhqNV1+//fukZRFPLz8zl79iwAoaG2WUrtmVJazFRfq/Oqk5iYyIABAxgyZAhjxowpd9uZM2cyffr0yz5XjiNTqmKz753NtgXAAr3OZ0rptWoa+7oSn57PydQ8CUoJUY85mpxXQT8pO/uxTqZKNmVD9M22BE6m5eHvruexPk2q5Jj+7rb3GMmUEkI0NA0yKAXwWO8mfLU5joNJ2dw++2/H8sa+rrx8W2v6twmusx8AEuzlewESlBLCbDaTn59PWFgYbm7y/8TlcHW1XaE9e/YsQUFBaDQatOrzmVK1EZQKCQkBICUlxREos9/v2LGj07Znzpzhhhtu4LrrruOzzz675LEnT57MpEmTHPezs7MJDw+v8Niyixude5bR6Pzi2ffs5Xv2fh92wV4uxKfnyxcIIeq5E2nFTc6rqHQPzpcBZhWYyMg34eeur7Jji9qVXWhi1lrbTLITbm5e4r3kcgV42v5GzuUbsVgVNOq6+T1GCCEqq8GmHPi663npttY08nEl2MtAsJcBD4OW0xkF/OfrnTz0xTaOpeTU9jBLKDRZOJNVAEj5nhAAFostK0Wvlw/sV8Ie0DOZbCGoCzOlakN0dDQhISGsW7fOsSw7O5utW7fSo0cPx7LExET69u1L586dmT9/foUy5QwGA15eXk63yrA3Ove6qNH5+aBUGeV7Xs5BKZ/inlSZBfUhF00IUZbzmVJV0+QcbJmXjXxci48vfaUakrkbTnAuz0iTQHeGda34BZFL8XPTo1KBotj6nAkhREPRYDOlAB7oHuHUWDDfaGbOhhN8+udJ/j6exj2fbGLdM30cU3jXBacz8lEU8DBo8ZerZkI41NXMxvri4udPp1Gjxoq6GjtK5ebmcvz4ccf92NhYdu/ejZ+fHxEREUyYMIHXX3+dZs2aER0dzZQpUwgLC2PQoEHA+YBUZGQk7777LqmpqY5j2TOtqkNZjc4ds++ZSp9978KeUgC+brbX8Ez58iBEvWYPGlVl+Z79eImZBZxMzaNLVPVO4CBqhtWqsHBTHAAvDmjpuABUFbQaNb5ues7lGUnLLSLQ03DpnYQQoh5o0EGpi7nptTxzSwuGdA5n5PxtxKbl8c+JNO7u1Li2h+Zg7ycV4ecmX8KFENVGq1Ghq+YsqR07dnDDDTc47ttL6kaOHMmCBQt4/vnnycvLY+zYsWRmZtKrVy9WrlyJi4stuLNmzRqOHz/O8ePHadzY+XVaUaovmJZTeIlG52X0lAq66AuCj5tkSglR35ktVkdbharMlAJbOeBfx9I4Kc3OG4y0vCLyjBZUKrihZVCVHz/AwxaUkmbnQoiGpMGW75Unwt+NG4vfKHbFZ9buYC4SL/2khBCXsGDBAnx8fK7oGDqNutqDUn379kVRlBK3BQsWALbsrVdffZXk5GQKCwtZu3YtzZs3d+w/atSoUvevzoAUnC/f87y4fE9/idn3Li7fK86UysiXLw9C1FenMgowWRRcdGpCqziz3t5XSsr3Go6kTNv7QbCnS5VmSdlJs3MhREN0VQalAK6J8AVgZ3xGLY/EWXy67WqZ9JMSQlQnXQ1kStVX9vI974vL97TFPaXM5xudG81WMvJt219cvmfPlMrKl0wpIeore8AoOsADdRU3lrZnXsVKplSDcSbT1hc21Kd6WoMEeEpQSgjR8Fy9QalIHwAOJ2eTV1R3vpjFpdsypSL9JFNKCFF9dBo1WuwZP1IqbGc0Wx2z611cvmfPlCq8IFMqtfiLgU6jwtfNeXv7fcmUEqL+OlFN/aTgfKZUfHo+Fmv1ZoCKmnEmy5YpFVbcxL6q2fvNpkn5nhCiAblqg1Kh3q6EebtgVWDPqczaHo5DgmRKCdFgWK1W3n77bZo2bYrBYCAiIoIZM2YA8MILL9C8eXPc3Nxo0qQJU6ZMccyMB7Bnzx5uuOEGPD098fLyonPnzuzYscPp+KtWraJVq1Z4eHgwYMAAkpKSKjw2W6ZUcXBFXTXTVTcEOYXnfwceZcy+d2FPqbPZti8ggR6GEn0AvV2LG51LTykh6iWLVWFbrC2jPiag6j+XNfJxxaBVY7RYOZ2RX+XHFzXPnikV5l09mVKBkiklhGiArqpG5xe7JtKXM3uT2JWQwXVNA2p7OJgsVk5n2N7MpKeUEKVTFKVEo+ma4qrTVGoCgsmTJzNv3jz++9//0qtXL5KSkjh8+DAAnp6eLFiwgLCwMPbt28eYMWPw9PTk+eefB2D48OF06tSJOXPmoNFo2L17Nzrd+eBRfn4+7777Ll999RVqtZoHH3yQZ599lsWLF1dobDqNGp2qOEtUIzN92mUXNzn3MGjRXFSqYyhl9r2zxTPvBZbSa8bXvbjRuZTvCVHvxKfnMenbPY42D92b+Ff5OdRqFc2DPdmXmMXPu88w/qZmVX4OUbOSsoqDUtWUKRXgYXu/TpeglBCiAbm6g1IRvvy6N4ldCZm1PRTAdnXFbFUwaNUEe1bPFRYh6rsCk4XWU1fVyrkPvtofN33FXjZzcnL44IMP+Oijjxg5ciQAMTEx9OrVC4CXX37ZsW1UVBTPPvssS5cudQSlEhISeO6552jZsiUAzZo5f1kxmUzMnTuXmJgYAMaNG8err75a4ceivbB8T3NVvxU4sTc593Ip+ZyUlimVmlP6zHsAPvZMqXwjVqtS5f1ohBDV48ddp3l5+X7yjRY8DFpeubMNPavp4uWj10fz9NLdzNl4gvu6hZfoTSfql8TiRueh3tVVvmfPlJLyPSFEw3HVlu+BLVMKYFdCRrXP5lQR9n5SEX5u8uVFiHru0KFDFBUVcdNNN5W6ftmyZfTs2ZOQkBA8PDx4+eWXSUhIcKyfNGkSjz76KP369ePNN9/kxIkTTvu7ubk5AlIAoaGhnD17tsLj02lU6O2NzqV8z8He5NzLteRz4ugpVUqmVKlBqeKeUlYFcupQ70IhRNlOZ+Tz7Hd7yDda6B7tx8oJ1zO4c+NqO9+dHcLoGO5DvtHCf9ccrbbz1EUff/wxUVFRuLi40L17d7Zt21bmtgcOHODee+8lKioKlUrFrFmzSmzzyiuvoFKpnG72Czs1Jam4fK9RdWVKFb/XSKaUEKIhuaovj7cO9cKgVZOZb+JkWh4xxbOg1JYDZ7KA6mmmKURD4arTcPDV/rV27gpv61r2B9LNmzczfPhwpk+fTv/+/fH29mbp0qW89957jm1eeeUVHnjgAX777TdWrFjBtGnTWLp0KXfffTeAUykfgEqlqlRwXac+nymlaCQoZZdTXL53cZNzuGD2PdP52fdSc2xXxUvLbnDRaXDRqSk0WcnKN5WYzU8IUfdsOJKKVYFOET58M+baar9IqFKpmHJ7K+6ds5ll208x8rooWoZ4Ves564Jly5YxadIk5s6dS/fu3Zk1axb9+/fnyJEjBAUFldg+Pz+fJk2aMGTIECZOnFjmcdu0acPatWsd97XamvuqYzRbHZNfVNvsex7nG51LBq4QoqG4qjOl9Fo17Rt7Azh6BlzIZLEye90x7vnkH7bFnqv28aw/bMty6FUH+lsJUVepVCrc9NpauVWmn1SzZs1wdXVl3bp1JdZt2rSJyMhIXnrpJbp06UKzZs2Ij48vsV3z5s2ZOHEiq1ev5p577mH+/PlX9NxdSKtRoSvOlFLUV/X1CSf28j3P0sr39OfL9+wBwDP2Uo0yvoD4utm+QMgMfELUD38eTQXgppZBNfaFv3OkH7e2C8GqwIzfDtXIOWvb+++/z5gxYxg9ejStW7dm7ty5uLm58eWXX5a6fdeuXXnnnXcYNmwYBkPJzFQ7rVZLSEiI4xYQUHOfqVOyC1EU2/cL+yx5VS3YywW1CowWK2l5ki0lhGgYruqgFNj6SgH8m+AclDqUlM2gj//hvTVH2ZWQyUNfbHUEjapDZr7RERi7oWXJK0RCiPrFxcWFF154geeff55FixZx4sQJtmzZwhdffEGzZs1ISEhg6dKlnDhxgg8//JCffvrJsW9BQQHjxo1jw4YNxMfH888//7B9+3ZatWpVZePTadSO2fcUKd9zKK98z6U4U85iVTBZ7EEp+0xLpWfG2bOjZAY+Ieo+k8XKphPpAPRuHlij535hQEv0GjV/HUur1s+bdYHRaGTnzp3069fPsUytVtOvXz82b958Rcc+duwYYWFhNGnShOHDhzuVxZemqKiI7Oxsp9vlSrxg5r3KXMSqDJ1GTXDxxBqJxZMjCSFEfVctQanExEQefPBB/P39cXV1pV27dk5TmSuKwtSpUwkNDcXV1ZV+/fpx7Nix6hjKJdn7StkDQharwsfrj3PnR39z4Ew2Pm46ukb5UmS2MmbRDn7ec+aKzldgtPD41zuZs8G5P8zGo7Z08RbBnjT2lZn3hGgIpkyZwjPPPMPUqVNp1aoV9913H2fPnuXOO+9k4sSJjBs3jo4dO7Jp0yamTJni2E+j0ZCens6IESNo3rw5Q4cOZeDAgUyfPr3Kxnbh7HuKSjKl7M6X75V8Tlx0598yC822bClHUOoSmVKZkiklRJ23Kz6D3CIzfu562oZ51+i5I/3dGXldJABPLf2Xvacza/T8NSktLQ2LxUJwcLDT8uDgYJKTky/7uN27d2fBggWsXLmSOXPmEBsby/XXX09OTk6Z+8ycORNvb2/HLTw8/LLPb595r7qanNvZ+1XZg2BCCFHfVXlQKiMjg549e6LT6VixYgUHDx7kvffew9fX17HN22+/zYcffsjcuXPZunUr7u7u9O/fn8LCwqoeziXZM6WOnc0lLi2PUfO38c6qI5gsCje3Dmb1xN4sGXMtd3UMw2xVeHrpv3y749Rln2/lgSRW7E/mnVWHOXUu37F83SHbVbEbW0mWlBANhVqt5qWXXiIuLg6j0Uh8fDyTJ08GbK+DaWlp5OTksHTpUiZMmEBmZiYAer2eb775hoSEBIqKikhMTGT27Nm4uNgCH6NGjXJsazdo0KBK9ZTSqFXo7UEp6Snl4Jh9r5RMKb1Gjb2ap9BoIbvATJ7Rlm1W1vTf9mbnmfmSKSVEXffnMVvp3vXNAmqlV8/Em5vTNcqXnEIzD36+lX2ns2p8DPXZwIEDGTJkCO3bt6d///78/vvvZGZm8u2335a5z+TJk8nKynLcTp26/M/49nLust4Pqkoj3+KglGRKCSEaiCoPSr311luEh4czf/58unXrRnR0NLfccotjlihFUZg1axYvv/wyd911F+3bt2fRokWcOXOG5cuXV/VwLinQ00CEnxuKAgM/+Iu/jqXhqtPwzuD2fPZQZ4I8XdBp1Px3aEcevDYCRYEpy/c7BZQqY/WBFMA2G9OizXEAmC1WNhb3MLhRSveEEDXERW1r2G2VTCmH7OJMqdJ6SqlUKkcJX4HJ4rhK7e+udyy/mI8jU0qCUkLUdX8eTQOgd7OaLd2zc9NrmT+6G50jfckuNPPgF1vZn9jwAlMBAQFoNBpSUlKclqekpBASElJl5/Hx8aF58+YcP368zG0MBgNeXl5Ot8t1qczZqiKZUkKIhqbKg1I///wzXbp0YciQIQQFBdGpUyfmzZvnWB8bG0tycrJTHbm3tzfdu3e/4jryy3VNhA9g+5LRJNCd/43ryZAu4U714Gq1itfuakuPJv4Uma1M/+VApc9TaLI4gk8AS7edIrfIzK6ETLIKTPi46egU7nOlD0cIISrEHpSSnlLnOTKlSpl9D87PwFhosl7wBaTsq+L2TClpdC5E3ZaeW8T+4lmQr29eexPOeBi0LBjdlWsifMgqMDHyy23kG821Np7qoNfr6dy5s9NEIFarlXXr1tGjR48qO09ubi4nTpwgNDS0yo5ZnqQsyZQSQojLUeVBqZMnTzJnzhyaNWvGqlWrePzxx3nqqadYuHAhgKNWvDJ15FXZhLA0t7YLRa2CuzqG8fO4XjQP9ix1O5VKxWuD2qDTqFh76CxrDqaUul1Z/j6WRr7RQqi3C00C3ckpMvP9jlP8UdzQsk/zQLSaq773vBCihhjUttIzq6r0LJ+rkaOnVCnle4BTptSZrEtfFfctDkplSaNzUQ2yC00s3ZbAukMpmCzW2h5OvTJh6b/c9N4GEtJtme9/H09DUaBVqBdBntWb6XIpni46Fj7cjUY+rqTnGVl/OPXSO9UzkyZNYt68eSxcuJBDhw7x+OOPk5eXx+jRowEYMWKEo9wdbM3Rd+/eze7duzEajSQmJrJ7926nLKhnn32WjRs3EhcXx6ZNm7j77rvRaDTcf//9NfKY7BcqQr0lU0oIISqjyms2rFYrXbp04Y033gCgU6dO7N+/n7lz5zJy5MjLOubMmTOrtMHvxW5pE8LBVweUWX5xoaZBnjx6fRPmbDjBKz8foFfTAMc04Zey+qAt6HZL62CaBnsyZfl+5m+KQ1cciJLSPSFETXJRW8ACVrWU79k5Zt8rI1PK3uy8wHi+fK/cTClXW/meZEqJqrbxaCov/rDXkZ3h66bjtvahDOsaQdtGNduku77JLjSxfLdt4pqR87fx/X96ODLZe9diltSFPF103N4hlE83nuT3/Unc1r5msn1qyn333UdqaipTp04lOTmZjh07snLlSsdF64SEBNTq8xdqz5w5Q6dOnRz33333Xd5991369OnDhg0bADh9+jT3338/6enpBAYG0qtXL7Zs2UJgYM2UY9qDUo2qOVOqsWRKCSEamCr/JhIaGkrr1q2dlrVq1YoffvgBwFErnpKS4pROm5KSQseOHUs95uTJk5k0aZLjfnZ29hXNjlGaigSk7Mbf2JSfd58hMbOAj9Yf47n+LS+5j8WqsLa4mXn/NiF0jPDh3VVHiC++QqdW2TKlhBCiphhUtswKi0rK9+zs5Xul9ZQCHBchCs0WR1Pb8r6ASKNzUdWyC03M+PUQy4onXWnk40qR2UpabhFfb0lg6bZTbPm/mwjwMNTySOuuCxuIx6bl8fDCHY4v+HXps9itbW1BqfWHz1JgtFT4Imh9MW7cOMaNG1fqOnugyS4qKuqSk3ksXbq0qoZWablFZkdPwtBqDkrZL4TkFJnJKjDhXUZmrxBC1BdVXivWs2dPjhw54rTs6NGjREbaprmNjo4mJCTEqY48OzubrVu3lllHXpVNCKuCm17L1DtsgbfP/jxJfHreJffZEXeOc3lGvF11dI32w02v5f5uEY71XSL9HA1xhRCiJhhUUr53sexLlO85ekoZLRXsKWVvdC6ZUqJqTFi6m2U7TqFSweieUayZ1Jstk2/kq0e6EehpwGxVOJKcU9vDrNP2nM4EoFOEDz5uOvacyiQttwg3vYYukX61O7gLtG/sTSMfV/KNzj1JRd2TVPx+4OWixcNQvdnHbnotfu629xbJlhJCNARVHpSaOHEiW7Zs4Y033uD48eMsWbKEzz77jCeffBKw9WWaMGECr7/+Oj///DP79u1jxIgRhIWFMWjQoKoeTrW5pXUw1zcLwGRR+PTPk5fcfnVx/6mbWgU5yvVGXheJtnjK4RtbSemeEKJm6R09peQqK9gyWnOLioNSZWRKOfWUqkBQyt5TKlN6SokqcCQ5hz8On0WtgiWPXsu0O9rgptei1ai5vlkg7YrL9uIqcLHsarbnVCZgy0T6YmRXR1lujyb+6LV1p7enSqXi1na2CoPf9yXV8mhEeSpSzl2VpK+UEKIhqfJ33q5du/LTTz/xzTff0LZtW1577TVmzZrF8OHDHds8//zzjB8/nrFjx9K1a1dyc3NZuXIlLi6121iyMlQqFeNuaArA9ztPczansMxtFUW5oJ/U+aluQ71d+U+fGJoEujOoY6PqHbAQQlzEnillkUwpAHILz89w5VlmTynbc5VbZCYl2z7TUtnvXd4XNDq3WMsvPRHiUub/EwvAgLYh9IjxL7E+0t8NgLg0CUqVZ88pW/le+8bedI70Zc6DnWnf2JtHro+u5ZGVNLCdrdXFukMpFJostTwaUZaamnnPzhGUysivkfMJIUR1qpb80ttvv53bb7+9zPUqlYpXX32VV199tTpOX2O6RftxTYQPuxIymf9PHC8MKL231KGkHE6dK8BFpy7Rq+DZ/i14tn+LmhiuEEI4OR+UkkwpON/k3EWnLjNbwl6+F5eWj1UBnUZFgHvZvXvsjc4VBXIKTVKmLS5bem4RP/6bCMDDPUsPnkQHuAMQmyZfVMuSkl1IcnYhahWOhvA3tAjihhZ1M2O9Y2MfQr1dSMoq5K9jadzcOvjSO4kal1RDM+/ZNfKVTCkhRMNRd3KU6yGVSsXjfW3ZUl9vjnd8obnYT/+eBuD6ZoENrkmlEKL+0hcHpcySKQXYspmg7Jn34PzseydScwFbxqu6uAy7NHqtGvfi1/0MaXYursA32xIwmq2O7J7SRPnbglIV6XV5tbKX7jUP9sS9mnv/VAW1WsWAtrYs+xVVWMJnsSp8/tdJxn/zL6Pmb+PeOZsYPGcT/11zlP2JWWU2FTdZrHz+16XbVlxtEjNrKVNKglJCiAag7r8b13E3tQyiWZAHx87msnhLAo/3jXFav/7wWT7/25Zuf+81jWtjiEKIemDDhg3ccMMNZGRk4OPjUyPntAelLEimFEDOJZqcw/lMqZNptqBUeaV7dj5uevKMBcXNzt2vfKDiqmM0W1m0OR6wZUmpVKUHQh1BqXP5WK1KuQHTq9Xe0+dL9+qL29qFMv+fONYcTKHIbMGgvbILCRarwrPf7eGn4sy7C+2Iz+CDdcdo5OPK8GsjeKRXtON8SVkFjF/yL9uOltzvapeUZe8pVcOZUtLoXAjRAEim1BVSq1X8p48tEPXlP7FO9f4nU3N5aum/KAoM7x7huNIlhBB1gc5RvidvBXC+fM+zjCbnAC7FWU+nMyre1NbH3uxcMqXEZfp9XxJnc4oI8jRwa3GPodKE+big06gwmq2cyZIvq6Wxz7zXIdynVsdRGddE+BLkaSCnyMxXm+PLzGKqiAsDUlq1iqdvasbbg9sz98HOvH1ve25pHYyLTk1iZgFvrzzCgFl/sfFoKuuPnOXWD/5iR3wG7gbJrr3YGUf5nmRKCSFEZck3kSpwZ8cwwrxdSM0p4vnv9/L3sTTO5RkZs2gHOYVmukT6Mu2ONrU9TCFEDerbty/jx49nwoQJ+Pr6EhwczLx588jLy2P06NF4enrStGlTVqxYQVxcHDfccAMAvr6+qFQqRo0aVenjVJZeZcsMMkvSLADZFSnfK84YsH8nbFSZoFSB8QpHKK5GiqLwZXGD84eujSx3djitRk24n63ZeXy69JW6mKIojvK9Do19anUslaFWq7inONv+9d8OMXjuZsfjqAyzxcoz3+52BKRm39+JiTc3Z2iXcAa0DWFo13A+G9GF3VNv4Z3B7Qn0NBCblsfIL7cxev52MvJNtAnz4tvHelTxI6zfFEXhTHGj84q8J1SFxsWZUmm5RmmAL4So9yQoVQV0GjVP3mjrLfXznjM8+MVWury+hhOpeYR4ufDJg9fUqSmGhajXFAWMebVzq+TV6YULFxIQEMC2bdsYP348jz/+OEOGDOG6665j165d3HLLLTz00EMEBgbyww8/AHDkyBGSkpL44IMPKn2c/PzKfQnVYQUkKGWXXZHyvYv6AlYsU8rW3DwjTzKlROWkZBcycv529p7OQq9V80D3iEvuYy/hi5UZ+EqIS88nu9CMXqumRYhnbQ+nUibd3Jxnb2mOm17DzvgM7vr4HwbM+pNBH//DsM828/TSf9mfmFXqvgfPZPP6rwe5duYfLN99Bq1axUcPdHLM7HcxF52GIV3C+eOZPjzaKxpNcRnog9dG8MPj1xHpL2XIF0rPM2I0W1GpINirZsr3vF11jn6Fki0lhKjv5JtIFRnePZIwb1dW7E/ij8OppOUWodeq+fShzgR51swblBBXBVM+vBFWO+f+vzOgr/iH8Q4dOvDyyy8DMHnyZN58800CAgIYM2YMAFOnTmXOnDns27cPPz8/AIKCgkr0lKrocfbu3cu1115b4fGdz5SSUgywzY4H4FVO+Z69p5RdhYJSrvZMKQlKiYpbsS+JyT/tIzPfhEGrZsbd7fD3KHumRzt7UCpOglIl2LOL2oZ5odPUr4uFeq2acTc2Y0iXcN5aeZgfdyVyODnHaZuf95zhnk6Nea5/C3KLzPy2N4nf9p3haEquYxs/dz1v3tOOW9pcuqWEp4uOl29vzYPXRnIu38g1EbYG+0aJgThJKm5yHuhhqLGL0CqVika+rhxNySUxo4CYQI8aOa8QQlQHCUpVoRtaBnFDyyCsVoUDZ7LxcNE6pmcWQlx92rdv7/hZo9Hg7+9Pu3btHMuCg21Te589exYvL68qOU5laLGl/JvkrQCA7AJbkM6zArPv2TWqQFNb3+JMKVujcyEu7ast8UxZvh+ANmFefDCsI02DKpbZEx1gK9+Lk/K9EnYXB6Xa16PSvYsFe7nw/tCOjL+xGacz8ik0WSkwWVh7MIWf95zhh12nWb47EYv1fGavXqOmX+sg7unUmD4tAisdkIsKcCdKJmkokz1TKbSGSvfsGvkUB6UkU0oIUc/JN5FqoFaraFePZnURol7Rudkylmrr3JXZXOcc3FCpVE7L7DNoWa3WGjlOieNiy9wxSyU3cL7RuZdrOY3OL8qUqkhTW2l0Liqj0GThg7VHARh1XRT/d2urSmVfRBVfDItLl0wpRVGwKjjKz/YWNznvWI+anJclOsDd6cLnnR3CGN0zijd+P8T2uAy0ahXXNwvgtvZh3Nw6GO9yypLFlUm2z7znXbOVETIDnxCioZCglBCiflGpKlVCV1/o9bZsGoul5hqW6iRTyklFGp1fWL7n46bD3XDp587RU0oypUQFfLvjFGm5Rhr5uPLSba0qn9VSXL6XkJ6Pxao4AjJXo2k/H2Dx1gRuahnEfV3DOXAmG6hfM+9VRqcIX759rAcnUvMI8NA7XntE9UrKtpXv1dTMe3aNfGwXyiRTSghR38nlcSGEqAMiIyNRqVT8+uuvpKamkpube+mdrpAWW7maSZGeUgA5FWh0fmGmVFgFv4DYe0plSU8pcQkmi5VPN54E4D99mlxW36MwH1f0GjVGi9UxTf3VaPepTBZtjsdiVVh9MIVHFu6gyGzFy0VLlH/lsl7rE5VKRdMgDwlI1aDk4pn3Qrwv3fOtKkmmlBCioZCglBBC1AGNGjVi+vTpvPjiiwQHBzNu3LhqP6f0lHJmL9/zLK/R+QWz74VVoJ8UgK+7LSglmVLiUn7efYbEzAICPAwM6RJ+WcfQqFWE+9m+rMY3wL5SiqIw6dvdPPj51jIDvYqi8NqvBwG4pXUwD/eMdpTR9moW4Ch5FqIqJDmCUjXfUwokU0oIUf/JNxEhhKgGGzZsKLEsLi6uxDJFOd+MdsqUKUyZMuWKj1NROkemVPVcn/jzzz9555132LlzJ0lJSfz0008MGjTIsV5RFKZNm8a8efPIzMykZ8+ezJkzh2bNmjm2mTFjBr/99hu7d+9Gr9eTmZlZLWOFC3pKVbB8ryIz7wF4u9obnUumlCib1arwyYbjADzSK7pE/7LKiPJ350RqHrHpefRqFlBVQ6wTtsae48ddiQCMW7KL+aO6or0oo+z3fcnsjM/AVafh1bvaEuLtwvMDWrDnVCYtQ8qeVEKIy2HPlAqt4Z5SjYszpZKzCzFbrCX+PxBCiPpCXr2EEOIqpVFsQSljNZXv5eXl0aFDBz7++ONS17/99tt8+OGHzJ07l61bt+Lu7k7//v0pLCx0bGM0GhkyZAiPP/54tYzxQvbZ97zLbXR+/m2zokEp3+IMjZxCM2ZL5ZrRi6vH6oPJnEjNw9NFy4PXRlzRsRzNztMaXrPzz/866fj5r2NpvP7bIaf1hSYLb660LXusTxNCigMFLjoN3Zv44+0mDb9F1VEU5Xz5nlfNBqUCPQzoNWosVoXk7MJL7yCEEHWUZEoJIcRVSmMv36umoNTAgQMZOHBgqesURWHWrFm8/PLL3HXXXQAsWrSI4OBgli9fzrBhwwCYPn06AAsWLKiWMV44npwKZEq5XFam1PnjZRWY8Peo2b4jou5TFIVPNpwAbDPueZbzN1gR9qBUfAObge9Eai5rD50F4IUBLXlr5WEWbIqjWbAHw7tHArBwUxynzhUQ7GVgbO8mtTlccRU4l2fEWHyxIbiGg1JqtYpQHxfi0/NJzCigsW/D7ZUmhGjYJFOqumTEQ+7Z2h6FEEKUSavYgjDVlSlVntjYWJKTk+nXr59jmbe3N927d2fz5s1XdOyioiKys7OdbpeSZ7RgLa6ALC8gcGFQqlEFe0ppNWpHn6oMKeFrEHYlZNBj5jo++uNYqaWzFmvlyml3n8pk7+ks9Fo1o66LuuLx2Rt5xzawTKkv/44FoF+rIB7vG8OztzQHYOr/DnDtG+toPXUlM1ccBuC5/i1x08u1V1G97BlKAR4G9Nqa/1pl7yt1soH9vy6EuLpIUKoqHVsDv06EDzrAB+1hdmdI3lfboxJCiFLZy/eKaiEolZycDEBwcLDT8uDgYMe6yzVz5ky8vb0dt/DwSzeMzi5umKzTqJxK9C52OT2lAEeT5awCaXbeEHz+10mSsgp5d/VRXv31INbiINTZnELGLNpB66kr+etYaoWPt2RrAgC3twutkky6KH9bptSpcwWVDpDVVefyjHy/8zQAj/SyZUA9eUNTBnUMc5Qv5Rtt2Z/XNvHjnk6Nam2s4upRW/2k7Ho08Qfglz1nauX8QghRFeQSUlXZ+imseN55WVE2LB4KY9aBV1jtjEsIIcpgD0pVV/lebZk8eTKTJk1y3M/Ozr5kYOrCJuflzczlbtBye/tQTBZrpfqH+LrpOXWugIw8yZSq73IKTaw7dD4Tev4/ceQUmundPJCp/9vvaGg/e91xrm8WeMnjZRWY+GWv7QvlA92vrJeUXZiPK3qNGqPFypnMAsL96n9Zz+It8RSZrbRt5MW1TfwAUKlUvDe0Iw/1iESv0eDposXTRYufu15m2BM14vzMe7UTlLqnc2PeX3uUTSfSOZ2RLyV8Qoh6SYJSVaEwCzbMtP3cbii0vRdC2sJXd0PaUVgyFEavBINH7Y5TCCEu4MiUstZ8UCokJASAlJQUQkNDHctTUlLo2LHjFR3bYDBgMFQu28Te5NxeZleejx64ptJjsveVyixjCntRf6w+kEKR2UpMoDtP3tCU577fy/c7TzuyeFqGeHLsbC7b4s5xJDmHFiGe5R5v+b+JFJqsNA/2oHOkb5WMUaNWEe7nyonUPOLS82o1KHXqXD4LN8XRJcqPm1sHo1E7B4sKTRZ2JWSw5UQ62+MyKDJb8HTR4emixdtVR4CHgQBPAws3xwMw5vomTgEnjVpF50i/Gn1MQtjVdqZUIx9Xrovx55/j6fywM5Gn+zW79E5CCFHHSPleVfjnQyjIgMCWcPdcaDEAvBvD8O/APdBWwvf9w2Ax1/ZIhRDCQV3cU6pIqfm3gujoaEJCQli3bp1jWXZ2Nlu3bqVHjx41Pp7Dyba+U9X15d3XTQ9AZr6U79V3PxeXydzZoRH3XNOYOcOvQa9Ro1GreOqmZvw8rhc3t7KVpS7eGl/usRRFcZTuPdAtokqze6KLm53/tjeJrSfTOZtdWGr/q+q0cn8yt334F5//Hct/vt7Jze9v5JttCexKyODj9ce5/7MttJ++mgfmbeXDP46z+WQ6uxIy2Xg0lV/3JrF4awIfrDvGlOX7ScstItTbhVvbhV76xKJe+Pjjj4mKisLFxYXu3buzbdu2Mrc9cOAA9957L1FRUahUKmbNmnXFx6wKtZ0pBTC4c2MAvt91ylFKLIQQ9YlkSl2pnBTY8ont5xungPqCjAPfKLh/KSy4DY6tgp3zoduYWhmmEEJczJ4pZaymTKnc3FyOHz/uuB8bG8vu3bvx8/MjIiKCCRMm8Prrr9OsWTOio6OZMmUKYWFhDBo0yLFPQkIC586dIyEhAYvFwu7duwFo2rQpHh5Vl326Mz4DgC7VlHFh7ymVKY3O67X03CL+Pp4GwJ0dbWX5t7QJYd0zfVAUiChuMP7gtZGsPJDMj7sSeWFAS9wNpX/c2pWQwZGUHFx0au6+pnGVjrVpkCdrD51l6fZTLN1+CoAO4T58/ECnai/xKTJbmPm7bWY8gBbBniRlFXAyLY/JP5bstRnkaaBHjD/do/3xc9eTU2gip9BMZoGJtNwi0nKKyC408WivJug0cj21IVi2bBmTJk1i7ty5dO/enVmzZtG/f3+OHDlCUFBQie3z8/Np0qQJQ4YMYeLEiVVyzKqQnF0AUKly7qrWv00IHoYDnDpXwPa4c3Qv7jMlhBD1hQSlrtSfb4MpHxp3hZa3lVzfuAvc+DKsfhn2fSdBKSFEnaG22gIkhdbq+ZK3Y8cObrjhBsd9e5+nkSNHsmDBAp5//nny8vIYO3YsmZmZ9OrVi5UrV+Licv7D/dSpU1m4cKHjfqdOnQBYv349ffv2rbqxxtmCUlVVPnUxn+JMqQzJlKrXft+XhMWq0L6xtyMTCUpm2F0X4090gDuxaXn8b/eZMntFLbY3OG8f5ijxrCoP94rCaLZy7GwOsWl5JGYWsOdUJnd99A9zH+pM16jqCcDmG82M+nI72+LOAfBY7yY8278FRWYry7afYsGmWLILzPRo4k/Ppv5c1zSAJgHu0gPqKvP+++8zZswYRo8eDcDcuXP57bff+PLLL3nxxRdLbN+1a1e6du0KUOr6yzlmVagLmVJuei23tQtl2Y5TfL/ztASlhBD1TrVfbnrzzTdRqVRMmDDBsaywsJAnn3wSf39/PDw8uPfee0lJSanuoVS9cydh5wLbz/1egbI+ULW91/bvqa2Qlei8riADkvZW1wiFEFeBUaNGOWUXVZS6mjOl+vbti6IoJW4LFiwAbE2KX331VZKTkyksLGTt2rU0b97c6RgLFiwo9RhVGZBKziokMbMAtQo6RvhU2XEv5OMqmVINwf9220v3yp+8RK1WMbw4EPX1lvhSy+ay8k38tjcJqLoG5xcK8nRh6h2t+eqR7vz9wo38/cKNtA71Ij3PyAPztvDNtoQqP2ehycKYRTvYFncOTxctX47qwuRbW6HTqPEwaHmkVzR/PX8je6bdwtyHOvNQjyhiAj0kIHWVMRqN7Ny5k379+jmWqdVq+vXrx+bNm2v0mEVFRWRnZzvdKkpRlAt6SlV8NtbqMLiLLdPyt31J5BVJuxAhRP1SrUGp7du38+mnn9K+fXun5RMnTuSXX37hu+++Y+PGjZw5c4Z77rmnOodSPda9ClYzNO0HUb3K3s4rDMKvtf186OfzyxUFvh4Mn14PCVurd6xCiBrVt29fp2B8de1zJVRW2wfXglroKVWX7EqwZUm1DPHCo4wyqytlz4Kxz/In6p/TGfnsiM9ApbJlNl3K4M6NMWjVHEzK5t9TmU7rzBYrL/64lyKzlZYhnnQK96meQV+gkY8r3z/eg9vahWKyKEz+cd8le15l5hv5Zc8ZjiTnXPL4RrOVJxbv4p/j6bjrNSx8uBs3tgyuquGLBiQtLQ2LxUJwsPPfR3BwMMnJyTV6zJkzZ+Lt7e24XWqm1gvlFJnJN1qA2i3fA+gS6UuUvxv5Rgsr9l/ecyiEELWl2sr3cnNzGT58OPPmzeP11193LM/KyuKLL75gyZIl3HjjjQDMnz+fVq1asWXLFq699trqGlLVOvQLHPgJVGq4adqlt28zCE5tgQPL4drHbctO/AGJO2w/H/gJIrpX12iFEKIEe/lekVLzs+/VJdVdugfnZ/XLLpQr2PXVL3tsWU3do/0qVKrj46bn9vZh/LDrNLPWHmP2sE54u+mwWBWe+W4PK/Yno9eomXp76xrLFHLTa/nogU5ErXbj4/UnmP7zQdqGedPhoqCY0Wzl6y3xfLDuGFnFM0a2CPbkjg6htAjxIjPfSFaBiexCc3H2Iuw5nclfx9IwaNV8Maor10RU3/9PQlSVyZMnO0rLwTbhRkUDU/YsKR83Ha762n0fValUDO7cmHdXH+V/uxMdzc+FEKI+qLbL408++SS33XabUxotwM6dOzGZTE7LW7ZsSURERJnptVeSWlstclPhlwm2n3s+DaHty90cgFZ32v49tQWyben//DPr/PqjK2yZU0KIem/UqFFs3LiRDz74AJVKhUqlIi4ujo0bN9KtWzcMBgOhoaG8+OKLmM3mcvexWCw88sgjREdH4+rqSosWLfjggw+ufJBWCypsrzmF5qs7U2pncaZUl6jqDErZMqVyJVOqXsouNLFkmy2r6M4OjSq836jrolCr4M+jqfR+Zz1f/B3Liz/s5X+7z6BVq/hk+DVc1zSguoZdKpVKxbO3tKB/m2CMFiuPf72Tc3m2XmdWq8KKfUn0n/Unr/56kKwCE418XNFpVBxJyeHd1UcZs2gHz32/l9d/O8SH644x+4/jfLT+OH8dS0OnUfHpQ525VnraiHIEBASg0WhKtO5ISUkhJCSkRo9pMBjw8vJyulWUo59ULWdJ2d3Q0tbMfc+pzBqfaVMIIa5EtWRKLV26lF27drF9+/YS65KTk9Hr9fj4+DgtLy+9dubMmUyfPr06hlp5igK/PA35aRDcFvpOrth+3o0gvLutr9TBnyG8G8T+CWqtLdsqIw7SjkJgi2odvhD1naIoFJgLauXcrlrXCmU0fPDBBxw9epS2bdvy6quvAmCxWLj11lsZNWoUixYt4vDhw4wZMwYXFxdeeeWVUvcJDAzEarXSuHFjvvvuO/z9/dm0aRNjx44lNDSUoUOHXv6DsZxvuF14FZfvFZosHEjMAqjWzA57plSOZErVO1arwqRluzl1roBQbxdu7xBa4X3bNfZm4cPdeO3XgxxNyeW1Xw8CoFGrmH1/J/q1rp3yNpVKxTtDOnA05R9i0/J4eum/3Nc1nNnrjnMkxVaqF+Ch55lbWjCkc2PyiiysOpjM7/uSOJdnxMdNj6+bDk8XLZriILpapeK29qHVmnEoGga9Xk/nzp1Zt26dox+i1Wpl3bp1jBs3rs4c81KSs2yfRUJrscn5hZoGeaBVq8guNJOUVUiYT+32uRJCiIqq8qDUqVOnePrpp1mzZo3TDEpX4kpSayvkzG74bZItm6nHk6ApZwacPd/Akd9ArYO7PwWtoeLnaT2oOCi1HBI22Za1HWwLcB1fC0dWSFBKiEsoMBfQfUntlLpufWArbrpLT6Xu7e2NXq/Hzc3NcYX2pZdeIjw8nI8++giVSkXLli05c+YML7zwAlOnTi11HwCNRuMUlI+Ojmbz5s18++23VxiUOp+xU2S5eoNSe05lYrYqBHkaaOxbfR/gJShVf334xzHWHjqLXqtm7oOd8XKp3Cx51zcL5Penruf7nad5f81R0vOMvD+0AwPbVTy4VR28XHTMefAaBn38D38dS+OvY2kAeBq0jOoZxdjeTRwZft5uaoZ2CWdolyr87CWuapMmTWLkyJF06dKFbt26MWvWLPLy8hwz540YMYJGjRoxc+ZMwNbI/ODBg46fExMT2b17Nx4eHjRt2rRCx6xq52feqxvBH4NWQ0ygB0dScjicnC1BKSFEvVHlQamdO3dy9uxZrrnmGscyi8XCn3/+yUcffcSqVaswGo1kZmY6ZUuVl15rMBgwGCoR/Kn0oOdD4k7bbe+3cMcsWybTxc78CytesP18w2QIaVu587S+C1ZNhoQt55f1fBri/7EFpY6ugl4TLvdRCCHqsEOHDtGjRw+nTKuePXuSm5vL6dOniYgoe/atjz/+mC+//JKEhAQKCgowGo107NjxygZ0QVCqwHL1znx1Yeledfb1sX+5LzBZMFms6DRXbyCwPllzMIVZa48BMGNQ2xK9lypKq1EzrFsEgzo1IrvQRJBn3cisaBnixZv3tGfit7vxNGh5uFc0o6+LxtutcoE3ISrrvvvuIzU1lalTp5KcnEzHjh1ZuXKlo1F5QkICavX518kzZ87QqVMnx/13332Xd999lz59+rBhw4YKHbOqnZ95r278/wzQMtSTIyk5HErKkYkGhBD1RpUHpW666Sb27dvntGz06NG0bNmSF154gfDwcHQ6HevWrePee+8F4MiRIyQkJNCjR4+qHk7FxBf3stLo4ewB+OJm6PQg9HkRfIqvCh7+DX54FEz5tpn0rnu68ufxbgSNu8Hpbbb7zQdAcGsweMDvz9r6TeWfAze/qnlcQjRArlpXtj5QO7NVumpr/qrj0qVLefbZZ3nvvffo0aMHnp6evPPOO2zdeoXPQXGTc4uiwmi9egMku+JtQanqbsp84ax+eUVmfNz01Xo+ceWOn81h4rLdAIzsEcmQKsgSctFpcNHVrYkFBnVqxDURvvh56Ktt9kkhSjNu3LgyS+vsgSa7qKioCvVJKu+YVe18plQdCkqFePE/znC4AjNmCiFEXVHlnz48PT1p29Y5g8jd3R1/f3/H8kceeYRJkybh5+eHl5cX48ePp0ePHrUz815eOqQdsf38+Gb457/w79e2295v4ZqR4BkMf8wAFIi5EYYsAM1lPnVtBp0PSvWcYPvXJwKC2tgCYsfXQvsrKMkRooFTqVQVKqGrbXq9HovF4rjfqlUrfvjhBxRFcWTk/PPPP3h6etK4ceNS97Fvc9111/HEE084lp04ceLKB1jcU8qMFpPFeuXHq4cURWFnfPXPvAeg16oxaNUUma3kFEpQqq5Lyy1i1Pzt5BaZ6Rblx8u3t67tIVWrCP+6/5oqRF2TXMcanYMtUwrgcFItTwolhBCVUCuXx//73/9y++23c++999K7d29CQkL48ccfa2MokFCcJRXYEgKawl0fw8OrIep625e27fPgj9cBBTqPhge+Axfvyz9f28HgEQItb4fICzLDmve3/Xt05eUfWwhRZ0RFRbF161bi4uJIS0vjiSee4NSpU4wfP57Dhw/zv//9j2nTpjFp0iRHicLF+1itVpo1a8aOHTtYtWoVR48eZcqUKaVOIlFpxeV7RrSYrVdnUOpkWh4Z+SYMWjVtwq7gdb2C7CV82TIDX51WaLIwZtEOTmcUEOnvxtyHOku5pRCihOTsule+1yrENnvgybQ8Ck2WS2wthBB1Q418ytqwYQOzZs1y3HdxceHjjz/m3Llz5OXl8eOPP172FLBXLL644XjEBQGiiO4w6lcY+YttuVoHt7wOt//38jOk7DyD4ZnDcN/XzstbDLT9e2ytU68XIUT99Oyzz6LRaGjdujWBgYGYTCZ+//13tm3bRocOHfjPf/7DI488wssvv1zmPgkJCTz22GPcc8893HfffXTv3p309HSnrKnLVvw6Y0bD1fq51Z4l1aGxD3pt9b8dekmz8zrPalV45rs9/JuQiberji9HdcXPXbLahBDO8o1msgps76N1qXwv2MuAj5sOi1Xh+Nnc2h6OEEJUiDQPsM+CF3ldyXXRvW03sxG0VfihtLRmuo06g5s/5KfbGqFHX1915xNC1LjmzZuzefNmp2VRUVFs27atUvsAzJ8/n/nz5zsts89IBLBgwYLKD7C4p5TpKs6UsveT6hxVM1PY22fgy5WgVJ2TXWhi1f5kvt95mq2x59BpVMx9sDMxgR61PTQhRB1kL93zMGgdWbB1gUqlolWIF5tPpnMoKZu2jao/C1gIIa7U1R2UKsqFpL22n0sLStlVZUCqLGoNNOsPe5bYSvgkKCWEqE4We1BKQwV6xzZIO2uoybmdhz1TqkiyYWvS/sQs5v8Tx4EzWahUKtQq27UhtUqFWqVCAQ4lZWM024KzahW8eU97esT41+7AhRB1VnIdbHJu1zLUk80n06XZuRCi3ri6g1Knt4FiAe8I8G5c26OBJn1tQanEXbU9EiFEQ2cv31Pq1kxgNSWrwMSx4tKGThH/z959xzdVfg8c/yRp0713oS0Fyt6rFBCQYcGJOABRAecXAUV+LlwIDtwbxQmoICgqDpbIVDaFsjctLXTvvZL7+yNNoLRA6UrSnvfrlRc0uffmpIE8ueee5zzuDfKcLnaGq+kyfa9+KYpCSm4xe2IzWbQ9ll0xGdXaL8zXmdu6BXJr12bS+FsIcUXGlfcsqZ+UkbGv1LEkaXYuhLAOTTspZewndXHDcXPybm34M+OMeeMQQjR+F03fa4r2x2cBEOzpiLezXYM8p4v0lKpzhSU6TqbkcjwplxPJuRxLyuVIQg7p+SWmbWzUKm7uEsDNXQKxtVGjKAqKAgoKej3oFYVgL0fa+rmYVsYUQogrMTY5t6SV94yMK/AdTcytsOKvEEJYqqZ5NmJ0trx3S7CFJKU8Wxr+zEuCknzQOpk3HiFE46UznLSX0jQrpfbFZQHQo4GqpODC6nuSlKq57MJSdp5JZ3dsBrtiMzl8PpsyfeX5p2oVtPJxZngHP+6PaGGRU2yEENYrMbsQsMxKqTBfF9QqyMgvITWvGF8Xy4tRCCEu1nSTUmXFcH6P4e8h/c0bi5GDh+FWmAkZMeDfydwRCSEaK50hMVLWRIeBvXGGflLdG6ifFFzUU6pIekpVV0Z+CYcTstkVk8G/J9M4cC6LS3NQXk5a2vq70MbPhbb+LnQIcKWtvwv2tk0z4SqEqH8Xeko5mDmSyhy0Glp4O3EmNZ9jibmSlBJCWLymeTYCkBANZUXg6A3eYeaO5gLPlnA+yjCFT5JSQpgoTbUbdx3RX7rCXnmlVJmq6Q0Der3CvriGbXIO4CrT967qbHo+m0+k8t/JNA6dzyah/MTvYi19nAgP9aJPqAe9Qjxp7uEg01OEEA0qPsNyK6XA0FfqTGo+RxNzGNjGx9zhCCHEFTW9sxGjs1sNfwb3NSzDYykuTkoJIbC1tUWlUpGamoqPj4+cfF4jRVEoKSkhNTUVtVqNVlu+mmh5T6mmWCl1Ji2fnKIy7G3Vpt4bDcGliVdKKYrCqZQ8tp9JZ9spwxS8kjI9rg62uDvakltURlxGQaX9Wng50jXInf6tvRnQ2ptAd8urTBBCNB35xWWcTDGsbNcx0NXM0VStfYALKw8mygp8Qgir0PTORgAUBWK2GP4e0s+8sVzK2FdKklJCAKDRaGjevDnnzp0jNjbW3OFYLUdHR4KDg1Gr1YY7ylff0zXBSinj1L0uzdyx1agb7HmNPaXyiptOpVR8RgHrjyazMyaDXTEZFRqQG+UWl3E+y1B1YKNW0TPEg4FtfOgV4kGHQFfT700IISzBofPZ6BVDlZSvBTY6B2hXvgLf0URZgU8IYfma3tlIQQb8+Tic2Wj4OXSgeeO5lGcrw5+SlBLCxNnZmbCwMEpLm2aFSW1pNBpsbGwqVpk14aSUscl59wZscg7gbNd0pu+V6fR8seUMH/1zkhLdhamjdjZqerfwJKKVF31beuHppCWroISswlJUQK8WnqbfkxBCWKLo8tVbuwW5mzWOKzFWAZ9OzaOkTI/WpuEuwAghxLVqOt/89HqI2QwrHoPcBFDbwvA54N/Z3JFVJJVSQlRJo9Gg0Ujj4jpTPn1P3ySTUg3f5Bwunr5X/aTUvrhM/jmazLQhYVbTuPtoYg5PL9/PofOGK/S9Qjy4vp0v4aGedGnuXsXJkaw0K4SwHvvPZQHQ1YKTUs3cHXCxtyG3qIzTqXm0D7DMaYZCCAGNPSmVkwBbP4LE/ZB0CErK51V7tYY7vobA7uaNryrGpFTOeSgtBFvpnSGEqAemSqmmNTUqt6iU48mGsaBHA1dKGaeh5VxDT6k3Vx9jZ0wGHQLcuKlLQK1jKNXpWbQtFk8nLTd2DqizRFdGfgnrjiSx+lAS/51Mo0yv4Gpvw6xbOjK6RzPpBSeEaDSiy6ttLblSSqVS0c7fhd2xmRxPypWklBAWLDW3mDWHErmzZxAOWuu4AFnXGm9SSq+HxXdB8qEL92nsoPt4uOE10FrolVlHT7Bzg+JsyIwF3/bmjkgI0Rg10el7B85loyiGq8gN3QvEuPpeXnEZiqJUK1FzLtPQaymhvOdSbX23/SyvrTwKwCt/HGZ0j+bc2zeE1r7O13Sc+IwC9pzNYH98Nvviszh0Phud/sIKmcM7+PH6qE4W229FCCFqIiWniITsItQq6NzMzdzhXFHb8qSUNDsXwnLlF5dx3zc7OZaUy5m0fGbd0tHcIZlF4z0bOb7SkJCyc4Ub3wH/LuDdBjQW/pJVKvAMhcRowxQ+SUoJIeqDztBwuqlN39t71jB1r0dIw07dA3AuT0opCuSX6K7aO0mvV0jJLQIw/VkbBSVlfL7pFABuDrZkF5aycFssS3bGsezRvpedzlim01NYqiM+o5C1h5NYezipypOcDgGujOzkz8jO/rT2bbhVDYUQoqEY+0m18XPBycL73xmbnR9LkmbnQlgivV7hqZ/3m75TLd0Vz+NDwvBw0po5soZn2Z+mNaUosPktw9/DH4WuY80bz7XybHkhKSWEEPXB2FNK3bSm7+0rP6HoboZpFw62GjRqFTq9Qm5R6VWTUhkFJZTqDNVHyTnFtX7+77efJS2vhCBPB/6ZMYgdZzL4dMNJdsdm8szyA/z1+ADsbAxl49mFpUxdspedZzIqNCo30qhVdGnuRrcgd7oFudMj2IMgT8daxyiEEJbM1E+qubtZ46iOdv6GiwPHpVJKCIv06cZTrD6UhK1GhZ+rPecyC/l+x1keHxpm7tAaXONMSh1fDUkHQesMfR8zdzTXzktW4BNC1DOdMSnVOIeBqiiKYmpybo5KKZVKhYu9DVkFpeQWlRFwlZkfSdkXqqNqWymVV1zG/M2nAXh8SBh2NhoGtfGhSzM3hn+wmZMpeXyy/hRPRbalpEzP5B+i2HY6vcIx7GzUXBfmw4hO/gxr74u7Y9O7kieEaNqMlVKW3OTcqE15Uioxu4jsglLcHJvWRSghLNnaw0m8v+4EAK+N6oSD1obHf9zHwm2xPDKwpdUsblNXGt/ZiKLA5jcNf+/ziKFHk7WRFfiEEPXNmJRqQo3Od8dkkllQiqNWQwczNX29OCl1NRWTUtWvlCou0/H4j/vQK/BMZFvC/FxYtC2WzIJSWng5cnv3ZqZtPZy0vHpbJyYv3svnm08T2dGfBVtj2HY6HSethm8n9qaNnwsOWg12NmppWC6EaLL0eoUD8dmAZTc5N3K1t6WZuwPnswo5lpRDeEsvc4ckRJO3JzaD+ZvP8M/RZAAmRIQwpncwZTo9b3s4cC6zkJ+jznFf3xAzR9qwGl9S6uTfhtX2bJ0gYqq5o6kZSUoJIepbeU8ppQlVSi3eFQvA6B7N0NqozRKDs50tUEhuNVbgS8q5KCl1DdP3/ohOYO1hw5edjcdSmNCvBcujzgHwxLAwbDQVX/vIzgHc1DmAlQcTueerHeQWl6FRq5g3voecxAghRLkzaXnkFpfhYKuhjd+1LQ5hLu0DXMqTUrnyeS6EGcWlFzDjp2j2lPc2Vang9m7NePHmDgDYaNQ8fF1LZv1xmK+2nGFc76BK39cas8b1ShUFNhmrpB4CJyv98DUmpbLPQVnt+4gIIUQlekOljtKEekptPJYKwISIFmaLwaW82fm1VkrlFZdRUHL1fRRF4Zv/YgAI8XKkTG/4ObuwlJY+TtzatVmV+82+rSOeTlpyiw3P8fqoTgxu63vV5xNCiKYiurxKqnMzN6s5WWxbPoVPVuATwnySsosY/80O9pzNRKtRM65PEP/MGMT7Y7phe9FnyV29muPhaEtcRgGrDyWZMeKGZx2fqNWVsNdws3GAiGnmjqbmnHwM/bAUPWSeNXc0QojGqHz6XlNKSukV6N/aizA/860M53otSamcin2kqlMt9d+pNI4l5eKo1fDHlAEsmNibFl6OqFTw7Ih2aNRVT7/zdrbj7Tu64O1sx9ORbRnbJ7gar0YIIWpn3rx5tGjRAnt7e8LDw9m1a9cVt//5559p164d9vb2dO7cmVWrVlV4fOLEiahUqgq3ESNG1Ems0fGGCoeuQVdpCGhBZAU+IcwrI7+E+77ZSXxGISFejmx8ejBzR3ehlU/laktHrQ0T+rUA4PGl++j/5gbu+2Ynb685RnGZroEjb1h1npSaO3cuvXv3xsXFBV9fX0aNGsXx48crbFNUVMSUKVPw8vLC2dmZO+64g+Tk5No/+ZHfDX+2HQHOPrU/nrmoVOAZavi7TOETQtQH4/Q9Tf0lpbZs2cItt9xCYGAgKpWKFStWVHhcURRefvllAgICcHBwYNiwYZw8ebLCNhkZGYwfPx5XV1fc3d158MEHycvLq3FME/uF1njfuuBib/h95xVXY/pedsWkVHLO1Zudf/WvoUrq7l5BuDnacn07X9bNGMSOmUOJ7Oh/xX2HdfBj9wtDmXJ966s+jxBC1NayZcuYMWMGs2bNYu/evXTt2pXIyEhSUlKq3H7btm2MGzeOBx98kH379jFq1ChGjRrFoUOHKmw3YsQIEhMTTbcff/yxTuLdb+on1fALZdSUcQW+E0m56PWKmaMRomnJLSpl4oJdnEzJw9/Vnh8eDKeZu8MV95kQ0YJQbycUBc5nFfLvyTQ+23Sa77c37kKVOk9Kbd68mSlTprBjxw7WrVtHaWkpN9xwA/n5+aZtnnzySf78809+/vlnNm/eTEJCAqNHj67dEyvKhaRUh9tqdyxLIH2lhBD1qQGm7+Xn59O1a1fmzZtX5eNvv/02H3/8MfPnz2fnzp04OTkRGRlJUdGF5Mv48eM5fPgw69at46+//mLLli088sgjNYon0N2eIe3MOyXN2e7aK6WM1U1Xa3Z+PCmXLSdSUalgUv8WpvttNWr8XO2rFZ80MhdCNJT333+fhx9+mEmTJtGhQwfmz5+Po6Mj3377bZXbf/TRR4wYMYKnn36a9u3b8+qrr9KjRw8+/fTTCtvZ2dnh7+9vunl41D6JVFSq42iiodrImiqlQr2d0GrU5JfoOJdZaO5whGhSnlwWzYFz2Xg6afnhoT4EeTpedR8PJy0b/m8QUS8OY/n/Inj4OsPF1C+3nGnU1VJ13uF2zZo1FX5euHAhvr6+REVFMXDgQLKzs/nmm29YsmQJQ4YMAWDBggW0b9+eHTt20Ldv35o9cdJByIw1TN1rPbyWr8ICeLYy/ClJKSFEfSivlKIeG52PHDmSkSNHVvmYoih8+OGHvPjii9x2m+FCwnfffYefnx8rVqxg7NixHD16lDVr1rB792569eoFwCeffMKNN97Iu+++S2Bg4DXFM65P0GWnrzWUa+kplVxeKdXGz4WjiTlXTUp9859hvIjs4E+Il1MtIxVCiPpTUlJCVFQUM2fONN2nVqsZNmwY27dvr3Kf7du3M2PGjAr3RUZGVqrC3bRpE76+vnh4eDBkyBBee+01vLyq7jNbXFxMcfGFz9acnKqnuR08n02ZXsHb2e6qlQ6WxEajprWvM0cScziWlEOw19VPioUQtfffyTT+OZqCrUbFokl9aO1b/dYRKpUKL2c7vJzt6NLcnb8OJJKYXcQvUee5J7xxtleo955S2dmGUldPT08AoqKiKC0tZdiwYaZt2rVrR3Bw8GUHoWoxVkm1Hgp21rEixhVJpZQQoj6V95RCozXL08fExJCUlFRhLHBzcyM8PNw0Fmzfvh13d3dTQgpg2LBhqNVqdu7cedljFxcXk5OTU+EGcHv35vX0aqrPOH0v5yqr7+UVl5majndpZrgqn3KF6XupucWs2JcAwEPXmXeKohBCXE1aWho6nQ4/P78K9/v5+ZGUVHWD36SkpKtuP2LECL777jvWr1/PW2+9xebNmxk5ciQ6XdUVBnPnzsXNzc10CwoKqnK77afTAQgP9bS6itJ2AYaT4ePS7FyIBqHXK7y55igA48ND6Ny85tWVWhvDqnwA8zefpkynr5MYLU29rgWu1+uZPn06/fv3p1OnToBhQNFqtbi7u1fY9kqD0FWvYigKHFlh+HuHUXUUvZlJUkoIUZ9MSSnzNDo3ft5f6QQjKSkJX9+K0+1sbGzw9PS87HgBhpOM2bNnV7rf3dE8CbiLGSul8q5SKWXsJ+ViZ0Ooj6Hq6UqVUj9HxVOi09MtyJ2eIdbT70QIIerS2LFjTX/v3LkzXbp0oVWrVmzatImhQ4dW2n7mzJkVqq9ycnKqTEwZk1IRraxvZe92sgKfAApLdMzbeIojiTl0CnSlR4gH3YM9cHNoOgveNJQ/DyRw6HwOznY2TBtS+z6d4/oE8+nGU8RlFPDXgURGda96JWVrVq+VUlOmTOHQoUMsXbq0Vse56lWMlKOQfspwxb9NZK2ey2IYk1JZcZB7jUtCFucaEnVCCHE5evMmperTzJkzyc7ONt3i4+PNHZJJdafvGZua+7nZ4+dqB0BK7uUrpfbEGlaFurVroNVdxRdCND3e3t5oNJpKCx0lJyfj71/1ogz+/v7XtD1Ay5Yt8fb25tSpU1U+bmdnh6ura4XbpYpKdUTFGT5jrTMpJSvwNXX74jK56eN/+XTjKTYcS+HjDaeYuGA33ef8zU97LOc7UmNQXKbj3b8Ni7w9OrAlXs52tT6mg1bDgwMMVfCfbTrVKBctqLek1NSpU/nrr7/YuHEjzZtfmDLh7+9PSUkJWVlZFba/0qBy1ROMo38Y/mw1FOwrDyZWycUf3IJA0cGnvWHXV6CvRnOzg8vhrVD4a3q9hyiEsGKmnlLmSUoZP++vdILh7+9faRWmsrIyMjIyrngSUp2TDHMxJaWusvpeYnmlVICbPb4uhiblyTlVV0opikJ0fBYA3YLd6yZQIYSoR1qtlp49e7J+/XrTfXq9nvXr1xMREVHlPhERERW2B1i3bt1ltwc4d+4c6enpBAQE1DjWvXGZlJTp8XWxo6W39fXrM1ZKxaTlU1TaeBsli4oUReF0ah5zVx/ljs+3cSYtHz9XO54d0Y7RPZrR3MMBvQLflK/aK+rGkp1xxGcU4uNix4N12E7h3r4huNjZcCI5j3VHk6++g5Wp8+l7iqIwbdo0fvvtNzZt2kRoaMU3o2fPntja2rJ+/XruuOMOAI4fP05cXNxlBxU7Ozvs7K6QZTStundrnbwGi6BSwbil8MdUSNgHq56C6CVw10LwCKl6nxN/w2+PGlbV2vcDDH4eXPyq3lYI0bTpDJU6KhvzJKVCQ0Px9/dn/fr1dOvWDTBMm9i5cyeTJ08GDCcgWVlZREVF0bNnTwA2bNiAXq8nPDzcLHHXlrGnVLUrpVzt8XUpr5S6TE+p+IxCMvJLsNWo6BBgOQk4IYS4khkzZjBhwgR69epFnz59+PDDD8nPz2fSpEkA3H///TRr1oy5c+cC8MQTTzBo0CDee+89brrpJpYuXcqePXv48ssvAcjLy2P27Nnccccd+Pv7c/r0aZ555hlat25NZGTNZ1IYp+71a+VllZWoPi52eDppycgv4VRKHp2aWc/qgeLanUnN49utMWw+kUp8xoUVF0d1C2T2rZ1wczR8D8kuKKXX6+s4npzL8aRc2vpXvxG3uCDqbAZfbYkhv6SMUp2eQ+cNFYnTh4XhqK27VIubgy33RYTw2abTvLHqKP1be5tWdG4M6vyVTJkyhSVLlvD777/j4uJi6vvh5uaGg4MDbm5uPPjgg8yYMQNPT09cXV2ZNm0aERERNVt5L/UEpBwxrCDVtupVnqyWfyd4aD3s+RbWz4GEvfDrIzBpNagvKXI7uw1+us+QkFLbGqbm7PsOBj5tntiFEJbNVClVf32W8vLyKkyZiImJITo6Gk9PT4KDg5k+fTqvvfYaYWFhhIaG8tJLLxEYGMioUaMAaN++PSNGjODhhx9m/vz5lJaWMnXqVMaOHXvNK+9ZimvtKRXgZo+vq6FSKqeojKJSHfa2mgrb7os3TCvpEOBa6TEhhLBUY8aMITU1lZdffpmkpCS6devGmjVrTL0G4+LiUF/0fbdfv34sWbKEF198keeff56wsDBWrFhh6lur0Wg4cOAAixYtIisri8DAQG644QZeffXVK1/cvgpr7icFhpW82vq5sP1MOkcTcyQp1YgdPJfNfd/uJKvAUI2t1ajpE+rJvX1DGNGpYoW5m6Mtg9r48s/RZP7Yf56n/duZI2Srlp5XzKPf7yUtr2Ile2tfZ8b0qnrRhNp4dFArfo9O4Gx6AS+tOMQHY7rV+XOYS50npT7//HMABg8eXOH+BQsWMHHiRAA++OAD1Go1d9xxB8XFxURGRvLZZ5/V7AmNU/daDgaHRtjcVa2BPg9D62EwfwDE74Cob6H3Qxe2SdwPS8ZAWRGERUL7WwwVVnsWwoAZhmMIIcTFyntKqW3qLym1Z88err/+etPPxmayEyZMYOHChTzzzDPk5+fzyCOPkJWVxYABA1izZg329vamfRYvXszUqVMZOnSoadz4+OOP6y3m+ma8qnW1Sinj9D0/V3tc7W2ws1FTXKYnJae40pLepql7Qe51Hq8QQtSnqVOnMnXq1Cof27RpU6X77rrrLu66664qt3dwcGDt2rV1GR75xWWmz9iIlt51euyG1C7AkJQ6nJBD1b89Ye32xmUy4dtd5BaV0bW5G9OGhBHRygunK1TT3NotkH+OJvPn/kSeuqGtVVYCmouiKMz89SBpecW09nVm8qBWaG3U2Nmo6RnigY2m7rskuTnY8tHYboz5cge/7TvPdWHejO5h/pWl60K9TN+7Gnt7e+bNm8e8efNq/4QnygefdjfV/liWzDMUhs6C1U/DulegzUhwawZxO2HJXVCcA8H94O5FgArWvQw55wy/n3Y3mjt6IYSlMU7fq8dG54MHD77imKBSqZgzZw5z5sy57Daenp4sWbKkPsIzC+P0vRKdvsqqJyPj9D1/V3tUKhV+rvbEZRSQklt0+aSU9JMSQog6tedsJmV6hWbuDgR5Opg7nBoLD/ViwdZYVh5M5IWb2mNbDyfMwnx2xWQwacEu8kt09GnhybeTeldratew9r442GqIyyggOj6L7sGNsMCjnvwcdY6/jyRjq1Hx0dhudAxsmArEXi08mT40jPfWneDFFYfoHuxBqBX2uruUdX8i5afDud2Gv4c1klX3rqT3g9C8D5TkwsoZhh5S390GRdkQFA73LAVbB7C1h+73GvbZ8415YxZCWKby6XuqeqyUEpVd/CXxStVSxkopfzdD1Zipr1RuxRLxkjI9hxMM/Qu6BcmXSSGEqEsXT92z5iqSIe188XbWkppbzIZjKVffQViF9LxiZv95mPFf7yC/REe/Vl4sfKB6CSkAR60NwzsYpsv+sT+hPkNtVOLSC5j9x2EAZgxv22AJKaPHrm9N35aeFJTomLK48vRBa2TdSakzGwEF/DobqoYaO7UGbv3Y0DPqxBpYcjeUFULr4XDfCrC/6D9EL0OTSE6thwxZVUEIcQnT9D3zNDpvqjRqlenLYl5x1UmpUp2e9HzDFwxTUsrVkJRKvqTZ+dHEHErK9Lg72tLikgoqIYQQtbP9dBpgaHJuzbQ2au7oaZjm8+OuODNHI4yOJeUw4sMtjP96BwfPZVd7v+IyHZ+sP8mgdzaxYGsspTqFyI5+fDux9zU31761q6FH518HEtHprz7jqak7n1XItB/3mqrSHhnYssFj0KhVfDimOx6OthxJzOGmj/9lT2xGg8dRl6w7KXWqfFnYNjeYN46G5NseBj5V/oMCne+GcT+C9pKTEc+W0GqoYZuoBQ0dpRDC0unKk1IaqZRqaBf6SpVW+XhKbjGKArYaFZ6OhvfH18Xe9NjFjFP3ujZ3t+qr+EIIYWlyiko5eN6QKLDWJucXG9s7GIDNJ1I5n1V4la1FfdtyIpU7P9/OsaRctp5K59Z5//F/P+03LXRyJTN/Pch7606QV1xGx0BXvn+wD1/c16tGi50MbOODm4MtqbnF7DyTXpOX0iSU6fR8/e8Zhr+/mf3nsnGxs+G9u7uiUZvnu5e/mz0/PRpBKx8nknOKGfPlDr7acqZarZQskXUnpWI2G/5sClP3LjZgBoRPhmGz4fYv4HI9YXo/aPhz3w9QZv1lfUKIOmRMStlKUqqhGVfgu9z0vaRsw8mCn6s96vIvO8ZKqZScqpNS0uRcCCHq1q4zGegVaOHlSICb9faTMgr1diKipReKAj/tjr+mfffHZzHjp2i6vLKWr/89U08RNh1Ld8UxaeFu8orL6BPqyahugSgK/LL3HEPe28SaQ4mX3XflgUR+3XsetQrevasrf04dwHVhPjWORWujZmT5ynwyha9qyTlF3DZvK6+tPEpBiY5eIR78+lg/gjzNW6Ee5ufCH1MHcGvXQHR6hddXHeXbrbFmjammrDspVZwDDp7QvJe5I2lYNloY+SYMmA7qK7yFYZHg7AcF6RC/q8HCE0JYgfKeUjJ9r+FdSEpVXSmVlF0+dc/1wiqEFyqlKl5B3S9NzoUQol5sOZkKQEQr611171Jj+xiWqf9pT7xpqlapTs+5zIIqt996Ko3b5m3ltnlb+XXveXKKynh77XHiM6reXlyZXq/w1ppjPPfrQXR6hdu7N+P7B/vw4djurJjSnx7B7hSU6Ji8eC9f/1u56iUpu4jnfzsIwGODW3Nnz+ami1e1YZzC93t0An9KYqqSTzac5HBCDm4Otrw5ujM/PRpBmJ+LucMCwMnOho/GduP/hrcB4Ot/z1Cq05s5qmtn3UkpgLDhhl5LojKNDYT0N/w9brt5YxFCWBa9oUpHY2Nn5kCaHuMKfJetlMqp2OQcwK+KSqnsglLOpOUD0K25e32EKoQQTVJ2QSm/RJ0DILKjn5mjqTuRHf1xd7QlMbuIf44m89PueIa8t4kBb23kjVVHKyRB/j2ZyqQFu9kfn4VWo2Z092b0DPGgpEzP3NVHzfgqrFNhiY4pS/by+abTADw+pDXv390VOxvDeWy3IHd+ejSCe/sGoyjw2sqjvPz7YcrKEwx6vcLTy/eTXVhKl+ZuPDEsrM5iC2/pRf/WXhSW6pj24z6eWb6fgpLLL8bSlJSU6fnrgKFy7ZNx3RnbJ7hOEoF1SaVS8ciglng7a0nMLmLt4SRzh3TNGkFSqgn1k6qJkH6GPyUpVXfSTsKRP0AnH9bCikmllNk4V3P63tUqpaLPZQGGqSUeTjINUwgh6sqyPXHkl+ho5+/CoDY1nxplaextNdzRw9DwfPIPUTzzywHiMwxjzpdbzvDKH4fR6xWizmbyyHdRlOj0jOjoz7aZQ3h/TDdev70TahWsOpjEDuk/VG0pOUWM/XI7qw8lodWoef/ursy4oW2lXpA2GjWv3taJF25sj0oF3+84S5fZfzNq3lYeWLSbf0+mYW+r5oMx3bDV1N1pvEatYtGkPkwb0hqVCn7ac46bP/mPvXGZdfYc1mrziVSyCkrxdbGjf2vLrZq0s9FwT3gIAAutcAqflSelNNB6qLmDsGzBfQ1/xu+SJEptlBbC/mWw4Eb4tBf8dB+snAE1bSaXfhr++wByLj9nXIh6Vd5TSmMrlVINzfVqSamciivvwYVKqcyCUorLdABEx2UB0k9KCCHq2uIdZwF4dFDLRreIxLjyKXx6Bbydtbx4U3vm3NYRlQoWbT/LtKX7eGDhbgpLdVwX5s3H47rj7WwYg9r5u3JPuKFh+uw/j8hqbdVQUqZn7Jc72H8uGw9HW354KJzR5YnBqqhUKh4e2JLP7umBq70NBSU6ouOz2HTcMJ30hZs60MrHuc7jtNGo+b8b2rLkob74u9pzJjWfOz7fxuw/D5N/mdWCm4Lf9hkqJm/rFmi2pubVdW94MLYaFXvOZl7Tao6W4NrWjLQ0zXuBg4e5o7Bsvh3Azg2KsyH5EAR2M3dE1if9NHx3G2SXN4VUqQ3JqL2LwK8jhD96bcdL3A/f327o9fXvBzDiDeg23vBYzBbY8g4kHQTPUPBpZ7h1vgvcmtXt6xJNl14HGL5IamykwqahXZi+d7meUuWVUhclpdwcbNHaqCkp05OaW0xzD0ei4w1XMCUpJYQQdSs9v5QgP1du7hJo7lDqXGtfF+bd04OswhJGd2+Og9YwfcxJa8PTy/ezsnyqUo9gd764rydam4o1DDOGt+WP6ASOJuawbHe8KUklqrYi+jxn0vLxdtay/H/9aOHtVK39RnYOYFgHP2LT8jmWlMvxpFw8nLTcW8+/74hWXqx+4jpeXXmEX/eeZ8HWWP4+nMyHY7vRu4VnvT63pckuLOWfoykAjOpu+edhvq723NQ5gBXRCSzYFsP7d3czd0jVZt2VUlIldXVqDQT1MfxdpvBdu8xYWHSrISHlEgDXvwDTD8HwOYbH18yE0xurf7z4XbDwFkNCysbBkCz8fQp8Pwq+HQHf3Qqx/0JRFiTsg/0/wj+z4LMIOPRLPbxA0SSVT90D0Mjqew3Oxc5wPSjvMlceTT2lLpq+p1Kp8Cm/Up2SW0xyThG7YjIA6CpJKSGEqHMPXRdap1OkLMlNXQIYHx5iSkgB3NGzOR+N7Y5Wo6ZjoCsLJvbBUVu5fsHTScv0YYamyu/+fZy0PFnh+3J0eoX5mw09pB6+rmW1E1JGtho1YX4u3NI1kKci2/LggNAGqdzzcNLy/t3dWPRAH5q5O3A+q5DJP0RRWKKr9+e2JGsOJVJSpqeNnzMdAlzNHU61TOwfCsBf+xNJza27/5tn0/P5YvNp4tLrZ5ED6/6klaRU9YREGP6UpNS1yYqHRbdAzjnwbgOPboFBzxgqlvpNg67jQNHBzxMN1VSXOvQLvNEcPu0Nvz4Km9+B70YZElHBETDjiCG5pbGDM5sgfofh730egYc3wN3fw5AXIaCbYZ/lD8Bvk6E4t2F/D6Lx0V2o0JFKqYZ3pZ5SiqKQXL76nt9FSSnDz8Zm50W88NtB8kt0dGnuRldpci6EEHXKzcGGMb2DzB1Gg7ulayC7XxjGH1MH4OZ4+Z6T90WE0NbPhYz8Ep775UClVeKEwbojSZxJzcfV3sYqK8oGtfHh7ycHEuTpQFpeCYt3njV3SA3q173nAbi9e3OrmcbbLcid7sHulOj0LNkZVyfHzCsu475vdjF39TEGv7uRqUv21vn0QOuevufdxtwRWIfg8qTU2e2GaWdW8p/KrHKTDAmprDjwbAn3/wHOvhceV6ng5g8h/RSc222ophr/M/h1MDx+4m/49RHDCmdpuZB24sK+LQfD2CWgdYL+T0DbG2HDa+DWHCKmgmuAYbtmPQ1/9p8Om9+Cf9+D/Uvg3C6YtLpiPEJci4uSUrbSU6rBGafv5VQxfS8jv4SS8pV2Lk1KGZudf/tfLLtiM7DVqHjnzq4WtwqMEEJYu3F9QqqsEmoKrpSMMrLVGJptj5q3lX+OprB4Zxz39g1pgOish6IofFa+0t79ES1MY7+1cbKzYer1rXn2l4PM33y6UoVdY3U+q5Cd5RXpt3Wzrmm8E/u1YF9cNF//e4Y+oZ5EtPKq1fFe/fMIcRkFONhqKCzV8deBRP46kIiHoy2uDra42tvSpbkbL9zUvtLnprHVxNVYd6WUJFeqJ7AHaLSQnwIZZ8wdjXVY+X+QGQPuITDhzwuJoovZ2sOYH8CrtaGa6ttIOL3BkPz76X5DQqrTnXDPzzDoOQiLhJ6TYNwyQ0LKyDsM7l4Eka9X/TwaW0PF1MSV4NrMkAhbfBcU59Xf6xeNm748GaJSY2PbNL90m5PLFSqlTqYY/l/7udpV6uPhW14ptSvW8CVp2pAw2vq71GeoQgjRJFljVUtD6xDoyjMj2gLw2sojnEqR76UX23Y6nQPnsrG3VTOpfwtzh1Mro3s0p7lH06qWWrHPUCXVt6Unge4OZo7m2tzYOYDwUE9yi8uY8O0ufo8+X+NjrT2cxLI98ahUsGBSb1Y9fh23d2+GRq0is6CUs+kFHDyfzeKdcbyx6miFfROzC3l8yb5qPY91J6VE9djaGxJTAHE7zBuLNTi9AY79BSoNjFtqqGC6HBd/eHAdhPSH4hz44U5DwqisEMJugNvnQ5sb4PqZMP4nuOVDw/tREyH9DAkyB09IjIblk2RFRVEzxp5SattG2y/DkhmTUlX1lNp2Kg2APqGVr2pdXDnVIcCVyYNb1VOEQgjRtHk6ydT26nigfygDWntTVKpn+rJ9lJTpzR2Sxfhs0ykAxvQKwsvZuqvSbTVqpl7fGoD5m89YXW+pxOzCak0xPZWSx7yNp7j9s628+/dxAEZ3v8J5oIWy1ahZ9EAfbuzsT4lOzxNLo5m/+fQ1T7NNyS1i5q8HAXhkYEv6tvSiQ6ArH4zpxt4Xh7PuyYEs/18Er9/eCYAfdsSx+YRhlciSMj2PLd5LRkHVi/pcSs5GmgpTX6lt5o3D0ulKYfWzhr/3eeTCdLwrcfSE+36DLmMMPaZKcg1TJu9aZKhyqktereCenwxN0k/+DX9NN0zJFOJaGKfvabTYaqTitKG5XmH1vW2n0wHoX0Wpta+L4UutjVrF23d2kYSiEEIIs1KrVbx3d1fcHW05dD6Hu+Zv42hijrnDMrvtp9PZeiodjVrFwwNbmjucOjG6R3OauTuQllfMkl1V9yoqKCm77MrC1aEoCucyC0gpX/ClLny8/iQRczcwZcleSnWXT5r+tCee4R9s5p21x9kXl4WiwPVtfbilq3VN3TOyt9Xw6bgePDjA0Pj8zdXHWHkw8Yr7rDmUxMiP/iXygy3cNX8bY7/YQUZ+Ce0DXJkxvGLbJDdHW8L8XOjVwpPx4SFM7NcCgGeW7ye7oJTXVh5hX1wWLvbVm+op32ibCmNfKamUurKdXxj6Pzl6w+Dnqr+fjR3c/gVEzoXu9xkqrLSO9RNjUG+481tQqWHf94aKqYKM+nku0TiZklI22Ehio8E521U9fS+/uIzo+CwA+rf2rrTfkHa+9GnhyaujOtGpmVu9xymEEEJcjZ+rPR+N7Y6LvQ37z2Vzyyf/8faaYxSVWlc1TV05kpDDo9/vAeCOHs1o7lFP5wMNTGujZuoQQ7XU55sqr8K28kAi4W+s57q3N7K//LtMdZSU6fkl6hwzlkUz4K2NDHhrI0Pe20x8Ru1XeTuckM3H608CsOpgEo8t3ktxWeV/l3/uTyhv2A/9W3vxxu2d2TFzKAsm9bHq/llqtYqXbu7Ao+WJ0Q/WnUCnr7qYYcHWGCYvjuJoYg7Hk3PZHZvJmbR8tDZqPhzTDTubK/8enh3RjpbeTiTnFDPmy+18t90wzfPNO7pUL9ZreF3CmgX1AVSGfkR5KeaOxjLlJsOmNw1/HzYLHNyvbX+VCiIeg9s+vfZ9r1W7Gw2N1lUaOPwbzAuHYyvr9zlF46GXSilzMk7fKyjRUXbRVbtdMRmU6RWCPB0I8qz8JdbL2Y6f/hfBuD7S60QIIYTlGNTGh/UzBjGykz9lekOD7+ve3sj7fx8nMbvQ3OE1mDOpedz/7U5yisroFeLBK7d2NHdIdeqOHs3LV+IrZtj7m3l7zTFSc4t5dvkBpizZS25RGVkFpdz7zU7TRbYr2X46nZEfbeH/ft7Pr/vOcz7L8G8lr7iMuauPXmXvKyvT6Xn2lwOU6RW6BrmjtVGz7kgy//s+qkLC9J8jyTy5LBq9AuP6BPPDg+HcEx6Mv1sN261YoKlDWuPmYMvp1Hz+OpBQ4TG9XuH1lUeY/ecRFAXGhxt+B5+N78Hc0Z1Z/r+IavUvddBqeO/urqhVcCzJsFL840PDGNSmegtzSVKqqXDwAN/yqWhSLVW19XMMU+8Cu0O3e80dzdX1nAAPrQOfdoYm9kvvgTXPmzsqYQ0u7imllmGgoV28As/FfaW2lveT6t+qcpWUEEIIYcl8Xe35/N6efHFfTwLc7EnNLebjDafo/+YGHv1+D8eSGve0vvNZhdz79U7S8kroEODKNxN7N7oVHLU2ar57IJwBrb0p0en5bNNp+rzxj6kR9mODW9G7hQe5RWXc9/VO9sVVXHmtqFRHfEYBUWczmfFTNOO+2sHp1Hy8nbVMub4V3z/Yh18f64daZahs2l7e0qAmvvkvhkPnc3C1t+Gr+3ry7YTe2Nuq2Xg8lUHvbOT2z7YyacEuHluylzK9wqhugbw2qhOqRriQmou9LQ9fZ5jG9/H6k6ZqqTKdnunLovnq3xgAnhnRltdGdWJAmDc3dg5gXJ9gujR3r/bzdA/2MPUeG9TGhyeGhlV738b1P0VcWUgEpByG3V9Du5tAbb3liHUuIRqiFxv+PvIdsJYT9WY94ZHNsGkubP0IdsyDLncZEmtCXI6xQb7GFlsbK/m33ohobdT4utiRklvMpuOpjOreDICt5V+++lUxdU8IIYSwBpEd/RnSzpe/Dyfz/Y5YdpzJYO3hZNYdSeaunkHMuKFNhYU7GoO84jImfruLhOwiWvo48d2DfXBzqOO+shYi1NuJ7x/sw7ojyby28ihxGQX4u9rzwZhuRLTyIq+4jAcW7GZXbAb3fLUTP1c78kt0FJboKi3wolIZKnOevqEdbo4Xfl/jw0P4fsdZZv95mJWPX4dGfW2Jopi0fN5fdwKAF2/ugK+rPb6u9iyY2IeHFu0mOaeY5Jxi0/aRHf14966u1/w81mRCvxZ8/V8Mp1Pz+XN/Ajd1CWD60mhWHkw09Sod3aP2Td2fHN6GQW196NTM7Zp+n5KUakp6PwzRSyBms6EqaPhsc0dkGRQF/n4RUKDzXYaeTdbE1t7wXuYkwMGfYONcw0p/QlyOafqeLTaNeAC2ZBP6teCdtcf5fNNpbu0aSFZhqak5bETLyk3OhRBCCGthq1FzU5cAbuoSwMnkXD745wSrDhqWlv9jfwIPXRfKIwNbVqgctgZHEnJYtjuO+yJa0NrXGTBMf/q/n6I5mZKHn6sdPzwYjreVr7Z3NSqVihs6+jOwjQ/bTqfRM9jTlFRytrNhwaTePLBwNztjMoi9pPeU8cJcSx9nnhwWRvdgj0rHnzG8DX/sT+BYUi4/7opjTO8gVh1MZHnUOTwctfxvUCs6BLpWGVtGfgnTl+6juEzPgNbe3NXzQqIlopUXW58bwonkPDILSsgqKMFRa0NkR/9G32PVUC3VknfWHufj9SdZeziJ1YeSsNWo+Hx8T4Z18KuT51GpVPQM8bzm/SQp1ZT4toNbP4FfHoStHxqqaTqOMndU5ndiLcT+Cxo7GPqyuaOpucHPwaFf4ORaOLcHmvcyd0TmFbsV4rZDfpphemNxHvi0NfxemvcGV+tcTaNOGKfvabSygpuZ3Ns3hPmbTnM8OZf1x1JMy2i39XPBx6Vxf5kVQgjRdIT5ufDZ+J5Enc3kjVVHiTqbyScbTrF4ZxzThrTmnvDgqzZRvhZpecV4OWlrPA0rOaeI36PPc2PngApNyrMLS3lw0W4Ss4tYHnWOd+/qysjOAczbeIq1h5PRatTMv7cnge4OdfVSLJ69rYYh7SonM5zsbFjycF/T9D0HrQZHrQ2ejlpcHWyu+t54OGmZMbwNs/44zDtrjzNv4ykSsy+syPfH/gQiO/oxbUhYhYVfTiTn8uCi3cRnFOJiZ8Pc0Z0rPZe7o5Y+odeeNGkM7o8I4at/z3AmLd/QxFyjZv59Pap8Dxua2c5G5s2bR4sWLbC3tyc8PJxdu3aZK5SmpfOd0G+a4e8rHoOU2jWRs3q6Ulj3kuHvfSeDuxU3EPZqBV3HGv6+8Q3zxmJOyUfghzth4Y2w4VXY+fmFZN22j+Gn++H99vBee8Pft30Kx9fA7m9g3cuw/AH4eRL8Nhn+nA6b3oL4XRemvDUGxteitkGjViHFUg3PzcGWeyNCAPh04ym2njb0k+rXWqqkhBBNx7WeD/z888+0a9cOe3t7OnfuzKpVqyo8rigKL7/8MgEBATg4ODBs2DBOnjxZny9BVFPPEA+W/y+C+ff2oKWPExn5Jcz+8wjD39/CxuO1X4QpNbeY/30fRa/X/uGu+duv2mj7VEoeCVkXmrDr9Qrfb49l2HubeWPVMcZ8sYPknAuJkDl/HiExuwiNWkV+iY7Ji/cyZfFe3v/HME3stVGdqqz6aao0ahW9WnjSq4UnHQPdCPV2ws3RttrJwvHhwbTxcya7sJTE7CK8nbU8PjSMm7sEoFLB2sPJ3PzJfwx5dxOv/XWE77fHcvu8rcRnFBLs6cgvj/WrctGYpsxYLQWGirUv7u9pEQkpAJWiKFWvC1iPli1bxv3338/8+fMJDw/nww8/5Oeff+b48eP4+l69Q3tOTg5ubm5kZ2fj6lp16Z64Al0Z/DDaMI3PyQcGPg09J4JNE7w6v/trWPl/4OAJT0SDvZUvs54RA5/2An0ZPLAWgvuaO6KGk5NgWD1x3/eg6EFtCx1uBbcgcPY1/PtOOgjnogy91RT91Y95MXt3CL0OHL0Mx9Zowc7Z8H/I0QscPQ33qW1BY2tIEtpdfbUKszj6Fywbb6gYe+gfWj/9C6ffvbPRfqZa6piRmlvMgLc2UFymx8FWQ2Gpjq/v71VnJdRCCFEf6uoz9VrPB7Zt28bAgQOZO3cuN998M0uWLOGtt95i7969dOrUCYC33nqLuXPnsmjRIkJDQ3nppZc4ePAgR44cwd7+6n2MLHW8aGzKdHp+jjrHB+tOkJJr6O1zY2d/Xr65Y7VWPcvIL0EFuDrYolbB79EJvPLnYbIKSitsd2vXQB4f2ppWPs6mZEh0fBbvrD3G1lOGPo4tvByJaOXN8aQc9sZlAWCrUVGqU+gQ4MpP/4tg26k0Hvk+CrUKfny4L+uPpfDlljOm57mvbwivjupUB78ZcbGjiTnM23iKgW18uLVrIPa2hoq6k8m5fLzhFKsPJlKmr5jK6NvSk8/H98TDSWuOkC1ecZmO+ZvO0L+1F71a1H/FWHU/U82SlAoPD6d37958+umnAOj1eoKCgpg2bRrPPffcVfeXAaMO5KcbKklSjxl+dm0O1z0JLa8Hj1DrafRdUwUZcGYTrHoaCtIMzc3DHzF3VHXjj8dh7yJocR3ctwI0l8zSLSsGvQ60jeTqQV4K/PeBodJJV960sP0tMGy2ITFUlZJ8OL8Xzu0yTHXMige3ZuAeYqiWU9tAWZHhlnoMTm+Aouxri0ttA837QKvrITjCcHyXALC1gLLuw7/BzxMhpD9MWsUDX25mwaODG+1nqiWPGbN+P8Si7WcBw1XF6JeHW12PDSFE01JXn6nXej4wZswY8vPz+euvv0z39e3bl27dujF//nwURSEwMJD/+7//46mnngIgOzsbPz8/Fi5cyNixYxvstYnqySsu48N1J1iwLRadXsHBVkNLHyfcHW1xd9Ti6ajFy1mLl7MdiqKw92wme85mci7zQoWTo1ZDQYkOgA4Brjw3sh2/Ryfw675zGM9yvZy09AjxQFEU/jlqqMqyUavQKwoX5zSc7Wx4OrItA9v4cOfn20jPL6F/ay+OJ+WSllfCo4NaMnNkewBWHUzk+d8O0i3InS/v64VWFo5pcLlFpfx7Mo31R1PYcSad4R38eOGm9tKawoJYbFKqpKQER0dHli9fzqhRo0z3T5gwgaysLH7//fdK+xQXF1NcfKFDfk5ODkFBQTJg1FZZCUT/AJvfgdyEC/drXcC/k6H6A0ClNiyPgLXO8VEMzcyNlTG5iZCw78LPXmHw2HZDdUtjkBUPH3c3NLNW2xgqhdyDDD2Vss8Z+iuB4f11aw6uzS689ks/DhS9of9QWbFhqqO+1FCFpS8DVKB1MtxsHUBVg34Ais5QuacrMRxTrSmvNrIpXx3S+G+u/P3T68v/LC2PqwSSDkBpeRPF4AhDX7CQfjX4xV2BrgwS9kLcDigtLH/+UijOKe9ZlQaFmRfuLy2A/NSqj2XvDk7e4OBhuNnYl///MmqA/2fZ5+D8HggdBBP+aPRfwi359Z3LLGDwO5so0yt0D3bnt8f6mzskIYS4orr4TK3J+UBwcDAzZsxg+vTppvtmzZrFihUr2L9/P2fOnKFVq1bs27ePbt26mbYZNGgQ3bp146OPPqp0TDnHsAxHEnJ4YcVB9pVXKl0rW42Kx4eE8b/BrUwJiUPns3ln7XG2n06nRHehOl6tgtE9mjN9WBiuDrbsjslg2+l0FAUeHhhKgJvh4mF0fBZjv9xOUalh3zZ+zvwxdYCpWgcMFV8atarG/auEaOyqO140eKPztLQ0dDodfn4Vpyf4+flx7NixKveZO3cus2fLSnF1zkYLvR6ArvdA1AI48BMkH4aSXEOD6MbOpz20Hgp9H2s8CSkwJKAGPweb3zZUDmXGGG6XKkg33BL3N3yMda1ZT7j+BWg15JIETx3R2EBQH8OtujJi4MxGQ5VV8mHISYSyQijKMtwsgbNMEzO35h6OjO7RjJ/2nGNI26tPXxdCiMagJucDSUlJVW6flJRketx43+W2uZScY1iGDoGu/PK/fhxJzCEtr5isglIyC0rIzC8hLb+EtNxiSnV6Ojd3p1eIB92D3bG31ZBTWEpOURluDrZ4XjJdq1MzNxY90IfiMh2Hzuew92wmafnF3NmjOWF+F9orDG3vx9D2lb8PdQty59NxPXjk+z2oVSreu6tbhYQU0OhXbBOioVjF6nszZ85kxowZpp+NVzFEHbG1NzT57jvZUBGSdqI8OZVXXk2kVK6gsUYqteGmdYYW/Rv36msDn4IBMwxVYZmxkBUH9q6Gqii3IEMVUna8oaoqN/Hy/ZVUKsOqhDZ2hsTdxVVMClCab5gKV5Jf81ht7Ax9mNQ25ZVT5VVQl8ZkfP9U6guxaLSGxEpQn/pJRtWGZ6jh1usBw8+KYpgCmJtkSAYWZkJhhqEKzRzUNtDuZvM8t6hgzm2duL6tL0PaS1JKCCEakpxjWA61WlVhJbXq8HK2w8v5yj1x7Ww09AzxoGfItTchH9bBj7+mXYdKBe0DpHJOiPrS4Ekpb29vNBoNycnJFe5PTk7G39+/yn3s7Oyws2uCTbjNQWMDfh0MN2Hd1GpDHyO3ZkAVU4Ic3MG/c0NH1XSpVIbfuYO7uSMRFsbeVsPIzgHmDkMIIRpMTc4H/P39r7i98c/k5GQCAgIqbHPxdL6LyTmGuJoOgZKMEqK+NXjNoVarpWfPnqxfv950n16vZ/369URERDR0OEIIIYQQQogGVJPzgYiIiArbA6xbt860fWhoKP7+/hW2ycnJYefOnXKOIYQQFsws0/dmzJjBhAkT6NWrF3369OHDDz8kPz+fSZMmmSMcIYQQQgghRAO62vnA/fffT7NmzZg7dy4ATzzxBIMGDeK9997jpptuYunSpezZs4cvv/wSAJVKxfTp03nttdcICwsjNDSUl156icDAwArN1IUQQlgWsySlxowZQ2pqKi+//DJJSUl069aNNWvWVGpMKIQQQgghhGh8rnY+EBcXh1p9YVJHv379WLJkCS+++CLPP/88YWFhrFixgk6dOpm2eeaZZ8jPz+eRRx4hKyuLAQMGsGbNGuzt7Rv89QkhhKgelaJYXwdrS17eWwghrE1j/0xt7K9PCCEaUmP+TG3Mr00IIRpadT9TZR1LIYQQQgghhBBCCNHgzDJ9r7aMxV05OTlmjkQIIayf8bPUCgtnq0XGDCGEqDuNecyQ8UIIIepOdccLq0xKpaenAxAUFGTmSIQQovFIT0/Hzc3N3GHUORkzhBCi7jXGMUPGCyGEqHtXGy+sMinl6ekJGBogXutg2Lt3b3bv3l3j587JySEoKIj4+Pgq50XW9vhXUp/HbkzHv9p7VNvj15emcPyavjeWEHtjPn52djbBwcGmz9bGpqZjhjWPF3L86h+/PsaMxvK7Mefxa/O+WEL8lnr8ujh2Yx4z5ByjfjSW48s5RsMfv7rHlnMMyzx+dccLq0xKGVficHNzu+YPBI1GUycfIq6urlUep66OX5X6PHZjPP7l3qO6On5da0rHv9b3xpJib8zHv3iVo8akpmOGNY8XcvxrP35djhmN7XdjzuPX5H2xpPgt7fh1eezGOGbIOUb9aGzHl3OMhjv+tR5bzjEs8/hXGy8a32hyFVOmTLHa41tz7HJ8Ob6lHluOLy7H2t83Ob75jm/NscvxG/fxZbyoP/LvQo4vx7euY8vxzX98I5VihV0KzblcqywVa/nkPbJc8t5Ypsb+vpjr9TX232tjIe+TZZL3xXI15vdGzjHElch7ZLnkvbFM1X1frLJSys7OjlmzZmFnZ9eknltUj7xHlkveG8vU2N8Xc72+xv57bSzkfbJM8r5Yrsb83sg5hrgSeY8sl7w3lqm674tVVkoJIYQQQgghhBBCCOtmlZVSQgghhBBCCCGEEMK6SVJKCCGEEEIIIYQQQjQ4SUoJIYQQQgghhBBCiAYnSalLxMfH88ADDxAYGIhWqyUkJIQnnniC9PT0au2/adMmVCoVWVlZ9RtoEzNx4kRUKhVvvvlmhftXrFiBSqUyU1QCLrw3KpUKW1tb/Pz8GD58ON9++y16vd7c4QlRb2S8sFwyZlgmGS9EUyXjheWS8cJyyZjRdEhS6iJnzpyhV69enDx5kh9//JFTp04xf/581q9fT0REBBkZGeYOsUmzt7fnrbfeIjMz09yhiEuMGDGCxMREYmNjWb16Nddffz1PPPEEN998M2VlZeYOT4g6J+OF5ZMxwzLJeCGaGhkvLJ+MF5ZLxoymQZJSF5kyZQparZa///6bQYMGERwczMiRI/nnn384f/48L7zwAgDFxcU8++yzBAUFYWdnR+vWrfnmm2+IjY3l+uuvB8DDwwOVSsXEiRPN+Ioal2HDhuHv78/cuXMvu80vv/xCx44dsbOzo0WLFrz33numx55//nnCw8Mr7dO1a1fmzJlTLzE3FXZ2dvj7+9OsWTN69OjB888/z++//87q1atZuHAhAFlZWTz00EP4+Pjg6urKkCFD2L9/f4Xj/Pnnn/Tu3Rt7e3u8vb25/fbbzfBqhLg6GS8sn4wZlknGC9HUyHhh+WS8sFwyZjQNkpQql5GRwdq1a3nsscdwcHCo8Ji/vz/jx49n2bJlKIrC/fffz48//sjHH3/M0aNH+eKLL3B2diYoKIhffvkFgOPHj5OYmMhHH31kjpfTKGk0Gt544w0++eQTzp07V+nxqKgo7r77bsaOHcvBgwd55ZVXeOmll0wfWOPHj2fXrl2cPn3atM/hw4c5cOAA99xzT0O9jCZjyJAhdO3alV9//RWAu+66i5SUFFavXk1UVBQ9evRg6NChpiuEK1eu5Pbbb+fGG29k3759rF+/nj59+pjzJQhRJRkvrIOMGdZDxgvRWMl4YR1kvLAuMmY0QopQFEVRduzYoQDKb7/9VuXj77//vgIoO3fuVABl3bp1VW63ceNGBVAyMzPrL9gmaMKECcptt92mKIqi9O3bV3nggQcURVGU3377TTH+M77nnnuU4cOHV9jv6aefVjp06GD6uWvXrsqcOXNMP8+cOVMJDw+v5+gbt4vfm0uNGTNGad++vfLvv/8qrq6uSlFRUYXHW7VqpXzxxReKoihKRESEMn78+PoOV4hak/HC8smYYZlkvBBNjYwXlk/GC8slY0bTIZVSl1AU5YqPx8bGotFoGDRoUANFJC711ltvsWjRIo4ePVrh/qNHj9K/f/8K9/Xv35+TJ0+i0+kAw5WMJUuWAIb3+scff2T8+PENE3gTpCgKKpWK/fv3k5eXh5eXF87OzqZbTEyM6apSdHQ0Q4cONXPEQlSfjBfWQcYM6yDjhWjMZLywDjJeWA8ZMxoXG3MHYClat26NSqXi6NGjVc4xPXr0KB4eHpVKb0XDGzhwIJGRkcycOfOa59SPGzeOZ599lr1791JYWEh8fDxjxoypn0AFR48eJTQ0lLy8PAICAti0aVOlbdzd3QHk/5awGjJeWBcZM6yDjBeiMZLxwrrIeGE9ZMxoXKRSqpyXlxfDhw/ns88+o7CwsMJjSUlJLF68mDFjxtC5c2f0ej2bN2+u8jharRbAlDUX9ePNN9/kzz//ZPv27ab72rdvz9atWytst3XrVtq0aYNGowGgefPmDBo0iMWLF7N48WKGDx+Or69vg8beVGzYsIGDBw9yxx130KNHD5KSkrCxsaF169YVbt7e3gB06dKF9evXmzlqIa5OxgvrI2OGZZPxQjRWMl5YHxkvLJ+MGY2Q2SYOWqATJ04o3t7eynXXXads3rxZiYuLU1avXq106tRJCQsLU9LT0xVFUZSJEycqQUFBym+//aacOXNG2bhxo7Js2TJFURTl3LlzikqlUhYuXKikpKQoubm55nxJjUZVc4rvu+8+xd7e3jTfOyoqSlGr1cqcOXOU48ePKwsXLlQcHByUBQsWVNjvq6++UgIDAxVvb2/l+++/b6BX0HhNmDBBGTFihJKYmKicO3dOiYqKUl5//XXF2dlZufnmm5WysjJFr9crAwYMULp27aqsXbtWiYmJUbZu3ao8//zzyu7duxVFMfRLUKvVyssvv6wcOXJEOXDggPLmm2+a+dUJUTUZLyybjBmWScYL0RTJeGHZZLywXDJmNB2SlLpEbGysMmHCBMXPz0+xtbVVgoKClGnTpilpaWmmbQoLC5Unn3xSCQgIULRardK6dWvl22+/NT0+Z84cxd/fX1GpVMqECRPM8Coan6oGjJiYGEWr1SoX51aXL1+udOjQQbG1tVWCg4OVd955p9KxMjMzFTs7O8XR0VEG9TowYcIEBVAAxcbGRvHx8VGGDRumfPvtt4pOpzNtl5OTo0ybNk0JDAw0/d8aP368EhcXZ9rml19+Ubp166ZotVrF29tbGT16tDlekhDVIuOF5ZIxwzLJeCGaKhkvLJeMF5ZLxoymQ6UoV+m8J4QQQgghhBBCCCFEHZOeUkIIIYQQQgghhBCiwUlSSgghhBBCCCGEEEI0OElKCSGEEEIIIYQQQogGJ0kpIYQQQgghhBBCCNHgJCklhBBCCCGEEEIIIRpck0tKzZ07l969e+Pi4oKvry+jRo3i+PHjFbYpKipiypQpeHl54ezszB133EFycrLp8f379zNu3DiCgoJwcHCgffv2fPTRRxWO8euvvzJ8+HB8fHxwdXUlIiKCtWvXNshrFEIIUTdkzBBCCFEdMl4IIUTNNLmk1ObNm5kyZQo7duxg3bp1lJaWcsMNN5Cfn2/a5sknn+TPP//k559/ZvPmzSQkJDB69GjT41FRUfj6+vLDDz9w+PBhXnjhBWbOnMmnn35q2mbLli0MHz6cVatWERUVxfXXX88tt9zCvn37GvT1CiGEqDkZM4QQQlSHjBdCCFEzKkVRFHMHYU6pqan4+vqyefNmBg4cSHZ2Nj4+PixZsoQ777wTgGPHjtG+fXu2b99O3759qzzOlClTOHr0KBs2bLjsc3Xs2JExY8bw8ssv18trEUIIUb9kzBBCCFEdMl4IIUT1NLlKqUtlZ2cD4OnpCRiuUJSWljJs2DDTNu3atSM4OJjt27df8TjGY1RFr9eTm5t7xW2EEEJYNhkzhBBCVIeMF0IIUT025g7AnPR6PdOnT6d///506tQJgKSkJLRaLe7u7hW29fPzIykpqcrjbNu2jWXLlrFy5crLPte7775LXl4ed999d53FL4QQouHImCGEEKI6ZLwQQojqa9JJqSlTpnDo0CH++++/Gh/j0KFD3HbbbcyaNYsbbrihym2WLFnC7Nmz+f333/H19a3xcwkhhDAfGTOEEEJUh4wXQghRfU12+t7UqVP566+/2LhxI82bNzfd7+/vT0lJCVlZWRW2T05Oxt/fv8J9R44cYejQoTzyyCO8+OKLVT7P0qVLeeihh/jpp58qlOsKIYSwHjJmCCGEqA4ZL4QQ4to0uaSUoihMnTqV3377jQ0bNhAaGlrh8Z49e2Jra8v69etN9x0/fpy4uDgiIiJM9x0+fJjrr7+eCRMm8Prrr1f5XD/++COTJk3ixx9/5KabbqqfFySEEKLeyJghhBCiOmS8EEKImmlyq+899thjLFmyhN9//522bdua7ndzc8PBwQGAyZMns2rVKhYuXIirqyvTpk0DDPO6wVBOO2TIECIjI3nnnXdMx9BoNPj4+ACGctoJEybw0UcfVVjq1cHBATc3t3p/nUIIIWpPxgwhhBDVIeOFEELUkNLEAFXeFixYYNqmsLBQeeyxxxQPDw/F0dFRuf3225XExETT47NmzaryGCEhIaZtBg0aVOU2EyZMaLgXK4QQolZkzBBCCFEdMl4IIUTNNLlKKSGEEEIIIYQQQghhfk2up5QQQgghhBBCCCGEMD9JSgkhhBBCCCGEEEKIBidJKSGEEEIIIYQQQgjR4CQpJYQQQgghhBBCCCEanCSlhBBCCCGEEEIIIUSDk6SUEEIIIYQQQgghhGhwkpQSQgghhBBCCCGEEA1OklJCCCGEEEIIIYQQosFJUkoIIYQQQgghhBBCNDhJSglRhwYPHsz06dPNHYYQQggLJ+OFEEKI6pIxQzRmkpQSQgghhBBCCCGEEA1OklJC1JGJEyeyefNmPvroI1QqFSqVin379jF+/Hh8fHxwcHAgLCyMBQsWmDtUIYQQZiTjhRBCiOqSMUM0djbmDkCIxuKjjz7ixIkTdOrUiTlz5gAwe/Zsjhw5wurVq/H29ubUqVMUFhaaOVIhhBDmJOOFEEKI6pIxQzR2kpQSoo64ubmh1WpxdHTE398fgPPnz9O9e3d69eoFQIsWLcwYoRBCCEsg44UQQojqkjFDNHYyfU+IejR58mSWLl1Kt27deOaZZ9i2bZu5QxJCCGGBZLwQQghRXTJmiMZEklJC1KORI0dy9uxZnnzySRISEhg6dChPPfWUucMSQghhYWS8EEIIUV0yZojGRJJSQtQhrVaLTqercJ+Pjw8TJkzghx9+4MMPP+TLL780U3RCCCEshYwXQgghqkvGDNGYSU8pIepQixYt2LlzJ7GxsTg7O/Pxxx/Ts2dPOnbsSHFxMX/99Rft27c3d5hCCCHMTMYLIYQQ1SVjhmjMpFJKiDr01FNPodFo6NChAz4+Pmi1WmbOnEmXLl0YOHAgGo2GpUuXmjtMIYQQZibjhRBCiOqSMUM0ZipFURRzByGEEEIIIYQQQgghmhaplBJCCCGEEEIIIYQQDU6SUkIIIYQQQgghhBCiwUlSSgghhBBCCCGEEEI0OElKCSGEEEIIIYQQQogGJ0kpIYQQQgghhBBCCNHgJCklhBBCCCGEEEIIIRqcJKWEEEIIIYQQQgghRIOTpJQQQgghhBBCCCGEaHCSlBJCCCGEEEIIIYQQDU6SUkIIIYQQQgghhBCiwUlSSgghhBBCCCGEEEI0OElKCSGEEEIIIYQQQogGJ0kpIYQQQgghhBBCCNHgJCklhBBCCCGEEEIIIRqcJKWEEEIIIYQQQgghRIOTpJQQQgghhBBCCCGEaHCSlBJCCCGEEEIIIYQQDU6SUkJU0yuvvIJKpbrm/SZOnEiLFi3qPiAhhBBCCCGEEMKKSVJKiAZWUFDAK6+8wqZNm8wdihBCCCGEEEIIYTaSlBKigRUUFDB79mxJSgkhhBBCCCGEaNIkKSWEEEIIIYQQQgghGpwkpYSown///Ufv3r2xt7enVatWfPHFF1Vu98MPP9CzZ08cHBzw9PRk7NixxMfHX/a4sbGx+Pj4ADB79mxUKhUqlYpXXnkFgAMHDjBx4kRatmyJvb09/v7+PPDAA6Snp9f5axRCCHF5mzZtolevXhXGgUt7Cy5YsIAhQ4bg6+uLnZ0dHTp04PPPP690rBYtWnDzzTebjung4EDnzp1NFbO//vornTt3xt7enp49e7Jv374K+0+cOBFnZ2fi4uK4+eabcXZ2plmzZsybNw+AgwcPMmTIEJycnAgJCWHJkiUV9s/IyOCpp56ic+fOODs74+rqysiRI9m/f38d/9aEEEJczvLly1GpVGzevLnSY1988QUqlYpDhw4BcOzYMe688048PT2xt7enV69e/PHHH5X2O3DgAIMGDcLBwYHmzZvz2muvsWDBAlQqFbGxsabtfv/9d2666SYCAwOxs7OjVatWvPrqq+h0unp7vUJUl0pRFMXcQQhhSQ4ePEh4eDg+Pj5MnjyZsrIyPv30U/z8/Dhw4ADG/zKvv/46L730EnfffTeDBg0iNTWVTz75BGdnZ/bt24e7uztgOJnYtGkTsbGx5Ofn8/333zN58mRuv/12Ro8eDUCXLl3o0qUL7733Hr///jvDhw/H39+fw4cP8+WXX9K5c2d27NhRo0brQgghrs2+ffuIiIggICCA//3vf+h0OubNm4ePjw/79+83jQN9+vShY8eOdO3aFRsbG/7880/+/vtvPv30U6ZMmWI6XosWLbC3tycnJ4dHH30UNzc33n33XbKzs5k/fz7PP/88jz32GABz587Fx8eH48ePo1Ybrh1OnDiRZcuW0bJlSwYOHEjnzp1ZvHgx27ZtY8GCBbzwwguMHz+e4OBg5s+fz7Fjxzh58iShoaEA7Nmzh7Fjx3LXXXcRGhpKcnIyX3zxBXl5eRw5coTAwMAG/g0LIUTTU1hYiK+vL/fff7/pooLRkCFDSElJ4dChQxw+fJj+/fvTrFkzJkyYgJOTEz/99BP//vsvv/zyC7fffjsA58+fp0uXLqhUKh5//HGcnJz4+uuvsbOzY//+/cTExJgWW7r99tvRarX07t0bZ2dnNmzYwM8//8xTTz3FO++809C/CiEqUoQQFYwaNUqxt7dXzp49a7rvyJEjikajUYz/ZWJjYxWNRqO8/vrrFfY9ePCgYmNjU+H+CRMmKCEhIaafU1NTFUCZNWtWpecuKCiodN+PP/6oAMqWLVtq+cqEEEJUxy233KI4Ojoq58+fN9138uRJxcbGRrn4q1NVn9mRkZFKy5YtK9wXEhKiAMq2bdtM961du1YBFAcHhwrjzRdffKEAysaNG033TZgwQQGUN954w3RfZmam4uDgoKhUKmXp0qWm+48dO1ZpjCkqKlJ0Ol2FmGJiYhQ7Oztlzpw51fiNCCGEqAvjxo1TfH19lbKyMtN9iYmJilqtNn0eDx06VOncubNSVFRk2kav1yv9+vVTwsLCTPdNmzZNUalUyr59+0z3paenK56engqgxMTEmO6varx69NFHFUdHxwrPI4Q5yPQ9IS6i0+lYu3Yto0aNIjg42HR/+/btiYyMNP3866+/otfrufvuu0lLSzPd/P39CQsLY+PGjTV6fgcHB9Pfi4qKSEtLo2/fvgDs3bu3hq9KCCFEdel0Ov755x9GjRpVoYKodevWjBw5ssK2F39mZ2dnk5aWxqBBgzhz5gzZ2dkVtu3QoQMRERGmn8PDwwHD1fGLxxvj/WfOnKkU20MPPWT6u7u7O23btsXJyYm7777bdH/btm1xd3evsL+dnZ2p6kqn05Geno6zszNt27aVsUUIIRrQmDFjSElJqbDg0fLly9Hr9YwZM4aMjAw2bNjA3XffTW5urukcIz09ncjISE6ePMn58+cBWLNmDREREXTr1s10LE9PT8aPH1/peS8er4zHve666ygoKODYsWP19nqFqA4bcwcghCVJTU2lsLCQsLCwSo+1bduWVatWAXDy5EkURalyOwBbW9saPX9GRgazZ89m6dKlpKSkVHjs0hMcIYQQdS8lJYXCwkJat25d6bFL79u6dSuzZs1i+/btFBQUVHgsOzsbNzc3088XJ54A02NBQUFV3p+ZmVnhfnt7e1NPwou3bd68eaWp3W5ubhX21+v1fPTRR3z22WfExMRU6CHi5eVV6XUKIYSoHyNGjMDNzY1ly5YxdOhQAJYtW0a3bt1o06YNu3btQlEUXnrpJV566aUqj5GSkkKzZs04e/ZshYsdRlWNX4cPH+bFF19kw4YN5OTkVHhMzjGEuUlSSoga0Ov1qFQqVq9ejUajqfS4s7NzjY579913s23bNp5++mm6deuGs7Mzer2eESNGoNfraxu2EEKIOnL69GmGDh1Ku3bteP/99wkKCkKr1bJq1So++OCDSp/ZVY0VV7pfuaTlZ232f+ONN3jppZd44IEHePXVV/H09EStVjN9+nQZW4QQogHZ2dkxatQofvvtNz777DOSk5PZunUrb7zxBoDpM/mpp56qMEvjYlUlna4kKyuLQYMG4erqypw5c2jVqhX29vbs3buXZ599VsYBYXaSlBLiIj4+Pjg4OHDy5MlKjx0/ftz091atWqEoCqGhobRp0+aanuNyzcozMzNZv349s2fP5uWXXzbdX1UsQggh6oevry/29vacOnWq0mMX3/fnn39SXFzMH3/8UaEKqqbTt+vT8uXLuf766/nmm28q3J+VlYW3t7eZohJCiKZpzJgxLFq0iPXr13P06FEURWHMmDEAtGzZEjDMuhg2bNgVjxMSEnLVsQoMq8mmp6fz66+/MnDgQNP9MTExtX0pQtQJ6SklxEU0Gg2RkZGsWLGCuLg40/1Hjx5l7dq1pp9Hjx6NRqNh9uzZla5mK4pCenr6ZZ/D0dERMJwMXPrcxv0v9uGHH9bkpQghhKgBjUbDsGHDWLFiBQkJCab7T506xerVqytsBxU/s7Ozs1mwYEHDBVtNGo2m0tjy888/m/qSCCGEaDjDhg3D09OTZcuWsWzZMvr06WNaLdXX15fBgwfzxRdfkJiYWGnf1NRU098jIyPZvn070dHRpvsyMjJYvHhxhX2qGq9KSkr47LPP6vJlCVFjUiklxCVmz57NmjVruO6663jssccoKyvjk08+oWPHjhw4cAAwVEq99tprzJw5k9jYWEaNGoWLiwsxMTH89ttvPPLIIzz11FNVHt/BwYEOHTqwbNky2rRpg6enJ506daJTp04MHDiQt99+m9LSUpo1a8bff/8tVzGEEKKBvfLKK/z999/079+fyZMno9Pp+PTTT+nUqZPpy/8NN9yAVqvllltu4dFHHyUvL4+vvvoKX1/fKk8kzOnmm29mzpw5TJo0iX79+nHw4EEWL15suiIvhBCi4dja2jJ69GiWLl1Kfn4+7777boXH582bx4ABA+jcuTMPP/wwLVu2JDk5me3bt3Pu3Dn2798PwDPPPMMPP/zA8OHDmTZtGk5OTnz99dcEBweTkZFhmp3Rr18/PDw8mDBhAo8//jgqlYrvv/++0sUKIcxFKqWEuESXLl1Yu3YtPj4+vPzyy3z77bfMnj2b22+/vcJ2zz33HL/88gtqtZrZs2fz1FNP8ccff3DDDTdw6623XvE5vv76a5o1a8aTTz7JuHHjWL58OQBLliwhMjKSefPmMXPmTGxtbStcmRdCCFH/evbsyerVq/Hw8OCll17im2++Yc6cOQwdOhR7e3vAsPjF8uXLUalUPPXUU8yfP59HHnmEJ554wszRV/b888/zf//3f6xdu5YnnniCvXv3snLlykpN1oUQQjSMMWPGkJeXB1BhBVUwrNa6Z88ebrrpJhYuXMiUKVOYP38+arW6QouPoKAgNm7cSPv27XnjjTf48MMPmTBhAg888ACAabzy8vLir7/+IiAggBdffJF3332X4cOH8/bbbzfQqxXiylSKpEiFEEIIIa5q1KhRHD58WHr9CSGEsFjTp0/niy++IC8v77KLYQhhSaRSSgghhBDiEoWFhRV+PnnyJKtWrWLw4MHmCUgIIYS4xKVjVXp6Ot9//z0DBgyQhJSwGlIpJYQQQghxiYCAACZOnEjLli05e/Ysn3/+OcXFxezbt4+wsDBzhyeEEELQrVs3Bg8eTPv27UlOTuabb74hISGB9evXV1hpTwhLJo3OhRBCCCEuMWLECH788UeSkpKws7MjIiKCN954QxJSQgghLMaNN97I8uXL+fLLL1GpVPTo0YNvvvlGElLCqkillBBCCCGEEEIIIYRocNJTSgghhBBCCCGEEEI0OElKCSGEEEIIIYQQQogGZ5U9pfR6PQkJCbi4uKBSqcwdjhBCWDVFUcjNzSUwMBC1uvFdq5AxQwgh6k5jHjNkvBBCiLpT3fHCKpNSCQkJBAUFmTsMIYRoVOLj42nevLm5w6hzMmYIIUTda+gxY+7cufz6668cO3YMBwcH+vXrx1tvvUXbtm1N2xQVFfF///d/LF26lOLiYiIjI/nss8/w8/Or1nPIeCGEEHXvauOFVTY6z87Oxt3dnfj4eFxdXc0djhBCWLWcnByCgoLIysrCzc3N3OHUORkzhBCi7phrzBgxYgRjx46ld+/elJWV8fzzz3Po0CGOHDmCk5MTAJMnT2blypUsXLgQNzc3pk6dilqtZuvWrdV6DhkvhBCi7lR3vLDKSiljOa2rq6sMGEIIUUca61QFGTOEEKLuNfSYsWbNmgo/L1y4EF9fX6Kiohg4cCDZ2dl88803LFmyhCFDhgCwYMEC2rdvz44dO+jbt+9Vn0PGCyGEqHtXGy8a10RwIYQQQgghRKOXnZ0NgKenJwBRUVGUlpYybNgw0zbt2rUjODiY7du3myVGIYQQV1frpNSWLVu45ZZbCAwMRKVSsWLFiqvus2nTJnr06IGdnR2tW7dm4cKFtQ1DCCGEEEII0QTo9XqmT59O//796dSpEwBJSUlotVrc3d0rbOvn50dSUlKVxykuLiYnJ6fCTQghRMOqdVIqPz+frl27Mm/evGptHxMTw0033cT1119PdHQ006dP56GHHmLt2rW1DUUIIYQQQgjRyE2ZMoVDhw6xdOnSWh1n7ty5uLm5mW7S5FwIIRperXtKjRw5kpEjR1Z7+/nz5xMaGsp7770HQPv27fnvv//44IMPiIyMrG04QgghhBBCiEZq6tSp/PXXX2zZsqXCak7+/v6UlJSQlZVVoVoqOTkZf3//Ko81c+ZMZsyYYfrZ2JRXCCFEw2nwRufbt2+vMNcbIDIykunTp192n+LiYoqLi00/S2lt/VAUhYTsIg6ey+ZoYg4FJWXoFVAUULC6RRorUatUqFXgZGdD35Ze9AzxwFbTONuqKYpCUk4RsWkFnE3P53xWIS72NgS6O9DM3QEbtZrzWQWcyywkKbsI3WUW4VSrVNhq1Ght1NjZqLHVqNCo1dioVSiKQn6JjsISHQUluhr9G1GhwtZGha1ajY1GhU6vUKpTKNXp0V8Sk/H9U6tV2KhVaDUabG1U+LrYc3OXAOxtNTX6XTUEnV4hLa+YpOwiknOKyCwoIauglKzCUopKdWaJyVaj5u5eQbT2dTbL84u6lVtUypKdcdzVKwhPJ625wxFCiDqnKArTpk3jt99+Y9OmTYSGhlZ4vGfPntja2rJ+/XruuOMOAI4fP05cXBwRERFVHtPOzg47O7t6izkzv4Sf9sQztL0vrX1d6u15hBDCmjV4UiopKQk/P78K9/n5+ZGTk0NhYSEODg6V9pk7dy6zZ89uqBCbnPS8YuZtPM2K6PNk5JeYO5wGchJnOxv6t/biiaFt6BDYuFZYeXHFIRbvjDN3GA3mnbXHmDYkjLt7BaG1MW+iUVEUikr1RJ3N5N+Tqfx7Mo3jybno9JaX2I3PKODze3uaOwxRBz7dcIovtpwhOaeYl2/pYO5whBCizk2ZMoUlS5bw+++/4+LiYuoT5ebmhoODA25ubjz44IPMmDEDT09PXF1dmTZtGhEREdVaea8+vPP3cZbsjOPttccZ2zuI6cPa4ONy5SRYUnYRy3bHcywpB51eQa8oqFQqujZ3o39rb7o0d0ejbpyr5QohmqYGT0rVhJTW1o+84jK+/vcMX205Q36JoVrDRq2ijZ8LHQNd8XTWosJQnWLtK8UrCoaqLxSSs4v492Qa6fklrD2czP74bDY+NRgHreVW2lyLUym5LNllSEi18HIkxMuJ5h4O5BWXkZBVyPnMQkr1Cs09DFVTAW72l60Y0ykKpWUKJTodJWV6yvQKOr1CmU4BFThpNThqbXDQaqjJ9yO9AmU6PaU6hRKdHlu1ChuNGluNmotDMr1/Svnz6w3bl5Tp2X46nfNZhby44hBfbDnNUze05daugXW6VHVqbjFbTqQSFZdJUYnO9HvIKSolPa+EjPwSsgpLKNUpl00+adQqfJzt8HOzx8tJi7uDLe6OWuxt1Q3+/+tEch7rjiSTU1TasE8s6s220+kAHE7INnMkQghRPz7//HMABg8eXOH+BQsWMHHiRAA++OAD1Go1d9xxB8XFxURGRvLZZ581cKQX/HcyDTBUTC/eGceKfed56LqWTOrfAnfHC1WtOr3C1lNp/LDjLOuPpVT5XWLdkWTe/fsErvY2RHb0Z9qQMIK9HBvstQghRH1p8KSUv78/ycnJFe5LTk7G1dW1yiopqP/S2qYoKbuI0Z9tJSG7CIDOzdyYMbwNEa28LHoaVF3R6xUOJWQz+Ye9nM8qZMG2GB4b3NrcYdWJTzacQlEgsqMfX9zXy9zh1LviMh1Ld8XzyYZTxGcU8sTSaBZui+XFmzrQM8Sj0vaKohCfUUhUXAZ7YjOJOpvJ+cxC/N3sCfJ0pLmHAxq1iuIyPcWlek4k53Lw/LWf6Pu62HFdmA8D23jTu4Unfq72FnNlc+WBRNYdSaa0zPKqt8S1yy0qNSWjTqbkmTkaIYSoH8plWg1czN7ennnz5lV7Aab6dC6zgLiMAjRqFV/f34sP/znB/nPZfLT+JF//e4Z7I0IY1t6PdUeS+T36PMk5F1qV9An1JLKjP/a2ajQqFYWlOnaeyWDb6TRyisr4Oeocv+07z9g+QUwbEoafq70ZX6kQQtROgyelIiIiWLVqVYX71q1bd9m53qLuler0TFmyl4TsIpp7ODBzZHtGdvJHbSEnzA1BrVbRpbk7T0W24cll+/l842nG9g62+l4sp1Ly+GN/AgCPDw0zczQNw85Gw4R+LbirV3O++TeGzzefZl9cFnd8vo2Ill4083DAy1mLnY2GIwnZ7IvLIr2Kaaq5KXlXPKHvGOjKgDBvvJy0pr5aTnY2eDlr8Xayw93RFluNoTeWrVqNq4NNnVZr1SVbjSGuUr3ezJGIuhB1NhPjRfWM/BLS8orxdpYLOUIIYU7byytYuzR34/p2vgxq48PqQ0l8suEkx5Jy+WLzGb7YfMa0vZuDLaO6BTK+bwht/Cr3n5rUPxSdXmFPbAafbjzFvyfT+GFHHL9EnefHR/rSLci9oV6aEELUqVonpfLy8jh16pTp55iYGKKjo/H09CQ4OJiZM2dy/vx5vvvuOwD+97//8emnn/LMM8/wwAMPsGHDBn766SdWrlxZ21BENc1ddYyos5m42Nnww4PhtPB2MndIZnNb12Z8tSWGI4k5fLLhJLNu6WjukGrlkw0nURS4oYMfHQPdzB1Og3LU2jBtaBhjegfx7t/H+TnqHNvPpFe5ra1GRadmbvQK8aBniActfZxJyi4iPrOA85mFgCHZZWerxtfFjgFh3vi6NJ6rkMbpmmW6uq+UmjdvHu+88w5JSUl07dqVTz75hD59+lS57VdffcV3333HoUOHAEOT2jfeeKPC9oqiMGvWLL766iuysrLo378/n3/+OWFhTSPpWh27YjIq/HwiOVeSUkIIYWbG7yARLb0AwwXRm7oEcGNnfzYcS2HexlMcS8plYJgPt/doxuC2PtjZXHm2gkatIrylF+EtvdhxJp03Vh3lwLlsXl95hJ8ejbDYi2FCCHEltU5K7dmzh+uvv970s7H304QJE1i4cCGJiYnExV1ouBwaGsrKlSt58skn+eijj2jevDlff/01kZGRtQ1FVMNfBxL4dmsMAO/d3bVJJ6TA8AVh5o3tuO+bXfyw4yyT+oVa7fz8Uyl5/NnEqqSq4utqz9t3duXh61qyLy6L1Lxi0vNKyCsupY2fCz1CPOgQ4FppmmpVVyUbK2NSqlRXt5VSy5YtY8aMGcyfP5/w8HA+/PBDIiMjOX78OL6+vpW237RpE+PGjaNfv37Y29vz1ltvccMNN3D48GGaNWsGwNtvv83HH3/MokWLCA0N5aWXXiIyMpIjR45gb994EoW1YUxK2ahVlOkVTibn0a+Vt5mjEkKIpktRFHaUV0pFtPKq8JhKpWJoez+Gtveratdq69vSiy/v68WgdzayOzaTzSdSGdy28lgrhBCWrtZJqcGDB19xjvfChQur3Gffvn21fWpxjc6k5vHs8gMA/G9QK27o6G/miCzDdWE+XBfmzb8n03jn7+N8Mq67uUOqkU83nESvwPAOfnRq1rSqpKoS5udCWBNKNF0LG+P0vTpOSr3//vs8/PDDTJo0CYD58+ezcuVKvv32W5577rlK2y9evLjCz19//TW//PIL69ev5/7770dRFD788ENefPFFbrvtNgC+++47/Pz8WLFiBWPHjq3T+K1RUamO/eeyAIjs5M/KA4mcSM41b1BCCNHExWUUkJBdhK1GRa8Qz3p7Hn83e+7rG8LX/8Xw3t8nGNTGx1QttWRnHKdT85g5sh02l1nQRgghLIF8QjUh320/S36Jjj6hnjx1Qxtzh2NRnhvZDpUK/tyfwL64THOHc01KyvS89/dxfi+vknqiCVdJieox9ZSqw+l7JSUlREVFMWzYMNN9arWaYcOGsX379modo6CggNLSUjw9DV/gY2JiSEpKqnBMNzc3wsPDr3jM4uJicnJyKtwaq31xWZTqFPxc7RheftX9ZLI0OxdCCHMy9pPqFuRe76s7Tx7cCiethoPns1l7OAlFUXhrzTGe/+0g3/wXw99Hkq9+ECGEMCNJSjUhe84apnjc1zdErphcomOgG3f0aA7AnL+OVGuFF0twPCmX2z/balpxb2K/FlIlJa7qQk+puquUSktLQ6fT4edXcTqCn58fSUlJ1TrGs88+S2BgoCkJZdzvWo85d+5c3NzcTLegoKBreSlWxTh1r0+oF2F+zgCcSMmt0WdYam4xr/xxmFMpUmklhBC1cWk/qfrk5WzHgwNCAXj37xO88sdhPt902vT4in3n6z0GIYSoDclMNBH5xWUcTTScaPRq4WHmaCzT05FtcdRq2BeXxe/RCeYO56r+2J/ALZ/8x+GEHDwcbZl3Tw9eudW6G7WLhmGjLu8ppbec5Oubb77J0qVL+e2332rdK2rmzJlkZ2ebbvHx8XUUpeXZHWtMSnnSyscZtQqyCkpJzSu+yp6Vfbc9loXbYvn635i6DlMIIZoMRVHYVl4p1bdV/SelAB4a2BI3B1tOpeSxaPtZVCpMiaqNx1PIKqi86rAQQlgKSUo1EdHxWej0Cs3cHQhwczB3OBbJz9WeKde3BuDN1ccoKCm75mP8Hn2ed9cep6hUV9fhVbDjTDr/91M0JTo9Q9r5snb6QG7qElCvzykaD9t66Cnl7e2NRqMhObniNIHk5GT8/a/cv+7dd9/lzTff5O+//6ZLly6m+437Xesx7ezscHV1rXBrjEp1eqLOGqYbh4d6Ym+rIcTLsHhFTabwRcdnAZApJy9CCFFjp1PzSc0tRmujpkdww1wIdrW35dFBLQFQq+C9u7ry0s0daOfvQqlOYdXB6lUsCyGEOUhSqonYE2s4cekZIlVSV/LggFCaeziQlFPE/M1nqr2fXq/w5upjPLE0mk83nmLaj/vqdGrUxU6l5PLId3so1Snc2Nmfr+/vha+rrEImqu/C9L26q5TSarX07NmT9evXm+7T6/WsX7+eiIiIy+739ttv8+qrr7JmzRp69epV4bHQ0FD8/f0rHDMnJ4edO3de8ZhNxaHz2RSW6vBwtKW1j2HqXphv+RS+i5qdK4py1el8iqJw8Hw2ALlF156QF0IIYWCcutcj2L3SSr/16aEBLXluZDt+eCic0eUtKUZ1N6xkK1P4hBCWTJJSTURUnCSlqsPeVsMLN7YH4IvNpzmXWXDVfUrK9Mz4KZr5mw3z9201KtYdSeb53w7WeW+q1NxiJi7YTU5RGT2C3Xn/7m6o1ao6fQ7R+NXX6nszZszgq6++YtGiRRw9epTJkyeTn59vWo3v/vvvZ+bMmabt33rrLV566SW+/fZbWrRoQVJSEklJSeTlGap8VCoV06dP57XXXuOPP/7g4MGD3H///QQGBjJq1Kg6jd0aGftJ9W7hafocaFO+4uSJiyqlPl5/ig4vr+VwQvZlj3Uus5CsglIA8oolKSWEEDW147Sxn5R3gz6v1kbN/wa1ol+rC897a9dAVCrYFZtRre+0QghhDjbmDkDUP51eYd9ZSUpV14hO/oSHerIzJoMpi/fyw0PhuNjbVrltYYmOh77bzdZT6dioVbx5Rxdc7W343w9R/LTnHB5OWu7s0Zy9cZlEx2fh7+rA1CGt0dQgkRSTls9ji/dyLrOQFl6OfD2hd4NegRONh7FSqq6TUmPGjCE1NZWXX36ZpKQkunXrxpo1a0yNyuPi4lCrL1wL+fzzzykpKeHOO++scJxZs2bxyiuvAPDMM8+Qn5/PI488QlZWFgMGDGDNmjW17jvVGFxocn5huXFjs/OT5ZVSWQUlfL75FEWlelYdTKRjYNULIRw4dyFhJZVSQghRM+ezCvn3ZCoAEQ3UT+pKAt0dCA/1ZMeZDP7Yn8Bjg1ubOyQhhKhEklJNwInkXHKLy3DSamjn72LucCyeSqXijdGdufPzbew/l82DC/ew8IHeOGor/ndRFIWnl+9n66l0nLQaPr+3JwPb+ADw5uguPPPLAb7YfIYvLpkGGJuezzt3djGtgJiSW8SnG04R4ObAvX2DKyXAFEXhx13xvPrXEQpLdXg6aVkwqQ+eTtp6/C2IxsyYlNIrhqmndWnq1KlMnTq1ysc2bdpU4efY2NirHk+lUjFnzhzmzJlTB9E1LvvPZQHQq8VFSSlfY6VUrumzo6jUkHzcH3/5SqkD57NMf5eklBBCXLv0vGLu+3onOUVltPFzpnuwu7lDAuD27s3YcSaDFfvOM3lQK1QqqbAXQlgWq56+l16D1YWaoj3lVVLdgz1MiRBxZa18nPn+wXBc7G3YFZvBI99FVWpe/sWWM/x1IBEbtYpvJ/Y2JaQA7u4dxHMj2wHgYKshPNSTe8KD0ahV/LbvPE8si6ZUp+fP/Qnc8MEWvtt+lrfWHOO6tzfy6YaTJGUXsTcuk2W743hg4W6e/+0ghaU6Ilp68de0AYR6OzXo70M0LsbpewCl+vrpfSbql6IoZJZPtwtwu1A11tLHCbUKcorKSMgu4rvtsabH9p/LumwS8kD8xZVSpfUTtBBCNFJ5xWVMXLCbM2n5NHN3YNEDfUwXgMxtRKcAtDZqTiTnmVbiFkIIS2LVlVJbT6URGuhz9Q2buL3lSakeMnXvmnRq5sbCSX2475ud/Hcqjfu+2cmU61szMMyHLSdTeWvNMQBm3dqR8JaVS7T/N6gVd/RojoejrSkZOKiND1OX7GXlgUT2x2dxLrMQgPYBrhSX6TiTms+7f5/g3b9PVDiWVqPm6ci2PDggVHpIiVqzvWgKXWkdNjsXDaegRIeuPMHkYn9hKLe31dDCy4kzafl8sv4kidlFeDtrySsuI7eojDNp+bQub4ZupNcrHDp/ISlVXKanpEyP1sYyTqiEEMKSJWUXMeOnaA6ez8bTSct3D/axqJWu3RxsGdrOl9WHkvjzQAIdAhvnirRCCOtl1Ump/06mce9Ac0dh+facNfQd6SVJqWvWM8SDbyb0ZtLCXeyOzWTigt2EeDmSkV+CosC4PkHcGx582f19XOwq/BzZ0Z8v7+vFoz9EcS6zEI1axdTrWzN1SGvUKhV/HUjgkw2nOJWSh7+rPWF+zrT2dWZM7yDa+cuXCFE3bC+qlCrT6a27ZLaJMk6x06hVOFzSWy7Mz5kzafks3R0PwPjwELaeSmPP2Uz2x2dVSkrFpueTW1yGnY2a4jJD5VxecRmeNjJFWAghqlJcpmPt4WSWR53jv5Op6BVw0mpYNKkPrXycr36ABta3pRerDyURm5Zv7lCEEKISq05KbT2dhk6v1KhpdFORklNEfEYhahUWM7fd2kS08mLNEwNZtD2W5VHnOJtuWL2kR7A7r9za8Zrn5l/fzpcfHgzn5z3x3B/Rgs7NLzQevq1bM27tGkhxmV6amIt6c/FnZolOj7QMtz7GKXYu9jaVPoPa+Lmw9nAyYEhAju8bTF5xmSEpdS6LO3o2r7D9wfIqqY6BrhxNzKWwVEduUan0rRNCiMt4/Md9ps9ZMCw48eyIdhW+01kSb2fDRdL0vBIzRyKEEJVZdVIqu7CM6PgsWVHuCqLKp+619Xe97Apy4upaeDsx65aOPB3Zlj+iEziWlMuU61tjZ1OzxFGfUM8KK2ZdTKVSSUJK1CuVSoVWo6ZEp6dMp1h5d8GmKae8UuriqXtGYX4XFrS4pWsgvi72dA1yB2B/fFal7Y0r73Vp7s65zMLypJQ0OxdCiKrkFZex4VgKAI8NbsWY3kGEeFl206p7KAAAdAFJREFUr08vZ8NFhjTpxyuEsEBWnZQC2Hw8RZJSV2Bsct4zxN28gTQSjlobxva5/HQ9IayFjUZFiQ5JSlmpHGOllF3liw1tL0pKPdA/FIDu5UmpI4k5FJfpKiTUD5YnpTo3c+Pfk6mk5BZLUkoIIS5j26k0SnUKIV6OPDOinbnDqRZjpVSqJKWEEBbI6k9FNp1INXcIFs2YlOoVUnVVjhCiabIpn8JXopPV96yRMWnk6lD52lIbP2fu6xvCtCGt6dTMMJWkuYcDnk5aSnUKRxJyTNvq9AqHEoyVUm44l1fU5hVLUkoIIaqyufzcY1Ab61lsybu8Uiq3qIziMt1VthZCiIZl9UmpA+eySc1teln/lNwiCkuuPKicyyzgwLksAHpfZqqYEKJpMq6sVqaXpJQ1utBTqnKllEql4tVRnfi/G9pWuK9rea+Ti6fwnU7No6BEh6NWQ0sfZ1zLpwMajy+EEOICRVHYdNyQlBrc1nqSUm4OtqZFTqSvlBDC0lh1Uqp9gGGKwpYmVi11NDGHwe9s4rq3N1a44n2pZbvjURTo18qLZu6WszStEML8bNTlSSmdYuZIRE3kXqGn1OWY+kqVT9eDC/2kOgW6oVGrcLYzJqWkUkoIIS51OjWP81mFaG3URLT0Nnc41aZSqfBykmbnQgjLZNVJqetaG65QNKUpfHq9wsxfD1JQoiMtr5ixX24n6mxGpe3KdHqWlS8Hfk+49EASQlRko5Hpe9bMWMnkeg0LWHSrotn5wfJqWuOKUcYkl0zfE0KIyoxVUuGhnjhorWtRGml2LoSwVNadlGrjBRgqpcqayInV4l1xRMdn4WxnQ49gd3KKyhj/9U7T/Haj9cdSSMktxstJyw0d/M0UrRDCUmk1UillzWpUKdXcHYAzaflkF5RSWKJj2+l0wNBPCsC5vHF6jkzfE0KISoxJKWvqJ2VkbHYuSSkhhKWx6qRUl+YeuDnYkl1Yyv7yq72NWUpOEW+vPgbA05FtWfxQXwa18aGoVM9Di3az8XiKadsfd8UBcGev5qbeMUIIYWSslGoqCf3GpiZJKQ8nLSFejgBsOJ7M2C+3czIlD3tbNX1belU4Xp5M3xNCiAryi8vYFWOYnTC4ra+Zo7l2FyqlZPqeEMKyWHW2QqNWcV2YYT73hmMpV9na+s3+6wi5xWV0DXLn3r4hOGg1fHV/L27qHECpTuGxH/YSHZ9FfEaBqXJqXG+ZuieEqMzYU0qm71mnnMLLNzq/EmO11Iyf9rP/XDbujrZ8/2A4fq725ceTnlJCCFGVHWfSKdHpae7hQCsfJ3OHc818pFJKCGGhrDopBTC8gx8Aaw8nmzmS+qMoCot3nmXlgUQ0ahVv3N4JTfly7lobNR+M6cZ1Yd4Ulup4YOFu3vv7OIoC/Vt70cLb+gZNIUT9s7WR6XvWrCaVUnChr5SiQIiXI7891p/eLS6szuoiq+8JIUSVLl51T6VSmTmaa2ecvpcuSSkhhIWpk6TUvHnzaNGiBfb29oSHh7Nr164rbv/hhx/Stm1bHBwcCAoK4sknn6SoqKhGz319O19sNSpOpeRxKiW3RsewZOezCpm0cDcv/HYIgIcGhNIx0K3CNlobNfPv7UmX5m5k5JewIjoBgHv6hDR4vEII62Bbntgu00ullDXKqUGjczCMmfa2avq08OTXyf0IveTChbHyShqdCyHEBYqisOmEYVbG4DbWN3UPZPqeEMJy1ToptWzZMmbMmMGsWbPYu3cvXbt2JTIykpSUqqfTLVmyhOeee45Zs2Zx9OhRvvnmG5YtW8bzzz9fo+d3tbdlQGvDFL7VB5Nq/Dos0Z/7E7jh/c1sOp6K1kbNMyPa8nRk2yq3dbKz4duJvWlR3i/E21lrqiITQohLXVh9TyqlrFFNK6VCvZ2IfvkGlj3aF6/yq+YXc7aT6XtCCHGps+kFxGcUotWoiWjlZe5wakQanQshLFWtk1Lvv/8+Dz/8MJMmTaJDhw7Mnz8fR0dHvv322yq337ZtG/379+eee+6hRYsW3HDDDYwbN+6q1VVXMqKTYXW5NYcbT1KqTKfn2V8OkF+io2eIB6sev47HBrfGRnP5t8zb2Y7vHghnWHtfXr6lozQ4F0Jclq1p9T2plLJGxul119pTCsDeVnPZqSfSU0oIISo7lmSYjdEuwAUnu2u7GGAppFJKCGGpapW1KCkpISoqimHDhl04oFrNsGHD2L59e5X79OvXj6ioKFMS6syZM6xatYobb7zxss9TXFxMTk5OhdvFhnfwR6NWcTghh7j0gtq8JIuRkFVEQYkOrY2anx6NoLWvc7X2C/Zy5OsJvbm1a2A9RyiEsGbGpFSpJKWsjqIopul1rtdYKXU1xiSX9JQSQogLYtPzAWjhZb29Wo2NzjPyi9HrpUpaCGE5apWUSktLQ6fT4edXcZqYn58fSUlVVy3dc889zJkzhwEDBmBra0urVq0YPHjwFafvzZ07Fzc3N9MtKCiowuOeTlrCQw2NWtc2kmqpuAxDci3Iw8HU1FwIIeqKbfn0vVKZvmd18kt0GM8nalIpdSXGSqm84jIURf5tCCEEQGxaeVLKihcQ8nAyVErpFcgskGopIYTlaPD5XZs2beKNN97gs88+Y+/evfz666+sXLmSV1999bL7zJw5k+zsbNMtPj6+0jbGKXyrDyXWW+wN6WyGYfALseIrMkIIy2Uj0/eslrGKyUatwt62bodxY1JKr0BBia5Ojy2EELWxZcsWbrnlFgIDA1GpVKxYsaLC4xMnTkSlUlW4jRgxok6eO6Y8KRXq7VgnxzMHW40aD0fDhQyZwieEsCS1qvv39vZGo9GQnJxc4f7k5GT8/f2r3Oell17ivvvu46GHHgKgc+fO5Ofn88gjj/DCCy+gVlf+gm1nZ4edXeWGrBeL7OjPy78fZm9cFknZRfi72dfwVVkG4zTEYE/rHfyEEJbLuPqeVEpZn5zCC03O63pZcgdbDRq1Cp1eIbeozGp7pwghGp/8/Hy6du3KAw88wOjRo6vcZsSIESxYsMD089XOH6qrMUzfA0P/2cyCUtLzigEXc4cjhBBALSultFotPXv2ZP369ab79Ho969evJyIiosp9CgoKKiWeNBoNQK2mCvi52tMj2B2Av49Y/xS+s+VJqRAvSUoJIeqeqaeUXiqlrE1tmpxfjUqlMq3Al1csfaWEEJZj5MiRvPbaa9x+++2X3cbOzg5/f3/TzcPDo9bPW1BSRnKOYcW6UCuevgcXmp2nygp8QggLUuu6/xkzZvDVV1+xaNEijh49yuTJk8nPz2fSpEkA3H///cycOdO0/S233MLnn3/O0qVLiYmJYd26dbz00kvccsstpuRUTY3sFADA6oPWn5Qy9pSSSikhRH24MH1PKqWsjXFlPFeH+qliMialcmQFPiGEldm0aRO+vr60bduWyZMnk56efsXtr7aYEkBsmuE7ubujLe6O2nqJu6F4lzc7T5fpe0IIC1Lrb7RjxowhNTWVl19+maSkJLp168aaNWtMzc/j4uIqVEa9+OKLqFQqXnzxRc6fP4+Pjw+33HILr7/+em1DYUQnf15fdZQdMemcSM6ljZ91lqUqimJKSkmllBCiPlxodN50KqUaS+PuHGOllF3dV0rBhb5SuZKUEkJYkREjRjB69GhCQ0M5ffo0zz//PCNHjmT79u2XvfA9d+5cZs+efcXjNpape3AhKZUmlVJCCAtSJ5dZp06dytSpU6t8bNOmTRWf0MaGWbNmMWvWrLp46gqCPB0Z2cmf1YeS+GTDKT4Z173On6MhZOSXmJb7bu4hSSkhRN0zTd9rQpVSKw8kcs91buYOo9aMySJj8qiuuZZPC8yTpJQQwoqMHTvW9PfOnTvTpUsXWrVqxaZNmxg6dGiV+8ycOZMZM2aYfs7Jyam0yveFJueNISllqPSSSikhhCVp8NX36tu0IWEA/HUggVMpeWaOpmaMVVL+rvbY29ZuSqMQQlTFprxSqimtvvf6qiMkZReZO4xau5CUqp9KKWdTpZT0lBJCWK+WLVvi7e3NqVOnLruNnZ0drq6uFW6Xik1rPJVSXlIpJYSwQI0uKdUh0JUbOvihKPDphpPmDqdGTP2kZOqeEKKe2KqNlVJNJymVW6Tj2V8OWP00vguNzuunUsp4XGPFrhBCWKNz586Rnp5OQEBArY5jmr7nbf3fy03T9/KlUkoIYTkaXVIK4PGhhmqpP/YncCbV+qqlTCvvSZNzIUQ9ubD6nnUnaK6FrY2azSdS+XFXvLlDqRVjTynXekpKSaNzIYQlysvLIzo6mujoaABiYmKIjo4mLi6OvLw8nn76aXbs2EFsbCzr16/ntttuo3Xr1kRGRtbqeWPKG503pul7ablSKSWEsByNMinVqZkbw9r7oldg3sbT5g7nmpmSUlIpJYSoJ/U1fW/evHm0aNECe3t7wsPD2bVr12W3PXz4MHfccQctWrRApVLx4YcfVtrmlVdeQaVSVbi1a9euRrFNH9oagDdXH0Vnxcm4+p6+5yI9pYQQFmjPnj10796d7t0NPWNnzJhB9+7defnll9FoNBw4cIBbb72VNm3a8OCDD9KzZ0/+/fdf7OzsavycuUWlpqluLRpFUurC9D1rrxoWQjQe9XOZ1QI8PjSMf46msCL6PGfS8rBVq9HaqLm+nS/3R4SYqgQsUXz59L0gqZQSQtSTC6vv1d2X0mXLljFjxgzmz59PeHg4H374IZGRkRw/fhxfX99K2xcUFNCyZUvuuusunnzyycset2PHjvzzzz+mn21sajZ0jQ8P4YPN58gpKiM9rxhfV/saHcfc6rvRuYv0lKozOr3Cm6uP0qmZG7d1a2bucISwaoMHD75iImXt2rV1/pzGC8VeTlrTIhDWzKu8Uqq4TE9+ic5UGSuEEObUaD+JujR3Z1h7P/45msy+uCzT/f+dSmPZ7jjm3NaJvi29zBfgFZzNMMxdD2kEDRWFEJbpwup7dVcp9f777/Pwww8zadIkAObPn8/KlSv59ttvee655ypt37t3b3r37g1Q5eNGNjY2+Pv71zo+G40aXxd7knKKSMwusuKkVPn0PYf6qpQyJqWkUqq2tp5K46t/Y1CpDL/XIe38zB2SEOIaXOgn1Ti+kztqbXDUaigo0ZGWWyxJKSGERbDccqE68PG4bix6oA9f3teTz8b34MWb2uPppOVEch5jv9zBcxbY8LaoVEdyjqFMWHpKCSHqi00dJ6VKSkqIiopi2LBhpvvUajXDhg1j+/bttTr2yZMnCQwMpGXLlowfP564uLgrbl9cXExOTk6Fm5G/myERlWjFq/A1VKWUNDqvvYPnswFQFHjix2irXRVYiKaqMa28Z2ScwpeeL32lhBCWoVEnpRy1Ngxq48MNHf25sXMAD13Xkg3/N4h7+wajUsHS3fHsjs00d5gVGFfec7G3wd3R+suEhRCWSWvqKVU3ifm0tDR0Oh1+fhUrQfz8/EhKSqrxccPDw1m4cCFr1qzh888/JyYmhuuuu47c3NzL7jN37lzc3NxMt6CgINNjAeVJqaTswhrHZG713VPK2c62/Hlk+l5tHTiXBYCdjZrc4jIe+X6PqVG9EMLyXWhy3nguFBun8KXmygp8QgjL0KiTUlVxd9Ty2qjOjOhomAqyN87CklLlc9eDPR1RqVRmjkYI0VjZqK1j9b2RI0dy11130aVLFyIjI1m1ahVZWVn89NNPl91n5syZZGdnm27x8RdW2zNVSuVYb6WUMalR7z2lpFKq1g6dN1TpvXtXVwLc7DmTms8TP+5Db+H/74QQBo1t+h5IpZQQwvI0uaSUUfdgdwD2WVhS6myGrLwnhKh/xtX3SsvqZvqet7c3Go2G5OTkCvcnJyfXST8oI3d3d9q0acOpU6cuu42dnR2urq4VbkYXKqWsMyml1yumaXX13+hcklK1kZFfwvksQ0XeoLY+fHlfL+xs1Gw8nsrW02lmjk4IUR2NefpemlRKCSEsRBNOSnkAsDcuy6L6SsWVX5EJ9mw8g58QwvJoy3tKlenrJiml1Wrp2bMn69evN92n1+tZv349ERERdfIcAHl5eZw+fZqAgIAa7R/g5gBYb0+pvJIyjENWfa0E5SLT9+qEsZ9UqLcTrva2dG7uxk2dDf9ud8dkmDM0IUQ15BSVkp5vSNw0rkopw/S9tDyplBJCWIYmm5TqFOiGjVpFam4xCRZ0cmKslAqWJudCiHp0odF53SXlZ8yYwVdffcWiRYs4evQokydPJj8/37Qa3/3338/MmTNN25eUlBAdHU10dDQlJSWcP3+e6OjoClVQTz31FJs3byY2NpZt27Zx++23o9FoGDduXI1itPZKKWP1kq1GhZ1N/QzhxkqpolJ9na7O2NQcKk9KdWrmZrqve8iFC2JCCMtmrJLycbFrVKvUyfQ9IYSlaTyfsNfIQauhfYArB89nsy8uk2buDuYOCbjQ6Fym7wkh6pNp+l4dJh3GjBlDamoqL7/8MklJSXTr1o01a9aYmp/HxcWhVl9IpCQkJNC9e3fTz++++y7vvvsugwYNYtOmTQCcO3eOcePGkZ6ejo+PDwMGDGDHjh34+PjUKEb/i5JSiqJYXe8+Y/WSq71tvcXufNG0wLyiMjz+v737Do+qTNsAfp/p6b1CQigJndARAREIBtaGFVm+FVnLfgouyloWdwXFVSzoh666rOwiuhZQEV0VQY2AAqF3CDUJSUhPSE8mmZnz/TFzJgkkkGT6nPt3Xbl2nTlz5g0D88555il+Goc8j7c7mmcOSg3u1lw+OtzSOuBQbgWMJhFKhWf9/SOSkyxLUKqnF5XuAc2Nzlm+R0TuQrZBKcD84dAclKrATUNiXb0cGE0i8srN/SeYKUVEjmQt37NjphQAzJ8/H/Pnz2/zPinQJElISLhq+fTatWvttTQAQGSADoIANBpNKK9tRJjlG2NP0Tx5z3Hbt1qpgE6tQEOTCTV6BqW66mgbmVJ9owLgp1GiRm/AmeJq9IsObO/hNiut0eODndmYc22CNTOCiDou2zJ5L8GLJu8BLXpKMVOKiNyEbMv3gOa+Uu7S7LywqgGNRhNUCgGxbpK5RUTeSWXJ0GiyU08pT6FRKawfyD2xr1S1dfKeY/pJSfwtfaWq2FeqSy62aHLeMiilUiqQHBcMADhwvsKha/jXr1n4+89n8foPpxz6PETeqrl6wbsypaw9paoZlCIi9yDzoFQwAPPIZr3B6NrFAMgpM29+3UN8mNJPRA7V3FNKXkEpwLP7SjkjUwoAAjmBzyaXNjlvabh10IpjvxDLKq0BAPxyutStBroQeYriavMeER2oc/FK7CsiwPz7VDUYrGXGRESuJOugVHyoL0L9NGg0mnAiv8rVy8HZ4moAQLyXfSNDRO7HUeV7nkC6wCiorHfxSjqvyklBKen8NQxKdUlbpXuS4T2CAQAHzjs2KJVraQdwoaLe2huHiDquxJJJFBHgXeWvQT5q3Jxsblvy9Pojsvxyiojci6yDUoIgYJgljf5gG5NwavUGPPff45i0fCt+Plnk8PVsO10KABjTM9Thz0VE8uaIRueeQsqU8sTyvap6J5XvSZlSepbvdUVbTc4lw+LMmVKZpbW4WOu4RsN5F+us///XM6UOex4ibyUFpSIDvSsoBQBLbh6AYF81ThRU4V+/Zrl6OUQkc7IOSgHNJXwHcyta3b79TClu+L9fsGZnNrJKa/HQh/ux8WiBw9ahNxix85z5Q+PEpK5NlSIi6ii1tXxPhplSQeaefSzfa1+ApacUM6W65kqZUiF+GvQKN2dEH8x1TLZUZX2TNasOYFCKqLOajCaUWYLGEV44KCDcX4u/3jgAALDip9MdyqasamjCK5tO4nRRtaOXR0Qyw6DUJc3O6xuNWPTlUfzPv3fjQkU9uof4YHK/SBhMIuZ/cgDr9+fZ9HyiKOK9X85h66niVrfvzbqIukYjIgO0GBjruGk8REQAoLZkShmYKeVRnNbo3BL0qmJQqtPaa3LekvTZw1HNzi9cND+/YGlPuSuzTJZZkURdVVZjzpJSKQSE+HrnBNI7hnfD+D7h0BtMWPTlkav2nvu/H0/jH1vPcXgCEdmd7INSQ7oHQRCAvIv12J1Zhtve3YFP9+QAAOaM7YHNj12HVfeOxN0ju8MkAn/6/DA+25vb5efbdroEL208iUc+PtBqqpEUpJqYFAFBYJNzInIslawzpSyNzqs8MShlDhIFOqmnFBudd56UJZUQ5ntZk3OJta+Ug5qd51pK9wbFBiHUT4MavQGHLskIJ6L2lVqCUuH+Wii8dPiQIAh46bbB0KkV2JVZjk3HCts9trqhCZ/vM38xf6qQmVJEZF92CUq98847SEhIgE6nw5gxY7Bnz54rHl9RUYF58+YhJiYGWq0WSUlJ2Lhxoz2W0mkBOjWSIgMAAPes2oWThdUI99fikwfG4PlbB8FPq4JSIeDl24dgztgeAIDF/z3WqldDZ/xwwtybqq7RiC9bZF1tsQSlru8bacuvQ0TUIVKmVJNJftkTzZlS9R43lUzKlGov2GEvUiZWDXtKdZoUlBrcPbjdY6QJfIdzK2A02f/vYJ4lUyo+1Bfj+oQDAH49XWL35yHyViXV5tI9b+wn1VJ8mC9+d435+ubnk8XtHvf5vjzU6M1fUuSU16GhyfVTy4nIe9gclFq3bh0WLlyIJUuW4MCBA0hOTkZqaiqKi9t+Y2tsbMTUqVORnZ2NL774AqdOncKqVavQrVs3W5fSZVJfKVE0Nxnf+MfxuNbyIU6iUAh47paBGN0zFA1NJry0MaPTz2MyiUjLaG6Y/mH6eZhMInLL63CupBZKhYDxieFXOAMRkX2oFea3f1GEQy6K3VmUZfpeQ5MJlfWeFXRxXk8pZkp1Ra3egHWWbOqhlkEqbUmKCoC/VoXaRqNDsg6kL866h/hgghSUOsu+UkQdJWVKeWM/qUtJgetdWWVt3m80iVizM9v63yYRnOhJRHZlc1DqjTfewIMPPoi5c+diwIABWLlyJXx9fbF69eo2j1+9ejXKy8vx1VdfYdy4cUhISMDEiRORnJxs61K67Pbh3REbpMOjk/vg4wfGINJywXIpQRDw3M0DoRCAjUcLsaOTH/COXqhEUZUefhol/LUqZJbWYse5Umy1fHs5Ij4EQT6O/fabiAhonr4HyG8Cn06tRKifuUeIp/WVag5KOTpTyhyUYqPzzln2fQZyyuvQLdgHd4/s3u5xSoWA5Dhzv6n9DijhkzKluof4WL/sOpxbgco6zwrCErlKqUwypQBgZEIolAoBueX11n54Lf18shg55XUI8lFb+96eKa5x9jKJyIvZFJRqbGzE/v37kZKS0nxChQIpKSlIT09v8zH//e9/MXbsWMybNw9RUVEYNGgQXnrpJRiNrksDHd0zFDsXTcGfbuhr7bPSngGxgfgfS5rr898c79TF3E+WLKmJfSNw5wjzh9UPdp7HVku67PX9OHWPiJxD3eK9Tm5BKQCItnz54GkT+Kqsjc4dmynlz55SnfbL6RJ8tMvck/K1O4dcNXAolfC98M0J3PNeOt7ZchZn7XSh1xyU8kVssA96R/jBJALpmcyWIuqI0lrz3iCHTCl/rQqDLMGm3ZmXZ0ut3p4FAJg1Oh5DupuD6Wc5gY+I7MimoFRpaSmMRiOioqJa3R4VFYXCwrab5WVmZuKLL76A0WjExo0b8eyzz+L111/H3/72t3afR6/Xo6qqqtWPKy2cmoQQXzVOF9XgP+nnO/y4Hy39pKYOiLIGttJOFmG7JePq+iT2kyIi52gZlDLIsNm5p07gc1r5niWg0nIgB7Wvsr4JT68/AsA8JOXSFgBtmTGsG3qE+aLRaMKuzHK8tvkUbvr7r9apX10liiLyys3le3GhPgCACYnmL71+OcOgFFFHlFRbyvfaqZ7wNtf0CgMA7M4sb3V7RkEV0jPLoFQIuHdsD/Sx9OFlphQR2ZPTp++ZTCZERkbivffew4gRIzBz5kz85S9/wcqVK9t9zLJlyxAUFGT9iYuLc+KKLxfsq8GTqf0AmMejltc2XvUxueV1OFlYDaVCwKS+kegT6Y8JieEQRUBvMCEqUIv+MQGOXjoREQBz+ZA06NMgx0wpaQJf5eWlCu7KaBKtjWYdXb7nb+kpJT0fXdkL355AQWUDEsJ88fT0fh16TO8If2x94npseeJ6vDBjELoF+6ChyYRNx9ufgNURVfUGVFtet27BvgCA65LMQbJtp0pgklkPOaKuKK0xf7aXQ6YUAIzpFQrg8r5S7+8wZ0lNHxSN2GAfJEb6A2BQiojsy6agVHh4OJRKJYqKilrdXlRUhOjo6DYfExMTg6SkJCiVSutt/fv3R2FhIRob2w7uLFq0CJWVldaf3NxcW5ZtFzNHxWFATCCq9QZ8mJ591eOlLKlRCSEI9jX3Mrl3bIL1/uuTIiEI3jlylojck5Qt1STDi1RPzJRqGSBydKZUIMv3OqyqoQnrD5in6S6/Kxm+mo6/NoIgoGe4H353TQ/8zjLh97sjBTatJ9fS5DzcXwMfjfmz1jW9whCgVeFCRT3SrjBhi4jMpEwpOfSUAsx9pRQCcL6sDgWWL2uKqxrw1cF8AMDvx/cEAPSxBKWyS2tlWfpPRI5hU1BKo9FgxIgRSEtLs95mMpmQlpaGsWPHtvmYcePG4ezZszC1GEN++vRpxMTEQKPRtPkYrVaLwMDAVj+uplQIePj63gCA/6Sfv+po1ObSveZg3eR+kdbU+sn9WbpHRM6lVpgD4QaT/D5YRgeZ33sLqzwnKFVtKaXTqBTQqZVXOdo2UiZWjd4AUZRf0LIzcsrqIIpAmJ8GIxNCu3yeGwfHAAB2ZZZZL4i7Quon1S3E13qbr0aF/7EEvd7depavKdFVyC1TKlCnxsBYc78oqYTv/Z3ZaDSaMLJHiLUHXkyQDn4aJQwmEefLOIGPiOzD5vK9hQsXYtWqVfjggw+QkZGBhx9+GLW1tZg7dy4A4N5778WiRYusxz/88MMoLy/HggULcPr0aXz33Xd46aWXMG/ePFuX4nTTB0WjW7APymobseHghXaPq6xrwp5s8xv81P7N/beUCgH/njMKr94xBDcMiGrv4UREDiENdpDjt52xHpgpJWUtBTo4SwoAAn3Mz2E0iahtdN0gEk+QZ8lM6h7qe5Ujrywu1BfJccEwicCmY13PlrKuJ8Sn1e1zxyVAo1LgYE4F9mSVt/VQIrKQ9sWIAHkEpQDgGksJ3+6sMlQ3NOGjXea+uX+Y2Nt6jCAI6BNl6StVxBI+IrIPm4NSM2fOxPLly7F48WIMHToUhw4dwqZNm6zNz3NyclBQ0PzhKi4uDps3b8bevXsxZMgQ/PGPf8SCBQvw5z//2dalOJ1KqcDccQkAgH/9mtlun4Ytp4phNInoGxWA+LDWH1qTogJw96g4lu4RkdNJ5XtybHTe3FPK84JSju4nBQA+aiW0KvPfj4sd6JsoZ7nl5sykuEuCQF1x8xBzttQ3NpTwSZlScSGtP29EBuhwl2Xy7z+2nevy+YnkIshH7fCsVHcypqe52fmuzHKs3ZOL6gYDekf4YUq/1tUc7CtFRPZml0bn8+fPx/nz56HX67F7926MGTPGet/WrVuxZs2aVsePHTsWu3btQkNDA86dO4dnnnmmVY8pTzJzVBwCtCqcK6nF1tOX92mobmjC338+A8A8dY+IyF2oleZguBwzpaSgVI3eYC2Lc3dV9eZ1OrqfFGD+NjzUz1xS35FhHnImZSbF2ZgpBQC/sZTw7c0uR5GltLS0Ro/73t+DN3441an1XJopBQAPXdcLCgHYeqoEJ/JdO8mYyN3JKUsKAEb1DIUgAFmltdbA9R+u6w2FovUX5wxKEZG9OX36nrcJ0Klxz2jzNMBVv2S1uk8URTzx+WGcK6lFTJDOmlVFROQOrI3OZZgp5atRIcjHnHHkKdlSF+vMwSFp3Y4WYhnKUV7HoNSV5LaTmdQVscE+GNEjBKIIbDxagKqGJsxZvQdbT5Xgna3nOpS1JmVKtRWU6hHmhxuHxAIA/vkLs6WIriRSZkGpIB81BsSY+/aW1zYiMkCLW4fFXnZcYpQlKFVU7dT1EZH3YlDKDu4b1xNKhYD0zDIcyq2w3v6Pbeew+XgRNEoF3p09HGEyaZZIRJ5BZcmUMsowKAV43gQ+aZ3Suh1NypRi+d6V5Za3n5nUFVLD868OXsADa/bhuCWjyWgS28zIbkkUxRZBqbaDZP87sRcA4JvD+da1E9Hl5JYpBTSX8AHA3HE9oVVdXsnSJ8LcUyqztBZGGU7vJSL7Y1DKDroF+1g/RN7+7g7c8146Xt10Ess3m1Ptn7tlIIZZplYQEbkLtcKSKSXTD5XR1qBUvYtX0jH5FeZ1xgbbJ/hxNSzfu7qWQSB7lO8B5hI+QQAO51ViT3Y5AnQqTBtontz7U8aVg1KV9U2o0Zt7j7UXJBsYG4SRPUJgEs2T/oiobXLLlAKAsb3NQSl/rQq/HRPf5jHdQnygUyvQaDAxsE1EdsGglJ08Pb0fhsUHWz7klePdredgEoGZI+Mwy1LeR0TkTtQqS08pk/x6SgHN5VbZZZ7xoTrfkikVG8SglLsorWlEfZMRggDEBtsngy06SIdRPcxTsHRqBVbfNwr/e715+tW2UyVoNLT/71Vquh4RoL1ig+YoS0C21hLAIqLLyTFTanK/SPxxch+8NWtou6XiSoWA3hHsK0VE9sOglJ10C/bBhkfG4denJuGvN/bH6J6hmD4oGs/fOpCT9YjILakU8p2+BwA9w/0AAFkltS5eSccUWDKlYuwU/LgaqafURfaUapfUVDw6UNdmmUtX/XFKIpLjgvHe70ZiVEIohnQLQkSAFjV6A3ZntZ/ddKUm5y35acxrrW002m3NRI72yy+/4Oabb0ZsbCwEQcBXX33V6n5RFLF48WLExMTAx8cHKSkpOHPmTJefLzLAOe+17kSpELDwhr6Y3O/Kw5mam52zrxQR2Y5BKTuLC/XFAxN64bM/jMU//meErEbJEpFnkabvGWQ4fQ8AekVYglKl7h+UEkXRBeV75m/JmSnVPns2OW9pfGI4vp43DtclRQAAFAoBKf3NY9l/OlHU7uOu1k9K4qsxT3CsZ1CKPEhtbS2Sk5PxzjvvtHn/q6++irfeegsrV67E7t274efnh9TUVDQ0dK1voBwzpToqMcrcV+psETOliMh2DEoREclU8/Q9mQalws3f9GaVuX+z1qoGgzWrxXnle+YLsou1TU55Pk9k7ybnV5LS35y58FNGMUSx7b+vHc6U0kqZUizfI88xffp0/O1vf8Ntt9122X2iKGLFihX461//iltvvRVDhgzBhx9+iPz8/MsyqjpKjj2lOqpPJMv3iMh+GJQiIpIplVLe5XvdQnygUZqbtUpZSO5KasYe7KuGj8Y5Gbghlkypslq9U57PE1mDQHZqcn4l4/qEQ6dW4EJFPTIK2i6Zac6UunJQSsqUqtMzU4q8Q1ZWFgoLC5GSkmK9LSgoCGPGjEF6enq7j9Pr9aiqqmr1I2GmVPukoNS5khqY3PxLHSJyfwxKERHJlFphaXQu00wppUJAjzBzMMHdS/gKKpzb5BxobnR+sY6ZUu2RGovHOSFTSqdWYkKiuZzvp4zWJXyiKCKrtBanLf1drlZO6KthphR5l8LCQgBAVFTrXkhRUVHW+9qybNkyBAUFWX/i4szDidRKRbuNvgnoEeoLQQDqGo0oY4k3EdmIQSkiIpmSyvcM7ZQCdcU777yDhIQE6HQ6jBkzBnv27Gn32OPHj+OOO+5AQkICBEHAihUrbD5nZ0nNzjNL3LsE4YK1n5TzGu+GWhqdV9Q1un15o6tImVJxTsiUAoCp1hK+IlTUNeLbI/l46ovDGP/KFkxavtUaJEsI87viefykTCn2lCKZW7RoESorK60/ubm5AIBwfw0HFV2BqkXQrrKeQSkisg2DUkREMqWyc6PzdevWYeHChViyZAkOHDiA5ORkpKamori4uM3j6+rq0KtXL7z88suIjo62yzk7q6eHNDuXyvdinJgpFWLJlDKJQFU9s6UuZTSJ1mChs4JSk/pFQhCAI3mVGP7Cj5j/yUF8ti8PFyrqoVEqMLZXGF66bTDiw66SKSX1lNIzU4q8g7SHFBW1ziIsKipqd38BAK1Wi8DAwFY/ABDuz9K9qwm2BKUqmE1LRDZiUIqISKbs3ej8jTfewIMPPoi5c+diwIABWLlyJXx9fbF69eo2jx81ahRee+013HPPPdBq274A6Ow5O6u3pdl5prsHpaTyPSdN3gPMfz8CdOaMGpZnXK6oqgFNRhEqhYDoQOdksEUEaDE6IRSAOViYFOWPB8b3xAe/H41DS6bi04euwW/HxF/1PMyUIm/Ts2dPREdHIy0tzXpbVVUVdu/ejbFjx3b6fOEBGnsuzysFWbNpGZQiItuoXL0AIiJyDbVS6ille2lWY2Mj9u/fj0WLFllvUygUSElJuWKTWWef81JSplRmiXsHpfIrnV++B5j7SlU3GHCxjkGpS0mT92KDfaBUOK/M561Zw7Av+yKGxQd3OUgp9ZSqY08p8iA1NTU4e/as9b+zsrJw6NAhhIaGIj4+Ho899hj+9re/ITExET179sSzzz6L2NhYzJgxo9PPFcFMqauyZkoxk5aIbMSgFBGRTNlz+l5paSmMRmObTWZPnjzp1HPq9Xro9c0T41pOU7qU1FMqv7IeDU1G6NTOmWzXWfmWTClnlu8BQIivBufL6lDOTKnL5F6USvec+5pEBepw45AYm87hy0wp8kD79u3DpEmTrP+9cOFCAMCcOXOwZs0aPPXUU6itrcVDDz2EiooKjB8/Hps2bYJO1/lgPsv3ri7YVyrf4/5ARLZhUIqISKY0dgxKuZNly5bh+eef79CxYX4aBOpUqGow4HxZHfpGBzh4dZ1nMokorJTK95yfKQUAFxmUuoy1yflVJt25I/aUIk90/fXXQ7zCYA5BELB06VIsXbrU5ucKD2BQ6mqCrY3OmSlFRLZhTykiIplSWUqOmkTbe0qFh4dDqVR2usmsI87Z3jSltgiCgJ4R5r5SWaXuOYGvrLYRjUYTBMGcJeNMUlCqnN+EX0aadOesJuf21LKn1JUu8onkiplSV8eeUkRkLwxKERHJlFS+12Sw/aJUo9FgxIgRrZrMmkwmpKWldanJrC3nbG+aUnt6WUr4zrlpX6l8y4S3yACttTm9s1iDUjUMSl0q15Ip1T3EueV79iBlShlMIhrtNOiAyJtE+LPR+dWwpxQR2QvL94iIZEpjaXRuNNnnonThwoWYM2cORo4cidGjR2PFihWora3F3LlzAQD33nsvunXrhmXLlgEwNzI/ceKE9f9fuHABhw4dgr+/P/r06dOhc9qDFJTKctMJfAXWJufOD36E+DJTqj155VJQyvMypXxb9E6r0xuhVblnLzUiV4lg+d5VsacUEdkLg1JERDJlzZSyU0+pmTNnoqSkBIsXL0ZhYSGGDh2KTZs2WRuV5+TkQKFozvTJz8/HsGHDrP+9fPlyLF++HBMnTsTWrVs7dE57kCbwuWtQSmpyHuvkJucAEOpnvuhgT6nWGg0mFFSZXxdnNzq3B5VSAa1KAb3BhNpGA0L8mBVC1FKoH4NSVyMFpdhTiohsxaAUEZFMqSyZUk12LN+ZP38+5s+f3+Z9UqBJkpCQ0KF+Nlc6pz1IE/gyS9yzp5SUKRUT5Nx+UkDzhVk5e4a0UlBZD1EEdGqFx46O99OqoDc0op4T+Iguo1Gxw8nVBPmwpxQR2QffcYmIZKp5+p68e8pIQamLdU1umREkZUrFuKB8j5lSbZOanHcP8YUgCC5eTdf4WEr4ahmUIqIuYPkeEdkLg1JERDIlTd8zmOQ9fctXo7JmIWWVuV8JX74lU6pbsPMzpaw9pRiUasWTm5xL/CzNzuv0BhevhIg8kdTovKrBAKPMP0cQkW3sEpR65513kJCQAJ1OhzFjxmDPnj0detzatWshCAJmzJhhj2UQEVEnNPeUknemFNCyhM/9glIFUqaUS3pKmYNSNXoD9AZm1EiKq/QAXFNSaS++GnMHB2ZKEVFXBFmCUgBQxb5SRGQDm4NS69atw8KFC7FkyRIcOHAAycnJSE1NRXFx8RUfl52djSeeeAITJkywdQlERNQF1vI9fsOJXtZm5+7VV6rJaEJRtVS+5/wASKBODaUlo459Q5pV1Jszx4J9PbdBuDVTqpGZUkTUeSqlAgFac3C7gkEpIrKBzUGpN954Aw8++CDmzp2LAQMGYOXKlfD19cXq1avbfYzRaMTs2bPx/PPPo1evXrYugYiIuqC50TmDUj3D/QG43wS+oqoGiKI5gBjugmlQCoWAEEvfEJbwNau0BOiCW2QKeBprppSemVJE1DVB7CtFRHZgU1CqsbER+/fvR0pKSvMJFQqkpKQgPT293cctXboUkZGRuP/++zv0PHq9HlVVVa1+iIjINio2Orfq5ablewWV5iyp6CAdFArXNNSW+kqx2XkzKStAavTrifw0zJQiIttYm50zU4qIbGBTUKq0tBRGoxFRUVGtbo+KikJhYWGbj9m+fTv+/e9/Y9WqVR1+nmXLliEoKMj6ExcXZ8uyiYgIgMaSKWVgphR6hPkCAHLK6yCK7vPnkV9hbnLuyt5FIZa+UmUMSlldrPP88j1fS9lNHXtKEVEXBfuY3wMrWd5NRDZw6vS96upq/O53v8OqVasQHh7e4cctWrQIlZWV1p/c3FwHrpKISB5UCjY6l3QL8YEgmC/Q3Sn4km9pct4t2HVT3kKlTCmWZ1h5Rfme2pwpVctMKSLqIpbvEZE9qGx5cHh4OJRKJYqKilrdXlRUhOjo6MuOP3fuHLKzs3HzzTdbbzOZzBdDKpUKp06dQu/evS97nFarhVbr/F4aRETeTK2yBKXY6BxalRIxgTrkVzYgp7wO4f7usecUVFoypVzQ5FwS6m8OSrGnVLPm8j0vyJRiTyki6iIpMM/yPSKyhU2ZUhqNBiNGjEBaWpr1NpPJhLS0NIwdO/ay4/v164ejR4/i0KFD1p9bbrkFkyZNwqFDh1iWR0TkRGpLjyKjiZlSABAXai7hyy2vc/FKmmWXmdcSE+QGmVIMSgEATCbRmhXgDT2lmClFRF1l7SnF8j27qKhrxP7zF129DCKnsylTCgAWLlyIOXPmYOTIkRg9ejRWrFiB2tpazJ07FwBw7733olu3bli2bBl0Oh0GDRrU6vHBwcEAcNntRETkWFKjc07fM4sP9cXurHLklLlHUOqX0yX45XQJAGBoXLDL1iH1lCrnRQcAoKbRACm5MMiTy/eYKUVENrL2lGKmlM0O5VbgoQ/3obhaj4/uH4PxiR1vdUPk6WwOSs2cORMlJSVYvHgxCgsLMXToUGzatMna/DwnJwcKhVNbVxERUQeoLY3O2VPKLD60udm5q1XWN+Hp9UcAAHPG9sCgbkEuW0uonznwUl6rd9ka3ElFrfniy0ethM7Sl8kTMVOKiGzFnlL2seFgHp5efxSNBvPnse+O5jMoRbJic1AKAObPn4/58+e3ed/WrVuv+Ng1a9bYYwlERNRJakumFKfvmcWHuU9Qauk3J1BQ2YCEMF88Pb2fS9cS4iv1lOI34QBQUe/5pXsA4Kvh9D0iso3UU+oiM2m77LXNJ/HOlnMAgH7RAThZWI2fMorxokmEwtJmgcjbMYWJiEimVJZMKQMzpQC4T0+pH08UYf2BPCgE4PW7k63BA1cJ8zM3fWdPKTOpd4onl+4BgK+UKaVnphQRdY007IHle12zJ6vcGpCaN6k3vpo3Dv5aFUqq9ThyodLFqyNyHgaliIhkSsqUamKjcwDN5XsFVQ3QG1yTPVLXaMCiL48CAB68rhdG9Ah1yTpaCpHK9+oaIYrMqmuevOfZQSk/rTkoVd/ETCki6ppglu/Z5LN9uQCAu0Z0x5Op/aBTKzGxbwQA4KcTRVd6aLuKqxrw3ZECmDhZmTwIg1JERDKltvT7M/CDCwAgzE8DX40SoghcuFjvkjXsySpHaY0eMUE6PJ6S5JI1XCrU0ui80WBiqReaL76kskZPJWXg1bLRORF1kVS+V1nfxCBIJ9XoDdh4tAAAcM/o5gn0Kf0jAQA/ZXQtKDXvkwOY98kBrPzlnO2LJHISBqWIiGSquXyPHyQBQBAElzc7P5BTAQAY2yvMbZpo+6iV0KrMHxfKWcJnLd/z+Ewpa08plu8RUdcEWoJSJhGoZilwp2w8UoC6RiN6RfhheHyI9fZJfSOhVAg4WVjd6XYCB3IuYm/2RQDAu1vOoaSaA0rIMzAoRUQkU9byPQalrFzdV+pgjvnD5LAeIVc50nkEQUCYn9TsnEGp5p5SHp4pZSnfq2s0MsOBiLpEp1bCx/IFSiWbnXfK5/vNpXt3jugOQWhuaB7sq8FIy2eAtE5mS/17e5b1/9foDXjjx9PW/25oMmLexwcweflWrN+fx/d9cisMShERyZRayakul3JlppTJJOKQJVNqeHyw05//SkKkoBT7hnjN9D2/Fg302VeKiLrK2leqnvtDR2WV1mJv9kUoBOCO4d0vu3/qgCgAwE8ZxR0+Z255Hb63lAP+bcYgAMC6vTk4WViFJqMJ8z85gO+OFiCztBZ/+vwwbnlnO9LPldnhtyGyHYNSREQypVJyC7iUK4NSZ4prUK03wFejRN+oAKc//5VIfaU4ga85UyrEw4NSOrUC0pfztSzhI6IukiaRVjBTqsO+sGRJXZcUgahA3WX3T+lvDkrtyixDVUPbf64Nl3yZ8MHObJhEYEJiOP7nmh74zeBomETghW9P4LF1h/BTRjG0KgXuH98TAVoVjl2owqxVu7BmR1ab5ydyJl6REBHJFDOlLhcfJgWlnN/o/ICldG9I9yC3CxhKQanSGvankBqde3r5niAI8LWU3dSx2TkRdVFzphSDUh1hNIlYv/8CAOCuEXFtHtMz3A99Iv1hMInYdqrksvs3HMxDv2c34Q//2YeyGj2qG5qwdq850HX/+J4AgD9P6w+NUoEdZ8vw3ZECqJUC/vm7EXj2pgHY+uT1uGeU+blf//E0Sy/J5dzrUy8RETmNNH2PmsW36Cklis7tt3DgvDko1bLhqbuItnyTW1jJoJR04eXp5XsA4KuVmp3LOyh1uqga972/B/vPl7t6KUQeJ9gSoK9keXeH/HqmBIVVDQj2VSNlQGS7x6VYsqU2Hy+87L5Vv2RZ7itC6opf8JcNx1CjNyAx0h8TkyIAmL9kmzs+AQCgVAh4+7fDcX1f8/OF+Wvx0m2D0TcqANUNBqz6NdOevyJRp/GKhIhIphQKAUoFs6Va6hbsA0EwNwi96ORvDqVMKXcMSsUEWYJSVc7PIHM3lV4yfQ8A/DRSs3N5l+99tOs8tp4qwSMfH2DGAFEnWTOl+G+nQ6Qg0y3JsdCq2p+yO31QNADgxxNFqGyRhXa2uBonCqqgUghIjPRHaU0j/ns4H4A5S6pl0/THpiThj5P7YM3cUUgdGN3q/AqFgMenJgEAVu/IQhkzocmFGJQiIpIxFYNSrejUSmtW0PmyWqc9b0VdI86VmJ9vmJs1OQeA6CAfAEBBZYOLV+JaoihaM6VCfD27fA8AfC3Nzmtlnil1qrAaAFBUpcfz3xx38WqIPEsQy/c65diFKgDANb3CrnjckO5B6BcdAL3BhP8eumC9/b+HzAGo65Ii8M2j4/HghJ4QBCA2SIcZw7q1OoePRomFN/TFhMSINp8jdWAUBncLQl2jESu3nbPl1yKyCYNSREQypnaz3kXuIM4Fzc4P5lYAABLCfBHmr3Xa83aUlClVUCHvoFS13gCjZYy21NzXk/lppZ5S8s2UEkURp4uqrf/95cEL+KGNchkiaptUvsdMqatrMppwyvJ+MzA28IrHCoKAu0ea+z5J/aJEUbRmRd2SHAudWom/3DgAvzw5CV/NHweduv3Mq/ae4083mLOlPkw/j6Iqee/x5Dq8GiEikjE2O79cy75SznLQjftJAc1BqeLqBhiMJhevxnWk0i6dWtHpD//uiJlSQGlNIy7WNUEQgPuuTQAAPLPhKMo5adIjPffccxAEodVPv379XL0sryaV71XW89/M1ZwrqUGjwQR/rQpxIb5XPf62Yd2gUSpwPL8Kxy5U4uiFSmSX1UGnVmDqgCjrcXGhvogMuHyKX0dMTIrAyB4h0BtMePvns106B5GtGJQiIpIxd5vy5g7iXZApdSCnAgAwrId7BqXC/LVQKQSYRKBExn0npEyAYA+fvCexZkrJuKfUGUvWQnyoL/48vZ+1R8vir4+5eGXUVQMHDkRBQYH1Z/v27a5eklcL9mFPqY46bindGxATCEUH2ieE+GmQaukttW5vrrV0b0r/KPhZBlXYShAEPJHa1/ocVQ18Hcn5eDVCRCRjavaUuoyzg1JGk4hDlvK94W7YTwowT+6JsvTaknNfqQpLJoA3NDkHAB+1JVNKL99MKal0LzEyADq1Em/cPRRKhYBvjxQg/VyZi1dHXaFSqRAdHW39CQ8Pd/WSvBp7SnXciQJLUOoqpXstzbSU8H116AK+OdJcumdP1/QKQ59IfzQaTdhystiu5ybqCAaliIhkTK2y7zbwzjvvICEhATqdDmPGjMGePXuuePznn3+Ofv36QafTYfDgwdi4cWOr+++7777LSjGmTZtm1zVfKs5avuecSXNniqtRozfAV6NE36gApzxnV0RLE/hkHJS66EWT94DmTKl6GWdKnSqqAQD0jfYHAAzuHoTfjo4HAPztuxMwWXqIkec4c+YMYmNj0atXL8yePRs5OTmuXpJXY0+pjjueXwmgc0Gpa3uHoXuID6obDCiq0iNAp8L1fdtuXG6L1IHmcsDN7KlHLsCgFBGRjNlz+t66deuwcOFCLFmyBAcOHEBycjJSU1NRXNz2t247d+7ErFmzcP/99+PgwYOYMWMGZsyYgWPHWpfNTJs2rVUpxqeffmq3NbdFypTKr6xHo8Hx/ZMOWkr3krsHu3U5pbXZuYyDUpV1lkwpLynfY0+p5vK9pBYB4cdSEhGgVeF4fhW+PHihvYeSGxozZgzWrFmDTZs24R//+AeysrIwYcIEVFdXt3m8Xq9HVVVVqx/qnJY9pUSRQdz2iKKIE/nN5XsdpVA0NzwHgOmDoqFV2b+n4bSBMQCALSdL0NAk3z2BXMN9P/0SEZHD2XP63htvvIEHH3wQc+fOxYABA7By5Ur4+vpi9erVbR7/5ptvYtq0aXjyySfRv39/vPDCCxg+fDjefvvtVsdptdpWpRghIY7tuxTur4GPWglRBC5UOD5balemuURohJv2k5LEWDOlnJNB5o4qvC1TSiPvnlItJ+8lRjYHpcL8tZg/uQ8A4LXNJ2X75+OJpk+fjrvuugtDhgxBamoqNm7ciIqKCnz22WdtHr9s2TIEBQVZf+Li4to8jtonvR82GUXUyTjAfTV5F+tR1WCAWim0CoJ3xJ0jukP6DvGW5G4OWB0wqFsgugX7oL7JiF/PlDrkOYjaw6AUEZGM2Sso1djYiP379yMlJcV6m0KhQEpKCtLT09t8THp6eqvjASA1NfWy47du3YrIyEj07dsXDz/8MMrKHNvnRRAE9Ik0l/LszS536HMZjCZsPVUCAJjogHR8e4oO8gEA5Ms4U0rqmRLkJUEpX628e0oVV+tR1WCAUiGgV4Rfq/vmXJuAuFAfFFXp8d4vmS5aIdkqODgYSUlJOHu27aliixYtQmVlpfUnNzfXySv0fD5qJTSWzxLsK9U+qZ9UYmQANJ1snRAb7IMXZgzCvEm9cW3vMEcsD4Ig4AZLCd+mYyzhI+diUIqISMZUSvuU75WWlsJoNCIqKqrV7VFRUSgsbPvDTWFh4VWPnzZtGj788EOkpaXhlVdewbZt2zB9+nQYje1fRNujHEMatbzxaEGnH9sZB3MrUFnfhCAfNYbFBTv0uWwVw55SuGgp3wvx9Y7yPblnSp0qNGdJ9QjzhU7duhxGp1biz9P6AwD+uS1T1n/vPVlNTQ3OnTuHmJiYNu/XarUIDAxs9UOdIwhCc7Nzy3skXe54fuebnLc0e0wPPJnar0NT+7oqdaB50l/aySIYjI5vX0AkYVCKiEjG7Fm+5wj33HMPbrnlFgwePBgzZszAt99+i71792Lr1q3tPsYe5Ri/GWy+gNl+phSVDmzempZh7rd1fd8It+4nBbDROQDr3wVpBLqn87EEpeSaKSWV7iVFtl1K85vB0RgWH4z6JiM2sLeUR3jiiSewbds2ZGdnY+fOnbjtttugVCoxa9YsVy/Nq0nviY7cLz2d1E9qYBeDUs4wKiEUoX4aVNQ1YU+WYzPFiVqyyyfgzkxbWrVqFSZMmICQkBCEhIQgJSXlqtOZiIjIMdR2ypQKDw+HUqlEUVFRq9uLiooQHR3d5mOio6M7dTwA9OrVC+Hh4e2WYgD2KcfoE+mPftEBMJhEbD7huDT2n0+af//J/SId9hz2ImVKFVU1wCjTiWRSaYr39JQyl+/JNVPqjGXyXlJ020EpQRCso9d3nGWPFU+Ql5eHWbNmoW/fvrj77rsRFhaGXbt2ISLCvcujPZ30nsjyvfadkCbvdaLJubMpFQKm9reU8HEKHzmRzUGpzk5b2rp1K2bNmoUtW7YgPT0dcXFxuOGGG3DhAr+BIiJyNpXCPtk5Go0GI0aMQFpamvU2k8mEtLQ0jB07ts3HjB07ttXxAPDjjz+2ezxgvuAoKytrtxQDsF85xo2WbKnvjjimhC+3vA6ni2qgEICJSe5/wRThr4VCAAwmEWU1elcvxyWk0pQgb5m+p5XK9+SZKXXKOnnPv91jJiSGAwD2ZJdzIpUHWLt2LfLz86HX65GXl4e1a9eid+/erl6W15PeEyuYKdWmi7WN1n6M/d04UwoAUgeZg1I/HC+CSaZfQJHz2Xw10tlpSx9//DEeeeQRDB06FP369cO//vUv64ULERE5lz3L9xYuXIhVq1bhgw8+QEZGBh5++GHU1tZi7ty5AIB7770XixYtsh6/YMECbNq0Ca+//jpOnjyJ5557Dvv27cP8+fMBmHuBPPnkk9i1axeys7ORlpaGW2+9FX369EFqaqrd1t2e3wwxB6V2nC11SJ+MLafMX96M7BGKYA/oUaRSKhAVaM6WKpBpCV+lJQsgxM/bMqXkF2wRRRFniy2ZUleYhNU7wh/RgTo0GkwOH3xA5KmkTKnyWnl+YXE1UpPz+FBfBOrce/+4tnc4/DRKFFY14HBehauXQzJh09VIV6YtXaqurg5NTU0IDQ21ZSlERNQF9irfA4CZM2di+fLlWLx4MYYOHYpDhw5h06ZN1mbmOTk5KChozjq69tpr8cknn+C9995DcnIyvvjiC3z11VcYNGgQAECpVOLIkSO45ZZbkJSUhPvvvx8jRozAr7/+Cq1Wa7d1t6d3RHMJ3w/Hm8sMS2v0KK62PSgj9ZOa3N/9S/ckUl8pOQalRFG0ZgEEe0mmlJ8lU6pWhuV7+ZUNqNGbx7MnhPm1e5wgCBjXx5wttZ1j0ona1CPUFwCQWVLr4pW4p+OW0j137icl0amVmGIp4fvPrvMuXg3JhcqWB19p2tLJkyc7dI6nn34asbGxl40Fb0mv10Ovb468d2WSEhERXc7ezbXnz59vzXS6VFvNye+66y7cddddbR7v4+ODzZs323N5nXbTkBicLKzGt0cLcPeoOKzfn4dnNhyFRqnAV/PHoXdE+2U/V1LXaEB6ZhkAz+gnJYkJ0uEggILKelcvxelq9AYYLKUM3tJTylfKlJJho3OpyXnPcL+rjmefkBiO9Qfy8OuZUiy64pFE8iT1ZZNKYqk1qcm5O/eTaun343viv4fz8fWhfDyekoQ4S9CRyFFcOurn5Zdfxtq1a7FhwwbodLp2j7PHJCUiIrqcPTOlvJE0hW/n2VI8/cUR/Onzw9AbTKjWGzDv4wNd7jGz42wZGg0mdA/xQWJk1wJbrhAd6ANAnhP4pCwprUoBnVrp4tXYh1S+12g0odEgr/HfpwvNF8+JVyjdk0iZUicKqmTbT43oSvpa/h2dLa6R7SCMKzkuTd7r5hlBqaFxwZiQGA6jScQ/tp1z9XJIBmwKSnVl2pJk+fLlePnll/HDDz9gyJAhVzzWHpOUiIjocmo7NTr3Vr0i/NE/JhAGk4h1+8x7zx+u64UwPw1OFlbjxe8yunReaerelH6REATPCQzGyLh8z9pPygP6f3WUj6Y5uFYvs75Spy2T9/p2ICgVEaBFP0smyI5zZQ5dF5Enigv1hU6tgN5gQk55nauX41YaDSacKzG/3/T3kEwpAHh0ciIA4It9ebL8Ioqcy6arka5MWwKAV199FS+88AI2bdqEkSNHXvV57DVJiYiIWlMxU+qqbk42Z0sF6lRYfd9ILPpNf7x+dzIAc7+F7492bjpfXaMBP1n6SU3yoNI9oLmnlBw/oF60NLv3ltI9ANCoFNZsSbn1lTpTfPXJey1JU/i2nylx2JqIPJVSISAx0lLCV8gSvpYuVNTDJAI+aiWiA9uvDHI3o3uGYnRCKBqNJrz3S6arl0NezuavyDs7bemVV17Bs88+i9WrVyMhIQGFhYUoLCxETU2NrUshIqJOsuf0PW/1+3E98eJtg7BxwQRM7mfuoXh930j8YWIvAMBT648gtxPfDL/y/UmUVOsRG6TD2N5hDlmzo1gzpark11NKKt8L8vGeoBTQoq+UjDKlWk7e6xN59UwpABifGAHA3OxcFFmeRHQpaYrlafaVauV8mbn5e3yor0dlRgPA/Ml9AACf7DmPUpYukwPZfDXS2WlL//jHP9DY2Ig777wTMTEx1p/ly5fbuhQiIuok9pS6Op1aidljeqB7SOtGn0/c0BfD4oNR3WDAvE8OQG+4+kX9znOl+CDdPM3mlTuHQKvyrN5EMcHmnlJFlXqYZNY3pMJSvudNmVIA4Gcp4auTUaZUSY0edY1GKAQgLtSnQ48ZnRAKjVKB/MoGZJbWoslown8P5+O9X87hDC/CiaxZh2x23ppUzuiJzcInJIYjuXsQGppM+Pf2LFcvh7yYTdP3JJ2ZtpSdnW2PpyQiIjuw9/Q9OVErFXj7t8Nx01u/4kheJZZ+cwIv3ja43eNr9AY89cURAMDsMfGYYMm88CSRAVoIgrkxdnldI8L9ta5ektNUSuV7Pt7TUwoAfLXmj4K1MprAl1NmvkiMCfLpcGDYR6PEyIQQ7DxXhhe/y0BGQZW1t9pLG0+ib1QAbk6OwQMTenlNI3yizpAm8DFI25r0ftMjzPOCUoIg4H8n9sbDHx/A90cL8PS0fq5eEnkpXo0QEckYy/ds0y3YByvuGQZBAD7enYMvD+S1e+yL32Ug72I9uof44Jnf9HfiKu1HrVQgwhKIKqiQV1+pi5byvWA/Zkp5uvNdvEgcb+kr9fPJYhRUNiDcX4sJieFQKwWcKqrG8h9OY/HXx+y+XiJPIA0NyCypld00zys5X+65QSkAGBofDADIu1gPg5GvKzkGr0aIiGRMrWD5nq0mJkVgwRTzlJpnNhzF1lPFOFdSg6KqBpzIr8K7W8/i7pXp+HRPDgDgtTuT4ae1S6KySzRP4JNXXympp5TXZUpZekrVyqinVFcvEm8eEosQXzUSI/3x6h1DsOPPk/Cf+8dg31+m4tmbBgAA/ns4H1UNTR0+p9Ekym7yIXmnmCAdArQqGEwiskprXb0ct5HrweV7ABAVoINWpYDBJCJfZl9GkfN47qdiIiKymVrF7ybs4Y+TE3EwpwLbTpfgvvf3tn/clESPa25+qeggHQ7nVaKwSl4fTivrvW/6HgD4SplSevlkSuVYGg/3CPPr1OPiQn1xcPENl90e5KvG78clYO2eHJwprsE3h/Mxe0yPq57PYDThvvf3Yv/5i/h+wQQkhHduPUTuRBAEJEUHYP/5izhVVI2+0R0bIuDNRFG09pTq4aFBKYVCQI8wX5wuqkF2WS3iPTTji9wbr0aIiGRMxUwpu1AoBKyYORQp/SPN3xbrVFAIgE6twJR+kXhhxiD8+tQkLJya5Oql2iwmyNwYWuqnIxfNmVJeFpTSyi9TKrvM/heJgiBg5qg4AMBn+9ov423p3a3nsP1sKeqbjPjq0AW7rYXIVaRm56cL2VcKaB6qIAhAt5CODVVwR/Gh5oC5NEmQyN6YKUVEJGPsKWU/IX4a/GvOKOt/i6IIUTQHrLxJtKV8r1BmQamLlkbnQV6WKSX1lKqXUU8pKXPB3t/4zxjWDS9/fxKHcytwqrA5U0QUReRXNiA2SGcdCX8w5yLeTDtjfeymY4V4LMXzg9Ykb0mWvlKn2ewcQHPpXmwnhiq4owTLe6UU0CeyN16NEBHJGINSjiMIgtcFpAB59pQymkTkXjT/vt2CPffb7rbIradUdUMTymvNAcbOlu9dTbi/FlP6RwIAPtuXCwBoMprw0H/2Y9zLP2P2v3bj2IVK1OgNeGzdIRhNIlL6R0KlEHCysJp9eMjj9WVQqhVpqEK8h5buSXqES5lSDEqRY/BqhIhIxlRK7wuakGPFWoIyueXyCUqdLzNPk9KpFYgL8eyLi0v5aeXVU0q6qArz08DfAQMHpBK+DQcvoKHJiKe+OIIfTxQBAHaeK8NNf9+OW/6+HefL6tAt2Aev3z3U2mdu8/FCu6+HyJmSLNmB58vr2MAfLbIyPTwoJWVKsXyPHIVBKSIiGVMzKEWdlBRpvui4UFGPyvqOTxnzZGeKawAAfSL9vS77TW6ZUlJQylHj2a9LjEBkgBbltY2YtWoXNhy8AKVCwMu3D8aMobEAgMzSWggC8MbdyQjyUSN1YDQAcwkfkScL99cizE8DUQTOWt435SynzDGlws7WQ+opVV4Hk0l08WrIGzEoRUQkYyzfo84K8lVbS9hOFlS5eDXOccZSiiIF5LyJdfqeTHpKnS/v2uS9jlIpFbhzRHcAwMGcCgDA63cl457R8VhxzzB8++h43DasG16+fTDG9DJnSN0wMAqCABzKrZBVWSx5p0RLs/NTLOHD+XLHBsGdJTZYB5VCQKPBJLvJu+QcvBohIpIxlYLbAHVe/xhzcOakTCYsnS4yf+OfGOW9QalavTwypXKc0OPlrpFx1v///C0DMWNYN+t/D+oWhP+bORQzR8Vbb4sM0GFkjxAAwGZmS5GHk/pKnWFQymvK91RKBeJCpRI+9pUi++PVCBGRjLF8j7qiX3QgACBDJplSUtNeady5N/Gz9FWqkVlPKUdmLvQM98O7s4fjnd8Ox5xrEzr0GGsJH/tKkYeT+krJPVOqrtGAkmo9gObyN0/Wg32lyIEYlCIikjGW71FX9I+RT1DKYDQhs8T8ITzRC8v3pG/wTxdWwyiDXiE5Tiqn+c3gGNw4JKbDx0tBqT1Z5Sir0TtqWUQOJ2VKHbtQKYv3lPZIw0ACdSoE+apdvBrb9bDsFdnMlCIH4NUIEZGMcfoedYVUvneqyPsDGefL69BoNMFHrUT3EB9XL8fu+scEwl+rQrXecFmQsbCyAQs/O+Q14931BiPyLT2bHNVTqqviQn0xqFsgTCLwU0aRq5dD1GWDuwchQKdCaU0j9maXu3o5LiNlFLnbe01XSb8HM6XIERiUIiKSMWZKUVf0CPODTq1AQ5MJ2V7+AVXqi+KNk/cAQKkQMMLSz+jSC8i3t5zBlwcuYPnmU65Ymt3lltdDFAE/jRJhfhpXL+cy0weZM6v+s+s8J1yRx9KqlJhmyfz75nC+i1fjOtZ+Uh7e5FySEM6eUpJavQHp58rw6Z4cLNuYgcVfH8PJQu/PHHckXo0QEckYg1LUFUqFgL4y6St1xtrk3Pv6SUlG9wwFYC4dk4iiiK2nSgAAuzLLvCIjLscyeS8+zA+C4H4BxntGxcFfq8KxC1X4+vAFVy+HqMtuSo4FAGw6VgiD0eTi1biGtzQ5l7TMlBJFz98Puqq4ugFT39iGWat2YdGXR/HPXzLxYfp53PTWdizbmCGbSbb2xqsRIiIZU3lh5gc5xwBpAl+Bd5R2ted0sTkoleSFk/ckoxLMQam92eXWi41zJTXIu2gudatqMODYhUqXrc9erE3O3fQiMcxfi0cm9QYAvLbpFBqa5DERkbzPtb3DEOqnQVltI9Izy1y9HJdw9/ebzuoe4gOFANQ2GlFa0+jq5biEKIpYtP4o8isbEOqnwcSkCNx3bQJS+kfBYBLxz18ykfL6Nvx4giXYncWgFBGRjGlU3Aaoa+TS7PyMF0/ekwzpHgSNUoHSmkZklZqzibacLGl1zPazpa5Yml05Y/KerX4/rie6Bfsgv7IBq3dkuXo5RF2iViowbZC8S/hyvSxTSqtSIibI3FdRrn2lvtifh7STxVArBXzy4Bh88PvReO6WgfjXnJFYfd9IdA8xv3c/+OE+/OE/+1BY2WB9bHVDE9LPlSGjoAr1jfzC4VK8GiEikjFmSlFX9ZNB+Z63T96T6NRKDI0LBtDcV2rr6WIAQO8Ic8nGznPeEJRy/8bDOrUST6b2BQC8u+UcJ/GRx7p5SHMJX6NBXiV8RpOI3Ive1VMKkHdfqfyKeiz95gQA4LGUJOtnIMnkflH48fGJePj63lApBGw+XoSUN7bhr18dxW3v7sDQpT9i1qpdmP7mr+i/eBPGLkvDwnWHcLFWnllnl2JQiohIxthTirqqn6V8L7+yARV13vmhKrusefJet2Dvm7zX0qie5mbnu7PKUaM3WPtLLZreHwCwN/uix5eTnS93/0wpALglORaDuwWhRm/Aip/OuHo5RF0yumcoIgK0qGow4NczJVd/gBcpqKxHk1GEWilYs4u8gVwn8ImiiKfXH0G13oChccH4w3W92jzOR6PE09P64ZtHx2NoXDBq9AZ8tCsHB3MqYDSJ6Bbsg0CdCgBQUNmALw9ewG/e+hX7ZDylUsKrESIiGWNQiroqUKdG9xDzh+2Thd7ZV0oq3UuM8s7Jey217Cu182wpmowieoT5Ykr/SEQH6tBoMGH/+YudPq/JJOJkYZXLmx0bTSLyys09sty9nEahEPCXG83BwE/25FhLKok8iVIh4MbB5omS3x4pcPFqnEtqct49xBdKL9o7EiwB/WyZZUp9vi8Pv54phValwOt3J0N1lc/O/WMCsf7ha/Hy7YMxe0w8XrtzCLY/PQk7/jwZh5fcgAPPTsVH949Br3A/FFQ2YOZ7u/D2z2dwtrgG1Q1Nsmwkz6sRIiIZUym958MSOZ+3l/CdlibveXHpnmREjxAoBCC3vB5r9+YCACb1jYQgCLi2TxiAzvWVMhhN2HAwDzes+AXTVvyKp7444pB1d1RhVQMajSaolQJiPSDr7ZpeYZjcLxJGk4gVP5129XKIuuTmZHNQ6scTRR6fadkZuzPNmS/uHgDvrPhQ+WVKVTc04dXNJwEAC6cmoXdEx/pLKhUC7hkdjxdvG4y7Rsahe4j574IgCAj102B8Yjj+++h4zBgaC6NJxPIfTiPljW0Y/NwPGLhkM259ZweWfZ+BraeKUaP3/ol+DEoREcmYWsFtgLpOmsDntUGpYu9vci4J0Kmtzet/PmnuJ3V93wgAwPg+4QCAnR0MSm0+XojJr2/D4+sO46xleuGXBy9g+xnX9aU6lFMBwLMyF/50QxIA4L+H83Gy0Dv/jZF3GxYXgm7BPqjRG/CvXzNdvRynyCmrw8pt5wAAtw/v5uLV2Je1p1S5fDKl3v75LEprGtEr3A9zx/W067n9tSr838yhePXOIegXHYAAS2lfXaMRh3Mr8M9tmbjv/b0YtGQzBi/ZjMnLt2LWe7vw+b5cr8umssvVyDvvvIOEhATodDqMGTMGe/bsueLxn3/+Ofr16wedTofBgwdj48aN9lgGERF1klpl34sze+8Hoihi8eLFiImJgY+PD1JSUnDmDHusuAspiOGt5XtnLZlSSVHenykFmHvASLQqBa7pZc6QGmcJSh25UInKuqYrnuO7IwV4+KP9yCmvQ6ifBk+m9sU9o+IAAIu/Pga9wfZsiZ9OFOHLA3kd/lD++b5cPL7uEABgVEKIzc/vLANjg3DjkBiIIvD6D8yW6qjO7kPkOAqFgAUpiQCAN348jd2ZZS5ekWOJoohnvz4GvcGEcX3CcEtyrKuXZFdS5ldFXZPX9pJsKau01joF9dmbBjhkYrUgCLh7ZBw2PXYdjj6Xioyl0/DznybijbuTcdeI7tY2CdV6AzJLa5GeWYYnvziCBz/ch5Jq7xmEYfOf7Lp167Bw4UIsWbIEBw4cQHJyMlJTU1FcXNzm8Tt37sSsWbNw//334+DBg5gxYwZmzJiBY8eO2boUIiLqJJUdM6UcsR+8+uqreOutt7By5Urs3r0bfn5+SE1NRUNDQ5vnJOeSglKnCqtd3jPI3pqMJmSWWsr3ZJApBQCjE5qDUtf2DoNOrQQARAXq0CfSH6IIpF/hovLnk0VYsPYgTCJw54ju2P70JMyb1AfP3Ngf4f5aZJbWYtUvXc+WMJpEvLQxAw98uA8LPzuMP649dMWSIIPRhKXfnMCTXxxBo9GEaQOjseTmgV1+fld4PCUJCsFc/nQot8LVy3F7nd2HyPHuGtEdtw/rBpMI/HHtQZR68UTJ744WYNvpEmiUCrxw6yAIgmdkZXaUr0aFqEAtAOCVTadavf+eKarG/Wv2Yu77e3CupMZVS7SrF7/LQJNRxMSkCEzqF+mU5/TRKNErwh+3D++O1+5KxvanJ+PIczcg7U8Tsfaha7BwahI0SgV+yihG6opfsOFgHmq9oLxPEG3M/RozZgxGjRqFt99+GwBgMpkQFxeHRx99FH/+858vO37mzJmora3Ft99+a73tmmuuwdChQ7Fy5coOPWdVVRWCgoJQWVmJwMDAqz+AiIjaJIoieiz8Arkr7rb5PdXe+4EoioiNjcWf/vQnPPHEEwCAyspKREVFYc2aNbjnnns6tC7uGY5jMokY9Nxm1DUaMXdcAmaPiUcfL+i/VFTVgPUH8vDqplPw0yhx7PlUr7u4aEtJtR6jXvwJALD01oG4d2yC9b4lXx/DB+nn8btreuCFGYMue+zOs6W4b81eNBpMuCU5Fv83c2irMrmvD13AgrWHoFUp8NPCiYjrZK+VWr0BC9Yewk8ZRQAAlUKAwSQiuXsQ3rt3JKICddZjK+ubsH5/Hj7afR6ZJebeJ4+lJOKPkxM9smH9E58fxhf78zC+Tzg+emCMq5fj1u+pnd2HLuXOv5snq2s04Ja3d+BscQ0mJIbjg7mjPfLf4pVUNTRhyuvbUFKtx4IpiXh8apKrl+QQ7+/IwvPfnABgLm1/+Y4h2HysEP/engWDyRxW0KgUWDAlEQ9d1+uqA3WqGpqQU1aHkmo9Smv0KK9thK9GiZEJoegbFWDz3xNRFKE3mKBVKTq8jzc0GbH1VDH+96MDUCoEbH5sglt9tskoqMLj6w5Zs9Q1SgXG9ArFxKQIjEwIRf+YAGhVShev0qyj76kqW56ksbER+/fvx6JFi6y3KRQKpKSkID09vc3HpKenY+HCha1uS01NxVdffdXu8+j1euj1zVH1qirW1RMR2YMgCFDZ4YOhI/aDrKwsFBYWIiUlxXp/UFAQxowZg/T09HaDUtwznEehEDAhMRybjxfh/R3ZeH9HNpK7B1kberorESKajCKajCY0GU0QIEClFKBWKlBWo8fB3ApIX9klxwXLIiAFABEBWlzTKxTH86swdUBUq/vG9QnHB+nnsf5AHvZml8NoMv/51egNqGowoNFgzpSbOiAKr9+dfFnfpluSY7F2Ty7SM8vw+zV7O10SmVFYhcySWmhUCiy/KxmRAVo8/NF+HM6rxE1/347k7kEQBAFGk4id50rR0GReT4BWhVfvHILplilgnmjBlER8fegCtp8txc1/344AnQp+WhU0Lpqe2ljnnlkQXdmHuF84h69GhXd+Oxy3vrMdv54pxeTXtyLMX4tAnQo+GiUEuO97rAjzZiCKQMtUDkEw/9Q3GlGjN6CgsgEl1Xr0DPfDw9f3dtFqHW/uuJ7oFeGPP312GKeLanD7uzut96X0j0SjUcQvp0vw2uZT2HDwAnqFm5uji5D+/ESYRKCmwVyOdqXMuSAfNYbFB8NP0/mQRbXegIKKehRUNqBGb4CvRomYIB1ig32svZsAcwZuneU1rNUbUFKtx8UWZer3ju3hVgEpwJyl/vX8cfjH1nNYfyAPueX1+PVMKX619G3UKBXoHxuI6EAtBAjWv6uu+HfW0f3CpqBUaWkpjEYjoqJaf3CJiorCyZMn23xMYWFhm8cXFha2+zzLli3D888/b8tSiYioHUo7TOBzxH4g/S/3DPf291nD8fPJInyxPw9bTpXgcF4lDudVunpZNhsWH4zpg6Jx54g4Vy/FqdbMHQ19kwlBvupWt1/TOwwBWhWq9YZ2e4ilDozCW7OGtfnNuCAIeGHGIEx/8xecKa7BmeLOBzbC/TV4796RGB5v7gv19bzxuP+DvThTXIOfMlqXZ/WNCsD/jO2B24Z1g7/Wpo+7LhcX6ovfXZOA1TuycPSC6/9tmfTu2eS4K/sQ9wvn6RsdgBdnDMZT648gu6wO2WXu+ffIFgoBeHHGIGvps7eamBSBTY9NwJOfH8aWUyWIC/XBczcPxJT+URBFERsOXsDSb0/gbHGNddjFlYT7axEdpEWonxZhfhqU1uix//xFVNY3YeupErusua7RiHMltThX0rHJgTq1AoNig/DYFPfMeNOqlHgsJQkLpiQis7QWW04WY/vZUhzOrcDFuiYczq3AYVcvEh3fLzxil160aFGrb9OrqqoQFyevD4lERI7yZGpf/OE1V6/CfrhnOJdGpcC0QTGYNigGJdV6bDlV7BGjv9VKheXHHJRtNJjQZBShUpqzv2KCfFy8QtfQqZVtXlAF6tTYuGACMktroRQEKBTmP0N/rQoBOhUCdGoE+ajbOGOzPpH++OwPY7sUWFEpFEgZEInIgOYyvfgwX3w1bxzSThajvtEAkwiYRBF9owIwokeIV2W4PfObfrhxSDQq6ppQozegRm+A0eSa6Uv1tdX43xUueWq7437hXHeM6I4xvUKRU16HqnoDquqb0GCH4QfOIADmdBOJaM6h0qmVCNCa3wO7h/ggwZIZ5O3C/bVYfd8oZBRUo1eEn3XfEAQBtw/vjolJEUg7WYwmS79JKWNHYcnY0WmU6Bnmh4RwXwToLt87mowmHM+vwvH8yi691+lUSsQG+yAmWIdwPy3K6xqRX1GP/Ir61p9RBAF+GiX8tCr4a1UI89cgJtAHgT4qj9hDBEFA7wh/9I7wxwMTekEUReSW1+NQXgWq6pvMeX6ilO/nfB3dL2wKSoWHh0OpVKKoqKjV7UVFRYiOjm7zMdHR0Z06HgC0Wi20Wq0tSyUionbcMyoef7DxHI7YD6T/LSoqQkxMTKtjhg4d2u5auGe4TkSAFneP5AWdt4oL9e10L6hLDYsPwbB4+03A89OqvG7CVVtUSgVG9Ai9+oFOUFVVhf919SLa0JV9iPuF83UP8XX7Em/qGEEQMCC27T5BYf62fR5QKxUYGheMoXHBXT5HS0G+avSUQcBQEATEh/kiPsw9/o11dL+wqRhdo9FgxIgRSEtLs95mMpmQlpaGsWPHtvmYsWPHtjoeAH788cd2jyciIvfniP2gZ8+eiI6ObnVMVVUVdu/ezT2DiIha6co+RERErmdz+d7ChQsxZ84cjBw5EqNHj8aKFStQW1uLuXPnAgDuvfdedOvWDcuWLQMALFiwABMnTsTrr7+OG2+8EWvXrsW+ffvw3nvv2boUIiJyIXvvB4Ig4LHHHsPf/vY3JCYmomfPnnj22WcRGxuLGTNmuOrXJCIiN3W1fYiIiNyPzUGpmTNnoqSkBIsXL0ZhYSGGDh2KTZs2WZsM5uTkQKFoTsi69tpr8cknn+Cvf/0rnnnmGSQmJuKrr77CoEGXjxcmIiLP4Yj94KmnnkJtbS0eeughVFRUYPz48di0aRN0Ot1lz09ERPJ2tX2IiIjcjyCKoqv6XnVZVVUVgoKCUFlZicDAtutYiYioY7z9PdXbfz8iImfy5vdUb/7diIicraPvqTb1lCIiIiIiIiIiIuoKm8v3XEFK7qqqqnLxSoiIPJ/0XuqBibMdwj2DiMh+vHnP4H5BRGQ/Hd0vPDIoVVZWBgCIi+PYaSIieykrK0NQUJCrl2F33DOIiOzPG/cM7hdERPZ3tf3CI4NSoaGhAMxNczu7GY4aNQp79+7t8nNXVVUhLi4Oubm5bdZF2nr+K3Hkub3p/Fd7jWw9v6PI4fxdfW3cYe3efP7KykrEx8db31u9TVf3DE/eL3j+jp/fEXuGt/zZuPL8trwu7rB+dz2/Pc7tzXsGrzEcw1vOz2sM55+/o+fmNYZ7nr+j+4VHBqWk6U1BQUGdfkNQKpV2eRMJDAxs8zz2On9bHHlubzx/e6+Rvc5vb3I6f2dfG3dauzefv+VkPG/S1T3Dk/cLnr/z57fnnuFtfzauPH9XXhd3Wr+7nd+e5/bGPYPXGI7hbefnNYbzzt/Zc/Mawz3Pf7X9wvt2k6uYN2+ex57fk9fO8/P87npunp/a4+mvG8/vuvN78tp5fu8+P/cLx+HfC56f5/esc/P8rj+/RBA9sEuhK8e1clSs++Nr5L742rgnb39dXPX7efufq7fg6+Se+Lq4L29+bXiNQVfC18h98bVxTx19XTwyU0qr1WLJkiXQarWyem7qGL5G7ouvjXvy9tfFVb+ft/+5egu+Tu6Jr4v78ubXhtcYdCV8jdwXXxv31NHXxSMzpYiIiIiIiIiIyLN5ZKYUERERERERERF5NgaliIiIiIiIiIjI6RiUIiIiIiIiIiIip2NQ6hK5ubn4/e9/j9jYWGg0GvTo0QMLFixAWVlZhx6/detWCIKAiooKxy5UZu677z4IgoCXX3651e1fffUVBEFw0aoIaH5tBEGAWq1GVFQUpk6ditWrV8NkMrl6eUQOw/3CfXHPcE/cL0iuuF+4L+4X7ot7hnwwKNVCZmYmRo4ciTNnzuDTTz/F2bNnsXLlSqSlpWHs2LEoLy939RJlTafT4ZVXXsHFixddvRS6xLRp01BQUIDs7Gx8//33mDRpEhYsWICbbroJBoPB1csjsjvuF+6Pe4Z74n5BcsP9wv1xv3Bf3DPkgUGpFubNmweNRoMffvgBEydORHx8PKZPn46ffvoJFy5cwF/+8hcAgF6vx9NPP424uDhotVr06dMH//73v5GdnY1JkyYBAEJCQiAIAu677z4X/kbeJSUlBdHR0Vi2bFm7x6xfvx4DBw6EVqtFQkICXn/9det9zzzzDMaMGXPZY5KTk7F06VKHrFkutFotoqOj0a1bNwwfPhzPPPMMvv76a3z//fdYs2YNAKCiogIPPPAAIiIiEBgYiMmTJ+Pw4cOtzvPNN99g1KhR0Ol0CA8Px2233eaC34bo6rhfuD/uGe6J+wXJDfcL98f9wn1xz5AHBqUsysvLsXnzZjzyyCPw8fFpdV90dDRmz56NdevWQRRF3Hvvvfj000/x1ltvISMjA//85z/h7++PuLg4rF+/HgBw6tQpFBQU4M0333TFr+OVlEolXnrpJfz9739HXl7eZffv378fd999N+655x4cPXoUzz33HJ599lnrG9bs2bOxZ88enDt3zvqY48eP48iRI/jtb3/rrF9DNiZPnozk5GR8+eWXAIC77roLxcXF+P7777F//34MHz4cU6ZMsX5D+N133+G2227Db37zGxw8eBBpaWkYPXq0K38FojZxv/AM3DM8B/cL8lbcLzwD9wvPwj3DC4kkiqIo7tq1SwQgbtiwoc3733jjDRGAuHv3bhGA+OOPP7Z53JYtW0QA4sWLFx23WBmaM2eOeOutt4qiKIrXXHON+Pvf/14URVHcsGGDKP01/u1vfytOnTq11eOefPJJccCAAdb/Tk5OFpcuXWr970WLFoljxoxx8Oq9W8vX5lIzZ84U+/fvL/76669iYGCg2NDQ0Or+3r17i//85z9FURTFsWPHirNnz3b0colsxv3C/XHPcE/cL0huuF+4P+4X7ot7hnwwU+oSoihe8f7s7GwolUpMnDjRSSuiS73yyiv44IMPkJGR0er2jIwMjBs3rtVt48aNw5kzZ2A0GgGYv8n45JNPAJhf608//RSzZ892zsJlSBRFCIKAw4cPo6amBmFhYfD397f+ZGVlWb9VOnToEKZMmeLiFRN1HPcLz8A9wzNwvyBvxv3CM3C/8BzcM7yLytULcBd9+vSBIAjIyMhos8Y0IyMDISEhl6XekvNdd911SE1NxaJFizpdUz9r1iw8/fTTOHDgAOrr65Gbm4uZM2c6ZqGEjIwM9OzZEzU1NYiJicHWrVsvOyY4OBgA+G+LPAb3C8/CPcMzcL8gb8T9wrNwv/Ac3DO8CzOlLMLCwjB16lS8++67qK+vb3VfYWEhPv74Y8ycORODBw+GyWTCtm3b2jyPRqMBAGvUnBzj5ZdfxjfffIP09HTrbf3798eOHTtaHbdjxw4kJSVBqVQCALp3746JEyfi448/xscff4ypU6ciMjLSqWuXi59//hlHjx7FHXfcgeHDh6OwsBAqlQp9+vRp9RMeHg4AGDJkCNLS0ly8aqKr437hebhnuDfuF+StuF94Hu4X7o97hhdyWeGgGzp9+rQYHh4uTpgwQdy2bZuYk5Mjfv/99+KgQYPExMREsaysTBRFUbzvvvvEuLg4ccOGDWJmZqa4ZcsWcd26daIoimJeXp4oCIK4Zs0asbi4WKyurnblr+Q12qop/t3vfifqdDprvff+/ftFhUIhLl26VDx16pS4Zs0a0cfHR3z//fdbPW7VqlVibGysGB4eLv7nP/9x0m/gvebMmSNOmzZNLCgoEPPy8sT9+/eLL774oujv7y/edNNNosFgEE0mkzh+/HgxOTlZ3Lx5s5iVlSXu2LFDfOaZZ8S9e/eKomjul6BQKMTFixeLJ06cEI8cOSK+/PLLLv7tiNrG/cK9cc9wT9wvSI64X7g37hfui3uGfDAodYns7Gxxzpw5YlRUlKhWq8W4uDjx0UcfFUtLS63H1NfXi48//rgYExMjajQasU+fPuLq1aut9y9dulSMjo4WBUEQ58yZ44Lfwvu0tWFkZWWJGo1GbBlb/eKLL8QBAwaIarVajI+PF1977bXLznXx4kVRq9WKvr6+3NTtYM6cOSIAEYCoUqnEiIgIMSUlRVy9erVoNBqtx1VVVYmPPvqoGBsba/23NXv2bDEnJ8d6zPr168WhQ4eKGo1GDA8PF2+//XZX/EpEHcL9wn1xz3BP3C9IrrhfuC/uF+6Le4Z8CKJ4lc57REREREREREREdsaeUkRERERERERE5HQMShERERERERERkdMxKEVERERERERERE7HoBQRERERERERETkdg1JEREREREREROR0sgtKLVu2DKNGjUJAQAAiIyMxY8YMnDp1qtUxDQ0NmDdvHsLCwuDv74877rgDRUVF1vsPHz6MWbNmIS4uDj4+Pujfvz/efPPNVuf48ssvMXXqVERERCAwMBBjx47F5s2bnfI7EhGRfXDPICKijuB+QUTUNbILSm3btg3z5s3Drl278OOPP6KpqQk33HADamtrrcc8/vjj+Oabb/D5559j27ZtyM/Px+233269f//+/YiMjMRHH32E48eP4y9/+QsWLVqEt99+23rML7/8gqlTp2Ljxo3Yv38/Jk2ahJtvvhkHDx506u9LRERdxz2DiIg6gvsFEVHXCKIoiq5ehCuVlJQgMjIS27Ztw3XXXYfKykpERETgk08+wZ133gkAOHnyJPr374/09HRcc801bZ5n3rx5yMjIwM8//9zucw0cOBAzZ87E4sWLHfK7EBGRY3HPICKijuB+QUTUMbLLlLpUZWUlACA0NBSA+RuKpqYmpKSkWI/p168f4uPjkZ6efsXzSOdoi8lkQnV19RWPISIi98Y9g4iIOoL7BRFRx6hcvQBXMplMeOyxxzBu3DgMGjQIAFBYWAiNRoPg4OBWx0ZFRaGwsLDN8+zcuRPr1q3Dd9991+5zLV++HDU1Nbj77rvttn4iInIe7hlERNQR3C+IiDpO1kGpefPm4dixY9i+fXuXz3Hs2DHceuutWLJkCW644YY2j/nkk0/w/PPP4+uvv0ZkZGSXn4uIiFyHewYREXUE9wsioo6Tbfne/Pnz8e2332LLli3o3r279fbo6Gg0NjaioqKi1fFFRUWIjo5udduJEycwZcoUPPTQQ/jrX//a5vOsXbsWDzzwAD777LNW6bpEROQ5uGcQEVFHcL8gIuoc2QWlRFHE/PnzsWHDBvz888/o2bNnq/tHjBgBtVqNtLQ0622nTp1CTk4Oxo4da73t+PHjmDRpEubMmYMXX3yxzef69NNPMXfuXHz66ae48cYbHfMLERGRw3DPICKijuB+QUTUNbKbvvfII4/gk08+wddff42+fftabw8KCoKPjw8A4OGHH8bGjRuxZs0aBAYG4tFHHwVgrusGzOm0kydPRmpqKl577TXrOZRKJSIiIgCY02nnzJmDN998s9WoVx8fHwQFBTn89yQiIttxzyAioo7gfkFE1EWizABo8+f999+3HlNfXy8+8sgjYkhIiOjr6yvedtttYkFBgfX+JUuWtHmOHj16WI+ZOHFim8fMmTPHeb8sERHZhHsGERF1BPcLIqKukV2mFBERERERERERuZ7sekoREREREREREZHrMShFREREREREREROx6AUERERERERERE5HYNSRERERERERETkdAxKERERERERERGR0zEoRURERERERERETsegFBEREREREREROR2DUkRERERERERE5HQMShERERERERERkdMxKEVkR9dffz0ee+wxVy+DiIjcHPcLIiLqKO4Z5M0YlCIiIiIiIiIiIqdjUIrITu677z5s27YNb775JgRBgCAIOHjwIGbPno2IiAj4+PggMTER77//vquXSkRELsT9goiIOop7Bnk7lasXQOQt3nzzTZw+fRqDBg3C0qVLAQDPP/88Tpw4ge+//x7h4eE4e/Ys6uvrXbxSIiJyJe4XRETUUdwzyNsxKEVkJ0FBQdBoNPD19UV0dDQA4MKFCxg2bBhGjhwJAEhISHDhComIyB1wvyAioo7inkHejuV7RA708MMPY+3atRg6dCieeuop7Ny509VLIiIiN8T9goiIOop7BnkTBqWIHGj69Ok4f/48Hn/8ceTn52PKlCl44oknXL0sIiJyM9wviIioo7hnkDdhUIrIjjQaDYxGY6vbIiIiMGfOHHz00UdYsWIF3nvvPRetjoiI3AX3CyIi6ijuGeTN2FOKyI4SEhKwe/duZGdnw9/fH2+99RZGjBiBgQMHQq/X49tvv0X//v1dvUwiInIx7hdERNRR3DPImzFTisiOnnjiCSiVSgwYMAARERHQaDRYtGgRhgwZguuuuw5KpRJr16519TKJiMjFuF8QEVFHcc8gbyaIoii6ehFERERERERERCQvzJQiIiIiIiIiIiKnY1CKiIiIiIiIiIicjkEpIiIiIiIiIiJyOgaliIiIiIiIiIjI6RiUIiIiIiIiIiIip2NQioiIiIiIiIiInI5BKSIiIiIiIiIicjoGpYiIiIiIiIiIyOkYlCIiIiIiIiIiIqdjUIqIiIiIiIiIiJyOQSkiIiIiIiIiInI6BqWIiIiIiIiIiMjp/h8fE4S+aSp/UQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, axs = plt.subplots(2, 3, figsize=(3 * 4, 2 * 3))\n", - "fig.suptitle(\"Stochastic Volatility\")\n", - "thc = srr.transaction_history[1:].total.sum()\n", - "srr.book_history.Main.plot(ax=axs[0][0], title=f\"Total Hedge Cost: {thc:.2f}\")\n", - "metrics.price.plot(title=\"price\", ax=axs[0][1])\n", - "metrics.vol.plot(title=\"vol\", ax=axs[0][2])\n", - "metrics.delta.plot(title=\"delta\", ax=axs[1][0])\n", - "metrics.gamma.plot(title=\"gamma\", ax=axs[1][1])\n", - "metrics.vega.plot(title=\"vega\", ax=axs[1][2])\n", - "fig.tight_layout()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Transactions" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
tstotaldescquantitypriceasset_nameorder_labelbook
02022-09-22-1.4100buy CO_ACME1.001.41CO_ACMENaNMain
12022-09-2290.55420000sell ACME-0.905542100.00ACMENaNMain
22022-09-220.045interest payment on cash 89.14NaNNaNNaNNaNMain
32022-09-23-90.72625298buy ACME0.905542100.19ACMENaNMain
42022-09-2383.40617120sell ACME-0.832480100.19ACMENaNMain
52022-09-230.041interest payment on cash 81.87NaNNaNNaNNaNMain
62022-09-24-83.72251360buy ACME0.832480100.57ACMENaNMain
72022-09-2477.19642573sell ACME-0.767589100.57ACMENaNMain
82022-09-240.038interest payment on cash 75.38NaNNaNNaNNaNMain
92022-09-25-77.47275777buy ACME0.767589100.93ACMENaNMain
102022-09-2573.19413321sell ACME-0.725197100.93ACMENaNMain
112022-09-250.036interest payment on cash 71.14NaNNaNNaNNaNMain
122022-09-26-74.17314916buy ACME0.725197102.28ACMENaNMain
132022-09-2674.12998700sell ACME-0.724775102.28ACMENaNMain
142022-09-260.036interest payment on cash 71.14NaNNaNNaNNaNMain
152022-09-27-74.78228450buy ACME0.724775103.18ACMENaNMain
162022-09-2773.48366102sell ACME-0.712189103.18ACMENaNMain
172022-09-270.035interest payment on cash 69.87NaNNaNNaNNaNMain
182022-09-28-71.91684522buy ACME0.712189100.98ACMENaNMain
192022-09-2862.26871112sell ACME-0.616644100.98ACMENaNMain
\n", - "
" - ], - "text/plain": [ - " ts total desc quantity \\\n", - "0 2022-09-22 -1.4100 buy CO_ACME 1.00 \n", - "1 2022-09-22 90.55420000 sell ACME -0.905542 \n", - "2 2022-09-22 0.045 interest payment on cash 89.14 NaN \n", - "3 2022-09-23 -90.72625298 buy ACME 0.905542 \n", - "4 2022-09-23 83.40617120 sell ACME -0.832480 \n", - "5 2022-09-23 0.041 interest payment on cash 81.87 NaN \n", - "6 2022-09-24 -83.72251360 buy ACME 0.832480 \n", - "7 2022-09-24 77.19642573 sell ACME -0.767589 \n", - "8 2022-09-24 0.038 interest payment on cash 75.38 NaN \n", - "9 2022-09-25 -77.47275777 buy ACME 0.767589 \n", - "10 2022-09-25 73.19413321 sell ACME -0.725197 \n", - "11 2022-09-25 0.036 interest payment on cash 71.14 NaN \n", - "12 2022-09-26 -74.17314916 buy ACME 0.725197 \n", - "13 2022-09-26 74.12998700 sell ACME -0.724775 \n", - "14 2022-09-26 0.036 interest payment on cash 71.14 NaN \n", - "15 2022-09-27 -74.78228450 buy ACME 0.724775 \n", - "16 2022-09-27 73.48366102 sell ACME -0.712189 \n", - "17 2022-09-27 0.035 interest payment on cash 69.87 NaN \n", - "18 2022-09-28 -71.91684522 buy ACME 0.712189 \n", - "19 2022-09-28 62.26871112 sell ACME -0.616644 \n", - "\n", - " price asset_name order_label book \n", - "0 1.41 CO_ACME NaN Main \n", - "1 100.00 ACME NaN Main \n", - "2 NaN NaN NaN Main \n", - "3 100.19 ACME NaN Main \n", - "4 100.19 ACME NaN Main \n", - "5 NaN NaN NaN Main \n", - "6 100.57 ACME NaN Main \n", - "7 100.57 ACME NaN Main \n", - "8 NaN NaN NaN Main \n", - "9 100.93 ACME NaN Main \n", - "10 100.93 ACME NaN Main \n", - "11 NaN NaN NaN Main \n", - "12 102.28 ACME NaN Main \n", - "13 102.28 ACME NaN Main \n", - "14 NaN NaN NaN Main \n", - "15 103.18 ACME NaN Main \n", - "16 103.18 ACME NaN Main \n", - "17 NaN NaN NaN Main \n", - "18 100.98 ACME NaN Main \n", - "19 100.98 ACME NaN Main " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "with pd.option_context(\"display.max_rows\", None):\n", - " display(srr.transaction_history.head(20))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "scratch-3.12", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Delta Hedging\n", + "\n", + "This notebook compares delta hedging against simulated data with constant or stochastic volatility." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import defaultdict\n", + "from dataclasses import dataclass\n", + "from datetime import date\n", + "from decimal import Decimal\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import QuantLib as ql\n", + "\n", + "from yabte.backtest import (\n", + " ADFI_AVAILABLE_AT_CLOSE,\n", + " ADFI_AVAILABLE_AT_OPEN,\n", + " Book,\n", + " CashTransaction,\n", + " OHLCAsset,\n", + " OrderSizeType,\n", + " PositionalOrder,\n", + " SimpleOrder,\n", + " Strategy,\n", + " StrategyRunner,\n", + ")\n", + "from yabte.utilities.simulation.geometric_brownian_motion import gbm_simulate_paths\n", + "from yabte.utilities.simulation.heston import heston_simulate_paths" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Black Scholes Asset & Simple Delta Hedge Strategy" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO: track call premium mtm valuation using constant / stochastic volatility\n", + "\n", + "\n", + "class QlBsm:\n", + " \"\"\"Black Scholes Model Pricer\"\"\"\n", + "\n", + " def __init__(\n", + " self, K: float, sigma: float, exp: date, r: float = 0, S: float | None = None\n", + " ):\n", + " self.option = ql.EuropeanOption(\n", + " ql.PlainVanillaPayoff(ql.Option.Call, K),\n", + " ql.EuropeanExercise(ql.Date().from_date(exp)),\n", + " )\n", + "\n", + " day_counter = ql.ActualActual(ql.ActualActual.ISDA)\n", + " calendar = ql.NullCalendar()\n", + "\n", + " self.S = S = ql.SimpleQuote(S or K)\n", + " self.r = r = ql.SimpleQuote(r)\n", + " self.sigma = sigma = ql.SimpleQuote(sigma)\n", + "\n", + " risk_free_curve = ql.FlatForward(0, calendar, ql.QuoteHandle(r), day_counter)\n", + " volatility = ql.BlackConstantVol(\n", + " 0, calendar, ql.QuoteHandle(sigma), day_counter\n", + " )\n", + "\n", + " process = ql.BlackScholesProcess(\n", + " ql.QuoteHandle(S),\n", + " ql.YieldTermStructureHandle(risk_free_curve),\n", + " ql.BlackVolTermStructureHandle(volatility),\n", + " )\n", + "\n", + " engine = ql.AnalyticEuropeanEngine(process)\n", + " self.option.setPricingEngine(engine)\n", + "\n", + " def calc(\n", + " self,\n", + " t: date,\n", + " S: float | None = None,\n", + " sigma: float | None = None,\n", + " r: float | None = None,\n", + " greeks: bool = False,\n", + " ) -> float | tuple[float, float, float, float]:\n", + " ql.Settings.instance().evaluationDate = ql.Date().from_date(t)\n", + " if S is not None:\n", + " self.S.setValue(S)\n", + " if sigma is not None:\n", + " self.sigma.setValue(sigma)\n", + " if r is not None:\n", + " self.r.setValue(r)\n", + " if greeks:\n", + " return (\n", + " self.option.NPV(),\n", + " self.option.delta(),\n", + " self.option.gamma(),\n", + " self.option.vega(),\n", + " )\n", + " else:\n", + " return self.option.NPV()\n", + "\n", + "\n", + "@dataclass(kw_only=True)\n", + "class BSMOption(OHLCAsset):\n", + " \"\"\"Black Scholes Model Option\"\"\"\n", + "\n", + " K: float\n", + " exp: date\n", + " r: float = 0\n", + " divr: float = 0\n", + " cp: int = 1\n", + "\n", + " def data_fields(self):\n", + " dfs = super().data_fields()\n", + " dfs.append(\n", + " (\n", + " \"IVol\",\n", + " ADFI_AVAILABLE_AT_CLOSE | ADFI_AVAILABLE_AT_OPEN,\n", + " )\n", + " )\n", + " return dfs\n", + "\n", + " def intraday_traded_price(self, asset_day_data, size) -> Decimal:\n", + " ts = asset_day_data.name\n", + " bsm_option = QlBsm(K=self.K, sigma=asset_day_data.IVol, exp=self.exp, r=self.r)\n", + " price = bsm_option.calc(t=ts, S=asset_day_data.Close)\n", + "\n", + " return round(Decimal(price), self.price_round_dp)\n", + "\n", + "\n", + "class DeltaHedgingStrat(Strategy):\n", + " def init(self):\n", + " # capture some data for analysis\n", + " self.metrics = defaultdict(dict)\n", + "\n", + " def on_open(self):\n", + " data = self.data\n", + " p = self.params\n", + " ts = self.ts\n", + "\n", + " # buy option on t0\n", + " if len(data) == 1:\n", + " self.orders.append(SimpleOrder(asset_name=\"CO_ACME\", size=1))\n", + "\n", + " # buy delta hedge shares\n", + " t = (p.exp - ts).days / 100\n", + " s = data.ACME.Open.iloc[-1]\n", + " vol = data.iloc[-1].loc[\"ACME\"].IVol\n", + " bsm_option = QlBsm(K=p.K, sigma=vol, exp=p.exp, r=p.r)\n", + " _, delta, gamma, vega = bsm_option.calc(t=ts, S=s, greeks=True)\n", + "\n", + " self.orders.append(\n", + " PositionalOrder(\n", + " asset_name=\"ACME\", size=-1 * delta, size_type=OrderSizeType.QUANTITY\n", + " )\n", + " )\n", + "\n", + " self.metrics[ts][\"delta\"] = delta\n", + " self.metrics[ts][\"gamma\"] = gamma\n", + " self.metrics[ts][\"vega\"] = vega\n", + " self.metrics[ts][\"vol\"] = vol\n", + " self.metrics[ts][\"price\"] = s" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constant Volatility" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# gbm params\n", + "r = 0.05\n", + "vol = 0.2\n", + "s0 = 100\n", + "N = 101\n", + "T = N / 365\n", + "\n", + "# simulate data\n", + "rng = np.random.default_rng(12345) # for reproducibility\n", + "ix = pd.date_range(end=\"20221231\", periods=N, freq=\"D\")\n", + "p = gbm_simulate_paths(S0=s0, mu=r, sigma=vol, R=1, T=T, n_steps=N, n_sims=1, rng=rng)\n", + "df = pd.DataFrame(np.c_[p[:, :, 0], p[:, :, 0]], index=ix)\n", + "df.columns = pd.MultiIndex.from_tuples(((\"ACME\", \"Open\"), (\"ACME\", \"Close\")))\n", + "\n", + "# add constant vol to data\n", + "df.loc[:, (\"ACME\", \"IVol\")] = vol\n", + "\n", + "# assets\n", + "assets = [\n", + " OHLCAsset(name=\"ACME\", denom=\"USD\", quantity_round_dp=6),\n", + " BSMOption(name=\"CO_ACME\", data_label=\"ACME\", K=s0, exp=ix[-1], r=r),\n", + "]\n", + "\n", + "# run simulation\n", + "book = Book(name=\"Main\", cash=\"0\", rate=0.05 / 100)\n", + "sr = StrategyRunner(\n", + " data=df,\n", + " assets=assets,\n", + " strategies=[DeltaHedgingStrat()],\n", + " books=[book],\n", + ")\n", + "srr = sr.run(\n", + " {\n", + " \"r\": r,\n", + " \"vol\": vol,\n", + " \"exp\": ix[-1],\n", + " \"K\": s0,\n", + " }\n", + ")\n", + "metrics = pd.DataFrame.from_dict(srr.strategies[0].metrics, orient=\"index\").reindex(\n", + " srr.book_history.index\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAJRCAYAAAB/Wb99AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hU1dbA4d9MyqR30iAkIfQaCBABkWIUECnSRFGQq+KniAXLlasCKopgQ7Bwr4WiIAgKYgOpIhB6LwkBEkgnvfc53x8nMzCkkISEBLLe55lnZs7ZZ599Ik5Zs/baGkVRFIQQQgghhBBCCCGEuMm09T0AIYQQQgghhBBCCNE4SWBKCCGEEEIIIYQQQtQLCUwJIYQQQgghhBBCiHohgSkhhBBCCCGEEEIIUS8kMCWEEEIIIYQQQggh6oUEpoQQQgghhBBCCCFEvZDAlBBCCCGEEEIIIYSoFxKYEkIIIYQQQgghhBD1QgJTQgghhBBCCCGEEKJeSGBKCCGEEKKBW7p0KRqNhqioqFrrMyoqCo1Gw9KlS43bZs+ejUajMWnn5+fHY489VmvnFUIIIYS4mgSmhBBCCFGh8+fP89RTT9GiRQusrKxwcHCgT58+fPrpp+Tl5dXr2P744w9mz559U861Z88eZs+eTXp6eqXtioqKcHNz484776ywjaIo+Pj40K1bt1oeZflWrlzJggULaq2/06dPM3v27FoNkgkhhBCi8ZLAlBBCCCHK9fvvv9OpUyd+/PFHhg0bxqJFi5g7dy7NmzfnlVde4fnnn6/X8f3xxx+89dZbN+Vce/bs4a233rpuYMrCwoKxY8eyZ88eLl68WG6bnTt3EhMTwyOPPFIHIy2rosCUr68veXl5PProo5UeHx4ezldffWV8fvr0ad566y0JTAkhhBCiVpjX9wCEEEII0fBERkYyfvx4fH192bZtG15eXsZ9U6dO5dy5c/z+++/1OMKGa8KECSxevJgffviB1157rcz+lStXotVqGT9+fD2M7gqNRoOVldV12+l0upswGiGEEEI0VpIxJYQQQogy5s+fT3Z2Nt98841JUMqgZcuWJhlTxcXFvPPOOwQEBKDT6fDz8+M///kPBQUFJsf5+flx//33s2vXLnr27ImVlRUtWrRg+fLlJu2Kiop46623aNWqFVZWVri6unLnnXeyefNmAB577DE+//xzQA2wGG4GH374Ib1798bV1RVra2uCgoJYu3ZtmevQaDQ8++yzrF+/no4dO6LT6ejQoQMbN240tpk9ezavvPIKAP7+/sZzVZQx1KdPH/z8/Fi5cmWZfUVFRaxdu5YBAwbg7e0NwLZt2+jbty+2trY4OTkxYsQIzpw5U27fV/vll18YOnQo3t7e6HQ6AgICeOeddygpKTG26d+/P7///jsXL140jtvPzw8ov8ZUea6uMbV06VLGjh0LwIABA4x97tixg0mTJuHm5kZRUVGZPu69917atGlz3WsSQgghROMjGVNCCCGEKOPXX3+lRYsW9O7du0rtn3jiCZYtW8aYMWN46aWX2LdvH3PnzuXMmTOsW7fOpO25c+cYM2YMjz/+OJMmTeLbb7/lscceIygoiA4dOgBqMGju3Lk88cQT9OzZk8zMTA4ePMjhw4e55557eOqpp4iLi2Pz5s189913Zcbz6aefMnz4cCZMmEBhYSGrVq1i7Nix/PbbbwwdOtSk7a5du/j555955plnsLe3Z+HChYwePZpLly7h6urKqFGjOHv2LD/88AOffPIJbm5uADRp0qTcv4VGo+Hhhx/mvffe49SpU8ZrAti4cSOpqalMmDABgC1btjBkyBBatGjB7NmzycvLY9GiRfTp04fDhw8bg0jlWbp0KXZ2dkyfPh07Ozu2bdvGzJkzyczM5IMPPgDg9ddfJyMjg5iYGD755BMA7OzsKvtPWam77rqL5557joULF/Kf//yHdu3aAdCuXTseffRRli9fzqZNm7j//vuNxyQkJLBt2zZmzZpV4/MKIYQQ4jamCCGEEEJcJSMjQwGUESNGVKn90aNHFUB54oknTLa//PLLCqBs27bNuM3X11cBlJ07dxq3Xb58WdHpdMpLL71k3NalSxdl6NChlZ536tSpSkUfZXJzc02eFxYWKh07dlQGDhxosh1QLC0tlXPnzhm3HTt2TAGURYsWGbd98MEHCqBERkZWOiaDU6dOKYAyY8YMk+3jx49XrKyslIyMDEVRFCUwMFBxd3dXUlJSTM6v1WqViRMnGrctWbKkzPmvvUZFUZSnnnpKsbGxUfLz843bhg4dqvj6+pZpGxkZqQDKkiVLjNtmzZpV5m/q6+urTJo0yfh8zZo1CqBs377dpF1JSYnSrFkz5cEHHzTZ/vHHHysajUa5cOFCmTEIIYQQQshUPiGEEEKYyMzMBMDe3r5K7f/44w8Apk+fbrL9pZdeAihTi6p9+/b07dvX+LxJkya0adOGCxcuGLc5OTlx6tQpIiIiqn8BgLW1tfFxWloaGRkZ9O3bl8OHD5dpGxISQkBAgPF5586dcXBwMBlPdbVv356uXbuyatUq47acnBw2bNjA/fffj4ODA/Hx8Rw9epTHHnsMFxcXk/Pfc889xr9rVa4xKyuL5ORk+vbtS25uLmFhYTUee01ptVomTJjAhg0byMrKMm5fsWIFvXv3xt/f/6aPSQghhBANnwSmhBBCCGHCwcEBwCS4UJmLFy+i1Wpp2bKlyXZPT0+cnJzKrE7XvHnzMn04OzuTlpZmfP7222+Tnp5O69at6dSpE6+88grHjx+v8jX89ttv3HHHHVhZWeHi4kKTJk348ssvycjIKNO2KuOpiQkTJhAZGcmePXsAWL9+Pbm5ucZpfIa/S3m1l9q1a0dycjI5OTkV9n/q1CkeeOABHB0dcXBwoEmTJsaV/sq7zpth4sSJ5OXlGadvhoeHc+jQoeuu/CeEEEKIxksCU0IIIYQw4eDggLe3NydPnqzWcVcXH6+MmZlZudsVRTE+vuuuuzh//jzffvstHTt25Ouvv6Zbt258/fXX1+3/n3/+Yfjw4VhZWfHFF1/wxx9/sHnzZh5++GGTc1RnPDXx0EMPodVqjUXQV65cibOzM/fdd98N9QuQnp5Ov379OHbsGG+//Ta//vormzdvZt68eQDo9fobPkdNtG/fnqCgIL7//nsAvv/+eywtLRk3bly9jEcIIYQQDZ8EpoQQQghRxv3338/58+cJDQ29bltfX1/0en2ZaXeJiYmkp6fj6+tbozG4uLgwefJkfvjhB6Kjo+ncuTOzZ8827q8oEPbTTz9hZWXFpk2b+Ne//sWQIUMICQmp0Riud67KeHt7M2DAANasWUNiYiKbN29mzJgxWFpaAhj/LuHh4WWODQsLw83NDVtb23L73rFjBykpKSxdupTnn3+e+++/n5CQEJydnWtl7JW5Xn8TJ05k27ZtxMfHs3LlSoYOHVruuIQQQgghQAJTQgghhCjHq6++iq2tLU888QSJiYll9p8/f55PP/0UwJgBtGDBApM2H3/8MUCZVfCqIiUlxeS5nZ0dLVu2pKCgwLjNELRJT083aWtmZoZGo6GkpMS4LSoqivXr11d7HNc71/VMmDCBy5cv89RTT1FUVGScxgfg5eVFYGAgy5YtM+n35MmT/PXXX5VmVhmyvK7O6iosLOSLL74od+y1ObXven+Lhx56CI1Gw/PPP8+FCxeM0wuFEEIIIcpjXt8DEEIIIUTDExAQwMqVK3nwwQdp164dEydOpGPHjhQWFrJnzx7WrFnDY489BkCXLl2YNGkS//vf/4xTzPbv38+yZcsYOXIkAwYMqPb527dvT//+/QkKCsLFxYWDBw+ydu1ann32WWOboKAgAJ577jkGDRqEmZkZ48ePZ+jQoXz88ccMHjyYhx9+mMuXL/P555/TsmXLatWpuprhXK+//jrjx4/HwsKCYcOGVZjRZDB69GieeeYZfvnlF3x8fLjrrrtM9n/wwQcMGTKEXr168fjjj5OXl8eiRYtwdHQ0yQ67Vu/evXF2dmbSpEk899xzaDQavvvuu3KnHwYFBbF69WqmT59Ojx49sLOzY9iwYdX/I5QKDAzEzMyMefPmkZGRgU6nY+DAgbi7uwNqMfvBgwezZs0anJycahSYFEIIIUQjUq9rAgohhBCiQTt79qzy5JNPKn5+foqlpaVib2+v9OnTR1m0aJGSn59vbFdUVKS89dZbir+/v2JhYaH4+PgoM2bMMGmjKIri6+urDB06tMx5+vXrp/Tr18/4fM6cOUrPnj0VJycnxdraWmnbtq3y7rvvKoWFhcY2xcXFyrRp05QmTZooGo1GufpjzTfffKO0atVK0el0Stu2bZUlS5Yos2bNUq796AMoU6dOLTMeX19fZdKkSSbb3nnnHaVp06aKVqtVACUyMrIqf0Jl7NixCqC8+uqr5e7fsmWL0qdPH8Xa2lpxcHBQhg0bppw+fdqkzZIlS8qcc/fu3codd9yhWFtbK97e3sqrr76qbNq0SQGU7du3G9tlZ2crDz/8sOLk5KQAiq+vr6IoihIZGakAypIlS4xty/sblfe3+Oqrr5QWLVooZmZmZc6nKIry448/KoAyZcqUKv2NhBBCCNF4aRTlBit7CiGEEEIIcZVffvmFkSNHsnPnTvr27VvfwxFCCCFEAyaBKSGEEEIIUavuv/9+zpw5w7lz52q9+LoQQgghbi9SY0oIIYQQQtSKVatWcfz4cX7//Xc+/fRTCUoJIYQQ4rokY0oIIYQQQtQKjUaDnZ0dDz74IIsXL8bcXH4DFUIIIUTl5NOCEEIIIYSoFfJ7pxBCCCGqS1vfAxBCCCGEEEIIIYQQjZMEpoQQQgghhBBCCCFEvZDAlBBCCCGEEEIIIYSoFxKYEkIIIYQQQgghhBD1QgJTQgghhBBCCCGEEKJeSGBKCCGEEEIIIYQQQtQLCUwJIYQQQgghhBBCiHohgSkhhBBCCCGEEEIIUS8kMCWEEEIIIYQQQggh6oUEpoQQQgghhBBCCCFEvZDAlBBCCCGEEEIIIYSoFxKYEkIIIYQQQgghhBD1QgJTQgghhBBCCCGEEKJeSGBKCCGEEEIIIYQQQtQLCUwJIYQQQgghhBBCiHohgSkhhBBCCCGEEEIIUS8kMCWEEEIIIYQQQggh6oUEpsRNs2PHDjQaDTt27KjvoZTRv39/+vfvX9/DEEII0QhpNBpmz55d38MQQghxm1q6dCkajYaoqKj6HooQ5ZLA1G1Oo9FU6VaVYNF7773H+vXr63zMhhfOgwcPlru/f//+dOzYsc7HcTNlZmby1ltv0aVLF+zs7LC2tqZjx478+9//Ji4urk7O+cUXX7B06dJa6ev8+fM8/PDDuLu7Y21tTatWrXj99deve1x8fDyvvfYaAwYMwN7e/rr/Fvfs2cOdd96JjY0Nnp6ePPfcc2RnZ9fKNQghhBBCCCGEuPnM63sAom599913Js+XL1/O5s2by2xv167ddft67733GDNmDCNHjqzNITZ6Fy5cICQkhEuXLjF27FimTJmCpaUlx48f55tvvmHdunWcPXu21s/7xRdf4ObmxmOPPXZD/Rw9epT+/fvTtGlTXnrpJVxdXbl06RLR0dHXPTY8PJx58+bRqlUrOnXqRGhoaKXnufvuu2nXrh0ff/wxMTExfPjhh0RERPDnn3/e0DUIIUR9ysvLw9xcPpIJIYQQonGST0G3uUceecTk+d69e9m8eXOZ7aJ+FBcXM2rUKBITE9mxYwd33nmnyf53332XefPm1dPork+v1/Poo4/Stm1btm/fjrW1dbWODwoKIiUlBRcXF9auXcvYsWMrbPuf//wHZ2dnduzYgYODAwB+fn48+eST/PXXX9x77703dC1CCHEz6fV6CgsLsbKywsrKqr6HI4QQQghRb2QqnyAnJ4eXXnoJHx8fdDodbdq04cMPP0RRFGMbjUZDTk4Oy5YtM07/M2TaXLx4kWeeeYY2bdpgbW2Nq6srY8eOvelzmL///nuCgoKwtrbGxcWF8ePHl5u187///Y+AgACsra3p2bMn//zzT7n9Xbx4keHDh2Nra4u7uzsvvvgimzZtKne62b59+xg8eDCOjo7Y2NjQr18/du/efd0x//TTTxw7dozXX3+9TFAKwMHBgXfffddk25o1a4zX6ebmxiOPPEJsbKxJm4SEBCZPnkyzZs3Q6XR4eXkxYsQI438TPz8/Tp06xd9//23873l1ja3z589z/vz5647/r7/+4uTJk8yaNQtra2tyc3MpKSm57nEG9vb2uLi4XLddZmamMaBqCEoBTJw4ETs7O3788ccqn1MIIWrT7Nmz0Wg0hIWFMW7cOBwcHHB1deX5558nPz/f2E6j0fDss8+yYsUKOnTogE6nY+PGjcZ919aYio2N5fHHH8fb2xudToe/vz9PP/00hYWFxjbp6em88MILxvfvli1bMm/ePPR6/U25diGEEHVj7dq1aDQa/v777zL7/vvf/6LRaDh58iQA27Zto2/fvtja2uLk5MSIESM4c+bMzR6yEDdEMqYaOUVRGD58ONu3b+fxxx8nMDCQTZs28corrxAbG8snn3wCqFMCn3jiCXr27MmUKVMACAgIAODAgQPs2bOH8ePH06xZM6Kiovjyyy/p378/p0+fxsbGpkZjy8jIIDk5ucz2oqKiMtveffdd3nzzTcaNG8cTTzxBUlISixYt4q677uLIkSM4OTkB8M033/DUU0/Ru3dvXnjhBS5cuMDw4cNxcXHBx8fH2F9OTg4DBw4kPj6e559/Hk9PT1auXMn27dvLnHvbtm0MGTKEoKAgZs2ahVarZcmSJQwcOJB//vmHnj17VniNGzZsAODRRx+t0t9k6dKlTJ48mR49ejB37lwSExP59NNP2b17t8l1jh49mlOnTjFt2jT8/Py4fPkymzdv5tKlS/j5+bFgwQKmTZuGnZ2dsRaUh4eH8Tx33303wHWDi1u2bAFAp9PRvXt3Dh06hKWlJQ888ABffPFFlYJOVXHixAmKi4vp3r27yXZLS0sCAwM5cuRIrZxHCCFqaty4cfj5+TF37lz27t3LwoULSUtLY/ny5cY227Zt48cff+TZZ5/Fzc0NPz+/cvuKi4ujZ8+epKenM2XKFNq2bUtsbCxr164lNzcXS0tLcnNz6devH7GxsTz11FM0b96cPXv2MGPGDOLj41mwYMHNuXAhhBC1bujQocYfX/v162eyb/Xq1XTo0IGOHTuyZcsWhgwZQosWLZg9ezZ5eXksWrSIPn36cPjw4QrfZ4RocBTRqEydOlW5+j/7+vXrFUCZM2eOSbsxY8YoGo1GOXfunHGbra2tMmnSpDJ95ubmltkWGhqqAMry5cuN27Zv364Ayvbt2ysd45IlSxSg0luHDh2M7aOiohQzMzPl3XffNennxIkTirm5uXF7YWGh4u7urgQGBioFBQXGdv/73/8UQOnXr59x20cffaQAyvr1643b8vLylLZt25pcg16vV1q1aqUMGjRI0ev1Jn8Tf39/5Z577qn0Wrt27ao4OjpW2sbAMP6OHTsqeXl5xu2//fabAigzZ85UFEVR0tLSFED54IMPKu2vQ4cOJtd8NV9fX8XX1/e6Yxo+fLgCKK6ursqECROUtWvXKm+++aZibm6u9O7d2+Rvcj1r1qyp8N+HYd/OnTvL7Bs7dqzi6elZ5fMIIURtmjVrlgIow4cPN9n+zDPPKIBy7NgxRVEUBVC0Wq1y6tSpMn0AyqxZs4zPJ06cqGi1WuXAgQNl2hpeV9955x3F1tZWOXv2rMn+1157TTEzM1MuXbp0o5cmhBCiHj300EOKu7u7UlxcbNwWHx+vaLVa5e2331YURVECAwMVd3d3JSUlxdjm2LFjilarVSZOnGjcZvh+FRkZedPGL0R1yFS+Ru6PP/7AzMyM5557zmT7Sy+9hKIoVSoqfXVdoaKiIlJSUmjZsiVOTk4cPny4xmP7/PPP2bx5c5lb586dTdr9/PPP6PV6xo0bR3JysvHm6elJq1atjFlOBw8e5PLly/zf//0flpaWxuMfe+wxHB0dTfrcuHEjTZs2Zfjw4cZtVlZWPPnkkybtjh49SkREBA8//DApKSnGc+fk5HD33Xezc+fOSqdUZGZmYm9vX6W/h2H8zzzzjEk9kqFDh9K2bVt+//13QP3vYWlpyY4dO0hLS6tS39eKioqq0lRMw4p4PXr04Pvvv2f06NG8/fbbvPPOO+zZs4etW7fW6PzXysvLA9TMrGtZWVkZ9wshRH2ZOnWqyfNp06YB6vusQb9+/Wjfvn2l/ej1etavX8+wYcPKZImCOu0P1Gndffv2xdnZ2eS9LyQkhJKSEnbu3HmjlySEEKIePfjgg1y+fNmkhMjatWvR6/U8+OCDxMfHc/ToUR577DGTWQqdO3fmnnvuMXn/EaKhk6l8jdzFixfx9vYuExwxrNJ38eLF6/aRl5fH3LlzWbJkCbGxsSa1qTIyMmo8tp49e5b7odzwIdwgIiICRVFo1apVuf1YWFgAV67l2nYWFha0aNHCZNvFixcJCAgwfgEwaNmypcnziIgIACZNmlThdWRkZODs7FzuPgcHBy5cuFDhsdeOCaBNmzZl9rVt25Zdu3YBavBm3rx5vPTSS3h4eHDHHXdw//33M3HiRDw9Pat0rqoyBCUfeughk+0PP/wwM2bMYM+ePYSEhNTaeQoKCsrsy8/Pr3bRdSGEqG3XvrcEBASg1WpNgvz+/v7X7ScpKYnMzEw6duxYabuIiAiOHz9OkyZNyt1/+fLl6w9aCCFEg2WoX7t69WpjmY3Vq1cTGBhI69at2bt3L1D+d4N27dqxadMmcnJysLW1vanjFqImJDAlbti0adNYsmQJL7zwAr169cLR0RGNRsP48eNvSgFWvV6PRqPhzz//xMzMrMx+Ozu7Oj03wAcffEBgYGC5bSo7f9u2bTly5AjR0dEmNa5u1AsvvMCwYcNYv349mzZt4s0332Tu3Lls27aNrl271tp5vL29AdP6VADu7u4ANc7YupaXlxcA8fHxZfbFx8cbxyGEEA3FtT9sALUaRNfr9dxzzz28+uqr5e5v3bp1rZ1LCCHEzafT6Rg5ciTr1q3jiy++IDExkd27d/Pee+/V99CEqHUSmGrkfH192bJlC1lZWSZZU2FhYcb9BuV9yAY1pXTSpEl89NFHxm35+fmkp6fXzaCvERAQgKIo+Pv7V/pB3HAtERERDBw40Li9qKiIyMhIunTpYtL29OnTKIpict3nzp0rc25QM59qkhk0bNgwfvjhB77//ntmzJhRaVvD+MPDw03Gb9h29X8rw9heeuklXnrpJSIiIggMDOSjjz7i+++/Byr+71kdQUFBfPXVV2VWBYyLiwOo8Jf86urYsSPm5uYcPHiQcePGGbcXFhZy9OhRk21CCFEfIiIiTDKizp07h16vr3bh2SZNmuDg4GBcbakiAQEBZGdn10pWqhBCiIbpwQcfZNmyZWzdupUzZ86gKAoPPvggYPrd4FphYWG4ublJtpS4ZUiNqUbuvvvuo6SkhM8++8xk+yeffIJGo2HIkCHGbba2tuUGm8zMzEym7wEsWrSIkpKSOhnztUaNGoWZmRlvvfVWmXEoikJKSgoA3bt3p0mTJixevNhkue2lS5eWua5BgwYRGxtrXDUP1GDbV199ZdIuKCiIgIAAPvzwQ2O9paslJSVVOvYxY8bQqVMn3n33XUJDQ8vsz8rKMq6a1717d9zd3Vm8eLHJlLY///yTM2fOMHToUAByc3NNligH9QuMvb29yXEV/fcEOH/+POfPn6907AAjRoxAp9OxZMkSk+y4r7/+GoB77rnHuC0+Pp6wsLByV1W8HkdHR0JCQvj+++/Jysoybv/uu+/Izs5m7Nix1e5TCCFq0+eff27yfNGiRQAm76NVodVqGTlyJL/++isHDx4ss9/wPjdu3DhCQ0PZtGlTmTbp6ekUFxdX67xCCCEanpCQEFxcXFi9ejWrV6+mZ8+exh9BvLy8CAwMZNmyZSaf6U+ePMlff/3FfffdV0+jFqL6JGOqkRs2bBgDBgzg9ddfJyoqii5duvDXX3/xyy+/8MILLxgzgkANwmzZsoWPP/4Yb29v/P39CQ4O5v777+e7777D0dGR9u3bExoaypYtW3B1db0p1xAQEMCcOXOYMWMGUVFRjBw5Ent7eyIjI1m3bh1Tpkzh5ZdfxsLCgjlz5vDUU08xcOBAHnzwQSIjI1myZEmZGlNPPfUUn332GQ899BDPP/88Xl5erFixwlh03JBtpNVq+frrrxkyZAgdOnRg8uTJNG3alNjYWLZv346DgwO//vprhWO3sLDg559/JiQkhLvuuotx48bRp08fLCwsOHXqFCtXrsTZ2Zl3330XCwsL5s2bx+TJk+nXrx8PPfQQiYmJfPrpp/j5+fHiiy8CcPbsWe6++27GjRtH+/btMTc3Z926dSQmJjJ+/HjjuYOCgvjyyy+ZM2cOLVu2xN3d3ZiJZZjHfr0C6J6enrz++uvMnDmTwYMHM3LkSI4dO8ZXX33FQw89RI8ePYxtZ8yYwbJly4iMjDTJIJgzZw4Ap06dAtRgk6Fe1htvvGFs9+6779K7d2/69evHlClTiImJ4aOPPuLee+9l8ODBlY5TCCHqWmRkJMOHD2fw4MGEhoby/fff8/DDD5tk41bVe++9x19//WV8vWvXrh3x8fGsWbOGXbt24eTkxCuvvMKGDRu4//77eeyxxwgKCiInJ4cTJ06wdu1aoqKicHNzq4MrFUIIcbNYWFgwatQoVq1aRU5ODh9++KHJ/g8++IAhQ4bQq1cvHn/8cfLy8li0aBGOjo7Mnj27fgYtRE3U13KAon5MnTpVufY/e1ZWlvLiiy8q3t7eioWFhdKqVSvlgw8+MC5JbRAWFqbcddddirW1tQIokyZNUhRFUdLS0pTJkycrbm5uip2dnTJo0CAlLCxM8fX1NbZRFEXZvn27Aijbt2+vdIyG5UzLWyZbURSlX79+SocOHcps/+mnn5Q777xTsbW1VWxtbZW2bdsqU6dOVcLDw03affHFF4q/v7+i0+mU7t27Kzt37lT69eun9OvXz6TdhQsXlKFDhyrW1tZKkyZNlJdeekn56aefFEDZu3evSdsjR44oo0aNUlxdXRWdTqf4+voq48aNU7Zu3VrptRqkpaUpM2fOVDp16qTY2NgoVlZWSseOHZUZM2Yo8fHxJm1Xr16tdO3aVdHpdIqLi4syYcIEJSYmxrg/OTlZmTp1qtK2bVvF1tZWcXR0VIKDg5Uff/zRpJ+EhARl6NChir29vQKYXL+vr6/i6+tbpbHr9Xpl0aJFSuvWrRULCwvFx8dHeeONN5TCwkKTdpMmTSp3mVqgwtu1/vnnH6V3796KlZWV0qRJE2Xq1KlKZmZmlcYphBB1YdasWQqgnD59WhkzZoxib2+vODs7K88++6ySl5dnbAcoU6dOLbcPQJk1a5bJtosXLyoTJ05UmjRpouh0OqVFixbK1KlTlYKCAmObrKwsZcaMGUrLli0VS0tLxc3NTendu7fy4YcflnkNFkIIcWvavHmzAigajUaJjo4us3/Lli1Knz59FGtra8XBwUEZNmyYcvr0aZM2hu9X134OF6Kh0CjKNXOfhBAVWrBgAS+++CIxMTE0bdq0vocjhBCins2ePZu33nqLpKQkyVASQgghhKgBqTElRAXy8vJMnufn5/Pf//6XVq1aSVBKCCGEEEIIIYSoBVJjSogKjBo1iubNmxMYGEhGRgbff/89YWFhrFixor6HJoQQQgghhBBC3BYkMCVEBQYNGsTXX3/NihUrKCkpoX379qxatcq4RKsQQgghhBBCCCFujNSYEkIIIYQQQgghhBD1QmpMCSGEEEIIIYQQQoh6IYEpIYQQQgghhBBCCFEvbskaU3q9nri4OOzt7dFoNPU9HCGEuCUoikJWVhbe3t5otY3zdwl5/xBCiOpr7O8f8t4hhBDVV533jlsyMBUXF4ePj099D0MIIW5J0dHRNGvWrL6HUS/k/UMIIWqusb5/yHuHEELUXFXeO27JwJS9vT2gXqCDg0M9j0YIIW4NmZmZ+Pj4GF9DGyN5/xBCiOpr7O8f8t4hhBDVV533jlsyMGVIoXVwcJA3ByGEqKbGPA1B3j+EEKLmGuv7h7x3CCFEzVXlvaPxTRIXQgghhBBCCCGEEA1CtQNTO3fuZNiwYXh7e6PRaFi/fr3JfkVRmDlzJl5eXlhbWxMSEkJERIRJm9TUVCZMmICDgwNOTk48/vjjZGdn39CFCCGEEEIIIRq2zz//HD8/P6ysrAgODmb//v0Vtv3qq6/o27cvzs7OODs7ExISUqb9zz//zL333ourqysajYajR4+W6Sc/P5+pU6fi6uqKnZ0do0ePJjExsbYvTQghRA1VOzCVk5NDly5d+Pzzz8vdP3/+fBYuXMjixYvZt28ftra2DBo0iPz8fGObCRMmcOrUKTZv3sxvv/3Gzp07mTJlSs2vQgghhBBCCNGgrV69munTpzNr1iwOHz5Mly5dGDRoEJcvXy63/Y4dO3jooYfYvn07oaGh+Pj4cO+99xIbG2tsk5OTw5133sm8efMqPO+LL77Ir7/+ypo1a/j777+Ji4tj1KhRtX59QgghakajKIpS44M1GtatW8fIkSMBNVvK29ubl156iZdffhmAjIwMPDw8WLp0KePHj+fMmTO0b9+eAwcO0L17dwA2btzIfffdR0xMDN7e3tc9b2ZmJo6OjmRkZMg8byGEqCJ57ZS/gRBC1ERtvXYGBwfTo0cPPvvsMwD0ej0+Pj5MmzaN11577brHl5SU4OzszGeffcbEiRNN9kVFReHv78+RI0cIDAw0bs/IyKBJkyasXLmSMWPGABAWFka7du0IDQ3ljjvuuO555b1DCCGqrzqvnbVa/DwyMpKEhARCQkKM2xwdHQkODiY0NJTx48cTGhqKk5OTMSgFEBISglarZd++fTzwwAO1OSQhbkkl+hLMtGZltusVPQBajZSHawzS8tM4m3aWxNxELudeJiUvBVB/FNCgwd7SHjdrN9ys3Whq15QApwD5tyFEI6UoCj/sj6a9twOBPk71PRwhyigsLOTQoUPMmDHDuE2r1RISEkJoaGiV+sjNzaWoqAgXF5cqn/fQoUMUFRWZfD9p27YtzZs3rzAwVVBQQEFBgfF5ZmZmlc8nhBCi+mo1MJWQkACAh4eHyXYPDw/jvoSEBNzd3U0HYW6Oi4uLsc215M1B3MqKSorILsomuzCbzKJMUvNSSc03vaXlp6m3gjRS81PJK87DUmuJjYUN1ubWFOmLyCnKIa84D3OtOd623jSzb4a7jTsFxQVkF2WTW5yLg6UDPvY+NLNvhquVKwoKekVPsb6Y1PxUUvJSSMlXgxtWZlZYmVthpjGjoKSAgpICivXFtHRqSRf3LrR3bY/OTFfPf73Gp1hfzJ64PayLWMeO6B0UK8VVPtbe0p6u7l0J8ghisN9gvO2un4EqhLg9/HU6kf+sO4G3oxW7XxvYaFdPEw1XcnIyJSUl5X5PCAsLq1If//73v/H29jYJMl1PQkIClpaWODk5lTlvRd895s6dy1tvvVXlcwghhLgxtRqYqivy5nDryizMJCM/AycrJ+ws7BrcB2VFUVBQUBQFPXoURcFCa1HhOPWKnrNpZ9kfv5+kvCQKSwop1BdSWFJIUUmRMcCTXpBuDDTlFefVaGyF+kIKCwpJL0g32V6sL+ZS1iUuZV2qUb9VZa41p4VjC/wc/PB18MXO0o4L6Rc4l36OmOwYmtk1o5NbJzo16YRWo+V8+nnOpZ0jszCTII8g7mx6J52bdMZce0u8zNS7iLQIfj3/K79d+I2kvCTj9ub2zfG288bdxh1Xa1fMNGbqv1dFT2ZhJsl5ySTlJRGZEUlWYRY7Y3ayM2YnCw4toG+zvoxtPRZHnSNnU89yPOZ4PV6hEKIu/XQoBoC4jHzOxGfR3lumG4nby/vvv8+qVavYsWMHVlZWdXquGTNmMH36dOPzzMxMfHx86vScQgjRmNXqN0ZPT08AEhMT8fLyMm5PTEw0zvX29PQsU+CwuLiY1NRU4/HXkjeHhk2v6DmYcJDIjEhismOIzY4lJiuGmOwYsgqzjO0stZa4WbvhbedNc4fm+Nj70MKxBe1d2+Nh42EMBimKQkp+CpcyLxGVGUVUZhT5xfm4WLngYuVCE+smtHRuSTO7ZuUGkIr1xWQUZJBVmIWCglajRVEUwlLD2JewjwMJB7iUeQmF8sur2VrY4u/gTwunFnjYeJBfkk9ecR7p+ekcSjxEWkFajf5O1ubW2Fva42rliouVC85WzjhbOauPdVceu1q5YmdpR35xPjlFOeQW52KhtcDOwg4bCxsKSwqJyY4hJiuG5LxkrMytsLOww9rCmrT8NGKyYojOiiajIAOtRmu8OVs542bthquVGtzIK8kjrziPEn0JOjMdVuZW6BU9Z1LOcCzpGCn5KZxNO8vZtLPlXk9GQQanUk6xKnxVmX2HLx/mqxNfYWdhR1f3rnRp0oVA90A6uXXCxsKmRn+/qymKQmhcKGdSzxj/XbjZuNHaqTUWZhY33H9dSM9Pp1gpNmaqJeUmcSrlFCeTT7Inbg9nUs8Y2zrrnLk/4H5GthxJa+fWVeq/WF9MeGo4hxIPsTNmJ/sS9hmDVAYleSW1fl1CiPqXmlPI9vArn622h1+WwJRocNzc3DAzMyuzGl5iYmKF3wEMPvzwQ95//322bNlC586dq3VeT09PCgsLSU9PN8maquy8Op0OnU6yxoUQ4map1cCUv78/np6ebN261RiIyszMZN++fTz99NMA9OrVi/T0dA4dOkRQUBAA27ZtQ6/XExwcXG6/8ubQcIXGhfLxoY8JS604BdvKzIr8knwK9YXE5cQRlxPHwcSDJm1crFzwc/AjOS+ZhJwECvWF1z23vYU9bVzaYKG1UDOzCjLIKMwwCYbVRE5RDidTTnIy5WS5+63Nrenu0Z0ApwAstBZYmlliobVAZ6bD0swSnZkOR52jGmjSueCgc8DWwrZWM4e87Lzo4dmj1vq7lqIoxOXEcT79PFEZanAwuzAbf0d/Y1DwYuZFjicf51TyKQBaOrUkwCkAa3NrQuNDCY0LJb0gnX9i/+Gf2H8ANTgZ7BXMgOYD6OXVC0szS/SKnqKSIiIzIwlLDSMsNQwLrQUDfAbQt1lfbC1sTcYWnRnN3P1zjX1ezcrMikD3QOPf5mLmRS5mXiSrMAt7S3scLB1wtnKmvWt7url3o7Vz63JredUWvaJnV+wuVpxZwZ64PZW2Ndeac1fTuxjecjh3Nb2r2gE2c605Hdw60MGtAxM7TORi5kXWnl3L7xd+R6vR0sa5Fc1T0nmNM9fvTAhxS/nteBxFJQpaDegV2B52makDWtb3sIQwYWlpSVBQEFu3bjUunKTX69m6dSvPPvtshcfNnz+fd999l02bNpnUqK2qoKAgLCws2Lp1K6NHjwYgPDycS5cu0atXrxpdixBCiNpV7VX5srOzOXfuHABdu3bl448/ZsCAAbi4uNC8eXPmzZvH+++/z7Jly/D39+fNN9/k+PHjnD592ph2O2TIEBITE1m8eDFFRUVMnjyZ7t27s3LlyiqNQVbGqLqikiLOZ5znTMoZ8kvy6enZkxaOLW54St2plFN8duQzdsXuAsDOwo7unt1pZteMZvbNaGrX1HizsbAhrziPlLwUkvOSiclWM3ouZV7ibNpZzqefp0QxzeTQoMHbzhtfB191GpmFnVojKT+FhJwEzqWfo1hfee0dw9RBw7QnH3sfenr1pKdnT9q5tMNMa4YGDRqNBi1atFq1aHRSbhIXMi5wIf0CKfkpWJlbYW1uja25LR3dOtLJrVODzcppSEr0JYSlhnE06SjHLh/jSNIREnLKr+VQEUutJT29euJu446dhR0FJQWsi1hHob4Qc605A3wGkFecR1p+GrHZsWWmPV6PrYUtQ/yH8GLQizhY1t5rSUxWDJuiNrHu3DouZl40btegMWbqmWvMaenckg6uHejk1omBzQfibOVca2MwceFv+PPfZMacxvH9rEb92invH+J2NOLz3RyLTueJO/35elckWg0ceuMenG0t63to4jZRW6+dq1evZtKkSfz3v/+lZ8+eLFiwgB9//JGwsDA8PDyYOHEiTZs2Ze7cuQDMmzePmTNnsnLlSvr06WPsx87ODjs7OwBSU1O5dOkScXFxDB06lFWrVtGmTRs8PT2NGVFPP/00f/zxB0uXLsXBwYFp06YBsGdP5T8a1fb1CyFEY1Knq/IdPHiQAQMGGJ8bpthNmjSJpUuX8uqrr5KTk8OUKVNIT0/nzjvvZOPGjSZzwVesWMGzzz7L3XffjVarZfTo0SxcuLC6QxGl4rPj2R69nR3ROziWdAwzrRnW5tZYmVkRnxNPkb7IpL27jTvBnsE46hyx0FpgrjUnoyCDhNwEEnIS0Ct6gjyCCPYKpqdnT+MX9mKlmK0Xt7LizAqOJh0F1C/XD7Z9kKc6P1Xpl2prc2ua2atBq0D3QJN9+cX5hKeFE5sVSxObJnjZeuFh41Fp8KeopIgLGReM08wcLB1w0DngaOmIk5UTDpYONc5QcrB0IMApAHxrdLgoZaY1M2bwTGg3AUVROJ9+nu3R29kevZ1TKWqmlVajxVxjTjP7ZrRxaUMb5zakF6Sz5eIWLmVdMgY/r9bLqxf/Cf4Pfo5+xm2G/vcn7OfI5SNYmlni6+BLc4fmOOucySrMIrMwk8u5l43BsuyibNaeXcvOmJ281fst7mx6J9FZ0fx+4XcOJBxQ/702CSTQPRAvWy/0ih4FBUutZZl/n0X6In4++zO/nP+FE8knjNvtLex5oNUDjG87nmZ2zSjUF5JXlIe1hXXdF5fX6+GXZ+DYD+pzK2fgxjIKhRANy7nL2RyLTsdMq+GpfgHsOpdMWEIWOyOSGBHYtL6HJ4SJBx98kKSkJGbOnElCQgKBgYFs3LjRWBD90qVLxh8KAb788ksKCwsZM2aMST+zZs1i9uzZAGzYsIHJkycb940fP75Mm08++cT4naOgoIBBgwbxxRdf1OGVCiGEqI5qZ0w1BI3hV4uCEnUVwoq+uKblp/Fn5J/8ev7XCqecGdhb2NPOtR1mGjMOXz5s7PtGmGvMGeQ/iKe7PI2vg0RwRO1TFIWzaWc5fPkwWYVZ6sqDRbn08urFwOY3vuJUib6Eg4kHeWfvO8aspgDHAM5nnL/usTozHcMDhjOx/UT8HP04kHCA9/a9x7l0NZtUq9HSw7MHg/0Gc5//fbVSV6tGIv+BZfeDRgs9niAz6FkcPf1u69fO62kM7x+3g4zcIqb/eJT7OnkxOqhZfQ+nQftgUxifbz/PwLbufPtYD+ZtDOPLHecZGejNgvFdAUjKKmDtoRjGdm+Gm52URhDV19hfOxv79QshRE3UacZUQ1aiLyEsLQydVoevoy8W2ps/3SqnKIdDiYeIzoqmuX1zWjq1xNPWk4uZFzmYeJDDiYfJKsrC3dodNxs3XHQuxl+GivXFnEs7x4nkE0SkRYAGurl3o7d3bzo36UxCTgIXMi5wJvUM++L2GZeR16Ah0D2QAT4D6NO0D+Zac/KL1YLd7tbuNLO/UiQ8vzifw5cPcyzpGPnF+ZToSyhWirG1sMXT1hNPG0+K9EXsT9jP3ri9Zb6ku1i58GCbBxnbeixNbJrc3D+uaFQ0Go2aQeXSpk76N9OaEewVzJpha1h4eCErzqzgfMZ5tBotwZ7BDGw+kIScBI5cPsKplFMmAd2CkgLWnF3D2rNraefajtMppwFw0jkxpfMUhvgPwc3arU7GXS3JpYXrW94D930AmZn1Ox4hquinwzFsDbvM6fhMRnVr2uBWdG0o9HqFdYdjARjVTc2OGtjWnS93nOfvs0mU6BWK9XoeX3aA4zEZpOcWMuO+dvU5ZCGEEEKIMm7pwNSkPydxd+u7aefajtC4ULZe2kpyXjIAFloLApwCaG7fHDtLO2zMbbA2t0aj0aBBg1ajxc3ajQCnAFo6tcRR51jjcRTri/kh7Ac2X9zMiaQTxoCRgYXWosx0uipRYH/CfvYn7C93dzuXdgwPGM5g/8FV/hJsZW5Fb+/e9PbuXWm7gc0HApBdmE2hvhBFUVBQcNI51WoRbyHqm7W5Nf/u+W8G+w8mLCWMAc0H4G7jbtKmSF9EUUmR8fXjRPIJlp1axt8xf3M65TQaNIxrM45pXafd0GtJrUspDSy7ShFkcWvZGZEEQHxGPjFpefi41FPWYQO3NzKFuIx87K3MCWmnToXq6uOEo7UFablFHI1O49dj8RyPyQDgbKJM5RVCCCFEw3NLRxjC08I5d/ycyTY7CzsUFHKKcowrfFWFl60Xdze/myH+Q+jk1okifRERaRGcTj1NTFYMCTlq/SUzrRnj24wnxDcErUZLfHY8r/3zGocvHzb21cyuGa2cWxGdFU1URhRF+iIstBZ0cutEd8/uuFu7k5SXRHJeMukF6Vw9m9LXwZcObh2MY9gdu5vdcbuJSIugqV1TApwC8Hf0J9gzmJbOdf9l087Srs7PIURD0KVJF7o06VLuPguthUkGZg/PHvTw7MGF9AtsuriJu5rdRQfXDjdrqFWXaghMBdTvOISohoLiEvZeSDE+3x+ZKoGpCqw5GAPA0E5eWFmoK4yam2m5q3UTfj0Wx7u/n+HwpXRj+6iU3PoYphBCCCFEpW7pwNTMO2ZyIP0AZ9PO0s2jG/f43kOwZzBmWjPisuMITwsnISeB3KJccotzySvOU4sXl67SFp8Tz/n088TlxBGfE8/3Z77n+zPf42LlQmZBZpnMJ4MDCQdo7dyaIf5DWHJyCZmFmdha2PJs4LP09+lPM/sr9TCKSoqIz4nH3cYdK3OrcvurjK+DLw+3e7jGfyMhRN1p4dSCp52eru9hVCylNHAvgSlxCzkYlUZ+kd74fH9kqtSZKkdSVgG/H48HYHzP5ib7BrZVA1OGoNTwLt5sOBZHdGouxSV6zM2013YnhBBCCFFvbunA1H0t7mO8w/hy9xlWgKuKnKIc9sfv58+oP9kRvYPU/FQAHHWOtHdpj7+jv1p/ydaTCxkX+P7095xNO2tcEa6ja0fm3zUfHwefMn1bmFnQ3KF5me1CCFGnSoohLUp9LFP5xC1k51l1Gp+ngxUJmfnsi0y5zhGN0+oDlygs0dPFx4lAHyeTfXe1aoJGA4oCXZs78cHYzmw6lUBBsZ6YtDz83GzrZ9BCCCGEEOW4pQNTtcXWwpYBzQcwoPkA8orzOJ1yGi9bL7xsvcotuPpIu0dYfno5v1/4ncF+g5kaOLXM0vFCCFGv0i+CvhjMrcDeu75HI0SV7YxQa0VOHdiSmb+cJColl8TMfDwcqp91fLsqKtHz/d5LADzWu+zKuK52Oh7s7sOBqFQWPdQVnbkZfq62hCdmEZmSI4EpIYQQQjQokst9DWtza4I8gvC2865wFSBHnSPTuk5j4+iNvBD0ggSlhBANT+oF9d4lALS1+1K/c+dOhg0bhre3+jq5fv16k/2KojBz5ky8vLywtrYmJCSEiIgIkzZ+fn5qMfmrbu+//36l583Pz2fq1Km4urpiZ2fH6NGjSUxMrNVrE/XrclY+Z+LV1SPv6+hJey91aeH9kan1OawGZ/PpRBIy83Gzs+S+Tl7ltnl/dGe2vtSfZs5qfS4/N/U+Minnpo1TCCGEEKIqJDAlhBC3I2N9qRa13nVOTg5dunTh888/L3f//PnzWbhwIYsXL2bfvn3Y2toyaNAg8vPzTdq9/fbbxMfHG2/Tpk2r9Lwvvvgiv/76K2vWrOHvv/8mLi6OUaNG1dp1ifr3z1k1W6pjUwdc7XT09HcBJDB1raV7ogB4qGdzdOZmVTrG301dzCQqRQJTQgghhGhYZCqfEELcjlIMK/LVfn2pIUOGMGTIkHL3KYrCggULeOONNxgxYgQAy5cvx8PDg/Xr1zN+/JW6gPb29nh6elbpnBkZGXzzzTesXLmSgQMHArBkyRLatWvH3r17ueOOO27wqkRD8E+EWl/qrlZNAAj2d2HJ7igJTF3lTHwm+yNTMdNqmBBcdhpfRfwNGVPJEpgSQgghRMMiGVNCCHE7MmRMudzcFfkiIyNJSEggJCTEuM3R0ZHg4GBCQ0NN2r7//vu4urrStWtXPvjgA4qLy18JFeDQoUMUFRWZ9Nu2bVuaN29epl9xa9LrFf4prS91V2s1MNXDT82YCk/MIi2nsN7G1pAsD40CYHAHTzwdq153y89VrSslGVNCCCGEaGgkY0oIIW5HqXWXMVWZhIQEADw8PEy2e3h4GPcBPPfcc3Tr1g0XFxf27NnDjBkziI+P5+OPP66wX0tLS5ycnCrt91oFBQUUFBQYn2dmZlb3ksRNcjo+k5ScQmwtzejW3BlQi3i3dLfj3OVs9kelMqhD1TLsblfpuYWsOxILwKTeftU61r+04HlsWh4FxSVVngIohBBCCFHXJGNKCCFqqjAHdi2AtKj6HomponxIj1Yfu97cjKmqmj59Ov3796dz58783//9Hx999BGLFi0yCSLVhrlz5+Lo6Gi8+fj41Gr/ovbsLJ3G1yvAFUvzKx9PgqXOlNGqA9HkF+lp7+VADz/nah3bxF6HraUZegWiU3PraIRCCCGEENUngSkhhKipzbNgyyxYMRaK8up7NFekRQEK6BzAtslNPbWhZtS1q+UlJiZWWk8qODiY4uJioqKiKuy3sLCQ9PT0avU7Y8YMMjIyjLfo6OiqXYi46XaEl9aXam36b1YKoKuKS/R8F3oRgMf6+FW4cnBFNBoNfqVZU5HJEpgSQgghRMMhgSkhhKiJ1AtwaIn6OPksbH27fsdzNWN9qRZQzS+vN8rf3x9PT0+2bt1q3JaZmcm+ffvo1atXhccdPXoUrVaLu7t7ufuDgoKwsLAw6Tc8PJxLly5V2q9Op8PBwcHkJhqe9NxCDl1MA2BAG9N/A4bA1Km4DLLyi2762BqKzacTiU3Pw8XWkuFdvGvUhyEwFSUF0IUQQgjRgEiNKSGEqInt74G+WC0unnoe9n4BrQdDi371PbI6ry+VnZ3NuXPnjM8jIyM5evQoLi4uNG/enBdeeIE5c+bQqlUr/P39efPNN/H29mbkyJEAhIaGsm/fPgYMGIC9vT2hoaG8+OKLPPLIIzg7q9OTYmNjufvuu1m+fDk9e/bE0dGRxx9/nOnTp+Pi4oKDgwPTpk2jV69esiLfbeDvs0mU6BVae9jh42Jjss/L0ZqmTtbEpudxKi6TO1q41tMo69eSPVEAPNyzOVYWNasP5V9aAD1SCqALIYQQogGRwJQQQlRX/HE4sUZ9PHYJHFyiZk+tfwae2QNWjvU7PkPGVB3Vlzp48CADBgwwPp8+fToAkyZNYunSpbz66qvk5OQwZcoU0tPTufPOO9m4cSNWVuoKYjqdjlWrVjF79mwKCgrw9/fnxRdfNPYDUFRURHh4OLm5V6YcffLJJ2i1WkaPHk1BQQGDBg3iiy++qJNrFDfXtrDLAAxs61Hu/o5NHYhNz+NkbEajDEydistgf2Qq5loNj9zhW+N+DAXQI5MkMCWEEEKIhkMCU0IIUV1b31LvO44Gry5w7xy4sAPSIuGPV+GBxTd9Cp2JlAvqfR1lTPXv3x9FUSrcr9FoePvtt3n77fKnN3br1o29e/dWeg4/P78y57CysuLzzz/n888/r/6gRYNVXKI31pe6u135Uzk7eDuy6VQip+Ia56qKS3dHATCkkxeejlY17sc4lU8ypoQQQgjRgEiNKSGEqI7If+DcFtCaw4DX1W06O3jgv6DRwvFVsPfL+h2jscZUw1yRT4irHb6UTkZeEU42FnT1cSq3Tcemam2wU3EZN3FkDcPlzHx+ORYHwOQ+fjfUlyFjKj4jn7zCkhsdmhBCCCFErZDAlBBCXI+iqAGptY/D96PUbd0mmU6Vax4M97yjPt70Hwj/8+aPE6AgG7IT1MeuLepnDEJUw9YwdQXH/q2bYG5W/seSjt7q9Nhzl7MbVUClsFjPsyuPUFisJ9DHqcLAXVU521jgYKUmy19MVbOmzl3OZuPJ+BsdqhBCCCFEjUlgSgghKpOfCV8NhGX3w8m1UFIIzXrCgP+UbdtrKgRNBhQ1iBV/7KYPl9TSaXw2rmDtfPPPL0Q1bTtTWl+qXfn1pQDcHaxoYq9Dr8CZhMYxnU9RFGZtOMX+qFTsdeZ8NK4LmhucIqzRaPBvYgeodabOXc7igS9283/fH+bwpbTaGLYQQgghRLVJYEqIBqhEX3H9HlFHNr0OnwZCcoTp9u3vQdxhsLCFoMdgyg54YjPYupXtQ6OB+z6AFgOgKAdWjofspJsw+KsYC5/XTX0pIWpTdGouEZezMdNq6NeqSaVtO3qXTueLbRzT+b7fe5Ef9l9Co4GFD3UloDSgdKP8XdVVDw9fSmPy0gNk5RcDcORSeq30L4QQQghRXRKYEqKB+WBTGG3f/JPNpxPreyiNh74EDi1Vi5f/OAmK8tTtcUdh/3/Vx+O/h2GfgnfXyvsys4CxS8GtNWTFwf7/1eHAy5F6Xr2X+lLiFmBYja+7rzOONhaVtu1QOp2vMRRA33chhbd+PQ3Avwe3ZUDb8ovC14ShAPpX/0QSnZpn3H66EfxdhRBCCNEw1XpgqqSkhDfffBN/f3+sra0JCAjgnXfeMVldSVEUZs6ciZeXF9bW1oSEhBAREVFJr0I0DltOJ/L59vMUlSi8uvYYlzPz63tIjUNSOBRmq48vn4I//60Gq357ARQ9dBwDAQOr3p+1E/SfoT4+8h2UFNf2iCuWFqXeu/jfvHMKUUNbSwNTFa3GdzVDAfSTt3kB9BK9wuvrT1KsVxgZ6M1Td9VurThDAXQAeytzXh3cBoAz8RKYEkIIIUT9qPXA1Lx58/jyyy/57LPPOHPmDPPmzWP+/PksWrTI2Gb+/PksXLiQxYsXs2/fPmxtbRk0aBD5+fIlXDRe8Rl5vLxWrUlkZaElLbeIV386bgzq5heVMOe307z203GZ6lfbYg+p9/ZegAYOL4NVD0PcEdA5wqD3qt9n2/vBxg2y4iHir1odbqUy1dW7cGx2884pRA0Ul+jZez4FgAFtrh+YMmRMhSdkUVisr9Ox1aefD8dw7nI2TjYWvD2y4w3XlbpWaw97AMy1GhY/EsSwzt4ARFy+vf+uQgghhGi4aj0wtWfPHkaMGMHQoUPx8/NjzJgx3Hvvvezfvx9Qs6UWLFjAG2+8wYgRI+jcuTPLly8nLi6O9evX1/ZwhLglFJfoef6Ho6TnFtGpqSNr/683luZadoQnsXL/JSKTcxj5+W6+3hXJqgPRHIxKre8h314MgalOY+GuV9THZzeq9yEzwb7ioswVMreErhPUx4eW3PgYq8oQmHLwvnnnFKIGUnMLKSzRo9VAiyrUT2rmbI2jtQVFJQpnE7NuwghvvvyiEhZsUTPIp/ZviYNV5dMba6KdlwNzR3Vi+b960qelG82crbG3MqeoROHc5exaP58QQgghxPXUemCqd+/ebN26lbNnzwJw7Ngxdu3axZAhQwCIjIwkISGBkJAQ4zGOjo4EBwcTGhpa28MR4pawcNs59kelYqczZ9FDXenY1JFXB6nTK+b8doZhi3YRlnDli9j28JtcUPt2ZwhMNesO/V8Dv77q86bdIehfNe+32yT1PmIzpEerjwtz4een4Kcn1ce1zRiYalr7fQtRi5KzCgFwsbXETHv9rCCNRmOczne71kNase8Ssel5eDpY8Wgv3zo7z0M9m9O7pbqAg0ajob1X6d9VpvMJIYQQoh7UemDqtddeY/z48bRt2xYLCwu6du3KCy+8wIQJauZAQkICAB4ephkIHh4exn3XKigoIDMz0+QmxO1ie/hlFm1TfyF/94GOxsK0/+rjT68WruQVlZBdUExPPxfeGNpOPaa0LouoBUV5kHhKfdw0CLRmMG45DHxTvdfewMukawD43wUoaq2p4gJY/QgcXwUnfoSfnlBrWdWW/EwoKH19tPeqvX6FqAPJ2QUAuNnpqnyMYTrf7VhnKrugmM+3q6tqvhDSCisLs5t27vbet3fATwghhBANW60Hpn788UdWrFjBypUrOXz4MMuWLePDDz9k2bJlNe5z7ty5ODo6Gm8+Pj61OGIh6s/FlBye/+EIigIPBzdnROCVLBetVsNH47rQr3UTnru7FSufDGZMUDO0GghPzCI2Pa+SnkWVxR8DpQTsPK5kGdm4wF0vg2MtZB0FPabeH/4O1v4Lzm8FCxsw00H47/DHy6DUUs2wrHj13soRdLWztLwQdSUpqyaBqdIC6LG3V2BKr1f4fPs5UnMKaeFmy5igm1sj7krG1O31dxVCCCHErcG8tjt85ZVXjFlTAJ06deLixYvMnTuXSZMm4enpCUBiYiJeXld+0U9MTCQwMLDcPmfMmMH06dONzzMzMyU4JW55uYXFPPXdITLzi+na3IlZw9qXaePtZM2yf/U0PneysaRbc2cOXkxje9hlHrmj7qZ6NBqGaXxNg6CWiwwDpUXQXSErDsLi1IDUQz+o2U0/ToSD36r1oAy1rW5EZqx6L9P4xC3gSsaUZZWP6dhUzZg6E59FiV6p0hTAhkqvVzgak84fx+P540Q8cRnqAjAvD2qDuVmt/25YqaszphRFqfWC60IIIYQQlan1Tz65ublor5n6YmZmhl6vrvTi7++Pp6cnW7duNe7PzMxk37599OrVq9w+dTodDg4OJjchbmWKovDvn04QlpCFm52OLycEoTOv2rSNAW3V1at2hMt0vlphDEx1q5v+zXUQWFoEXWuuTg9s0R/aD4ch89Xt2+bAhR03fi4pfC5uITWZyufvaoutpRl5RSVEJt96hboLi/X8fjyel348Ro93tzDqiz18vSuSuIx8bC3NeLKvP0M6et70cbVyt8fCTENmfrFk4wohhBDipqv1wNSwYcN49913+f3334mKimLdunV8/PHHPPDAA4BaZPOFF15gzpw5bNiwgRMnTjBx4kS8vb0ZOXJkbQ9HiAZpye4ofj0Wh7lWwxcTuuHpaFXlYw3Lqu8+l0J+US3WJ2qsjIGp7nV3jj7PQ6dxMH4ltBl8ZXvwFOjysPr41PobP48EpsQtJDlbLX7uZl/1wJRWq6Gdl2E6361XD2n2r6eYuvIwPx2OISWnEHudOcO7ePPfR4M49OY9vD60fb1kK1maa2npbg+o2WjliUjM4scD0ZToa2nqsWi0Pv/8c/z8/LCysiI4ONi4cnd5vvrqK/r27YuzszPOzs6EhISUaa8oCjNnzsTLywtra2tCQkKIiIgwaePn54dGozG5vf/++3VyfUIIIaqv1gNTixYtYsyYMTzzzDO0a9eOl19+maeeeop33nnH2ObVV19l2rRpTJkyhR49epCdnc3GjRuxsqr6l3Nxa7iQlM2yPVEUFuvreygNxsGoVN774wwA/7mvHT39Xap1fDsvezwdrMgrKmFfZGpdDLHxyEmGtCj1sXfXujuPrRuM/gpaDyq7r/1w9f7C9hs/j0zlE7eQmmRMwZU6U2eus4JcTkExaw5Gk1fYcAL4+0tfs0d1a8rKJ4M59OY9LHyoK4M6eN7UYuflMdaZKqcAelGJnslLD/DqT8dZsjvyZg9N3EZWr17N9OnTmTVrFocPH6ZLly4MGjSIy5fLzwLfsWMHDz30ENu3byc0NBQfHx/uvfdeYmNjjW3mz5/PwoULWbx4Mfv27cPW1pZBgwaRn59v0tfbb79NfHy88TZt2rQ6vVYhhBBVV+uBKXt7exYsWMDFixfJy8vj/PnzzJkzB0vLKzUkNBoNb7/9NgkJCeTn57NlyxZat25d20MR9Sy/qITHlhxg1oZTxlXnGrvk7AKmrjxMsV5haGcvJvfxq3YfGo2GAW2bAFdW5zsZm8GYL/ew+O/ztTnc21/sYfXetRVYO9XPGPzuVKf4pUVB6g1+4ZOMKXELMRQ/b1KNjCmAVh5qZs/ZxPIzeww+/CucV9Ye54NN4TUbYC0rKC4hMjkHgFcGtaF3gBuW5je3llRljHWmyimAvu5ILDFp6hS/T7dGGIOKQlTXxx9/zJNPPsnkyZNp3749ixcvxsbGhm+//bbc9itWrOCZZ54hMDCQtm3b8vXXX6PX640lQRRFYcGCBbzxxhuMGDGCzp07s3z5cuLi4li/fr1JX/b29nh6ehpvtra2dX25QgghqqjhfCISt50vd5znUmouAP/deYHo0seNVYle4flVR0jMLCCgiS3zRneu8ZSN/qXT+baHX+bHg9GM/nIPBy+m8emWiAaVHdDgXV34vL7o7KFZD/XxjdaZksCUuIUYp/JVo/g5QBtPQ2Cq4hpTiqLw54kEAH45GktRyY1n7WYXFPPxX+H8cjS2Rq+z5y5nU6JXcLAyx9Oh4WWIt/NS/66nr8lEKy7R8/n2c4A65S8rv5iP/jp708cnbn2FhYUcOnSIkJAQ4zatVktISAihoaFV6iM3N5eioiJcXNRs88jISBISEkz6dHR0JDg4uEyf77//Pq6urnTt2pUPPviA4uLiCs9TUFBAZmamyU0IIUTdkcCUqBNRyTl8WZq94+VoRWGx3jh9rTEqKC7h9XUn2H0uBWsLM758JAg7Xc0XxezT0g0LMw0XU3J5de1xCor1aDSQV1TCzoikWhz5ba4hBKYAWgxQ7290Op9M5RO3iBK9QmpOacZUNafytS6thRSbnkd2QflfLE/EZpCQqU7jSckpZOfZG39d/C70Igu3neP5VUfpPmcz0388yubTiWTkFVXpeEOGV1tPhwa56p1hKl90ap7JNf16PI6LKbk421jwv0fV18pVBy5xMvZKZlVqTmGF/y2EMEhOTqakpAQPDw+T7R4eHiQkJFSpj3//+994e3sbA1GG467X53PPPceqVavYvn07Tz31FO+99x6vvvpqheeZO3cujo6OxpusBi6EEHVLAlOi1imKwqwNpygs1tO3lRtLJvdAq4E/Tyaw53xyfQ/vpruYksOYL0NZdSAagPdHd6J16VSUmrLTmRPs7wqARgMv3dOax3r7AbDxZNU+3DV6itKAAlP91fsLf4O+hhlvhbmQl6Y+lowp0cCl5RaiV9TXLxfb6mVMOdpY4F46/S+igul8f51KBNT+AX4+Eltuu+o4EZsOgLWFGTmFJfx8OJYnlx8k8O2/GLrwH+ZvDKt0QYqwBHWshoyvhsbJxpKmTtYAhJVmTZXoFT7bpmZLPdG3Bf3buDOsizeKAm//eppDF1N5+vtDdJ+zmRGf7UIvhdFFHXr//fdZtWoV69atq3Zd2unTp9O/f386d+7M//3f//HRRx+xaNEiCgrKn5Y6Y8YMMjIyjLfo6OjauAQhhBAVkMCUqHWbTiXw99kkLM20vDW8A209HXjkDl9A/SBbXAtTKm4VG0/Gc//CXZyIzcDJxoJvH+vOiMDayWaZOqAlfVq6snRyT6bd3Yr7OnkBsOVMohSbr4qUc5CXCmaW4NmxfsfSNAh0DpCfDvHHatZHVrx6b2mn9iVEA2aoL+VsY4m5WfU/ihiC+xEVTOfbfFoNTD3ex9/4PDO/aplNFTGsVvffR4P46elePHqHL/5utigKnIrL5Isd5/nzZHyFx4eXBqZaN9DAFGBc8fCPE/GkZBfw58l4zifl4GBlzsRe6vv4jCFtsbLQsj8qldFfhvLnyQT0CpxPyiExK7+y7kUj5+bmhpmZGYmJiSbbExMT8fT0rPTYDz/8kPfff5+//vqLzp07G7cbjqtun8HBwRQXFxMVFVXufp1Oh4ODg8lNCCFE3ZHAlKhVOQXFvPXraQCe6teCFk3sAJh+T2ucbCwIS8jihwON41enP0/E8/SKw2QVFNPd15k/nuvLwLYe1z+winoFuLLiiTvo11othB7U3Jkm9jqy8osbZWZatR1frd779gHz6k0lqnVm5uDXV31c0+l8xml83lfSRIRooK6syFe9bCmDVh7qe0t5BdCjknMIT8zCTKth2sBWtHK3o7BYz58nKg4aXU9OQTFRKWrh8vbeDgT5uvDOyI5sf7k/+/5zN8O6qFmKhy+mV9iHITDVtgEHpjo3cwRgWehFguZs4eU1aqB8ch9/7K0sAPB2smZq/5YAWJppebC7j7FmlqG4uxDlsbS0JCgoyFi4HDAWMu/Vq1eFx82fP5933nmHjRs30r17d5N9/v7+eHp6mvSZmZnJvn37Ku3z6NGjaLVa3N3db+CKhBBC1BYJTIlatWDLWeIz8mnmbM0zpR9cQZ0i8GKIuvLi4h3nKbnN0/33R6by/OqjKAo82N2HH6bcgXfpFIm6otVquLe9GvjadKr86XyXM/MZ8+Ue/r32eOPOqtKXwNGV6uNuj9bvWAwCSutMna9pYEoKn4tbx5XAVM2CwoaMqfByAlOGbKk7WrjgaGPByK5qlurPh2s+nS8sIQtFAXd7XZkxezhYMaiD+tp7NDq93OMz8oqIz8g3GXtDNKm3H0/1a2HMnMov0mNvZc6/SjPPDJ4d2JIVTwSz+7WBzBvT2Vg4XQJT4nqmT5/OV199xbJlyzhz5gxPP/00OTk5TJ48GYCJEycyY8YMY/t58+bx5ptv8u233+Ln50dCQgIJCQlkZ6vZkhqNhhdeeIE5c+awYcMGTpw4wcSJE/H29mbkyJEAhIaGsmDBAo4dO8aFCxdYsWIFL774Io888gjOzs43/W8ghBCiLAlMiVpzJj6Tb3dHAfDOiI5YW5qZ7H+whw9ONhbEpuexPexyPYzw5jibmMUTyw5QWKznnvYevDeqExY1mKpSE0M6qtP5/jqVWCb4pygKL689zsGLaaw+GM20Hw7XykpVt6Tz29QMI2tnaHt/fY9GZagzFb1PrRdVXTex8PnOnTsZNmwY3t7eaDSaMktyK4rCzJkz8fLywtrampCQECIiIoz7o6KiePzxx/H398fa2pqAgABmzZpFYWFhpeft378/Go3G5PZ///d/dXGJoo4lZxlW5LuxwFR5U/kMgal72qnBIkNgal9kKjFpNVsd1rBSXXvv8qfzBPo4Aer7YHl1pgyZXd6OVjhaW9RoDDeDo7UFM4a048/n+3Lg9RC+mNCNtf/XG0cb0zFrNBr6tHSjSWmtLz83W0DNVhOiMg8++CAffvghM2fOJDAwkKNHj7Jx40Zj8fJLly4RH38lu/HLL7+ksLCQMWPG4OXlZbx9+OGHxjavvvoq06ZNY8qUKfTo0YPs7Gw2btxorEOl0+lYtWoV/fr1o0OHDrz77ru8+OKL/O9//7u5Fy+EEKJCNV8WTIir6PUKr687QYleYUhHTwa0LZsabWVhxrjuPvxv5wW+23uRkPa1N62tvimKQmRyDrvPp/DF9nNk5hcT5OvMooe6Yqa9edOqglu44GhtQUpOIQeiUrmjhatx37I9Uew8m4TOXIuiwKZTiTy/6ggLx3flYmouq/ZfYn9UGv8Z0pbgq467LR1ept53Hl//0/gMXFuCQzPIjIFLe6BlyPWPudpNzJjKycmhS5cu/Otf/2LUqFFl9s+fP5+FCxeybNky/P39efPNNxk0aBCnT5/GysqKsLAw9Ho9//3vf2nZsiUnT57kySefJCcnx+TLRnmefPJJ3n77beNzGxubWr8+UfduNGPKMJUvITOfjLwiY7AnObuAgxdTAbing1pfpqmTNXe0cGHvhVR+ORrH1AEty++0EmcMgSmv8gNTTZ2saWKvIymrgJOxGXT3czHZH3YL1Je6VhN7nbF24fX4lwamIpNrFvgTjcuzzz7Ls88+W+6+HTt2mDyvqAbU1TQaDW+//bbJe8PVunXrxt69e6s7TCGEEDeRBKZErfjxYDSHL6Vja2nGzGHtK2w3Ibg5X/1zgb/PJhGVnGP8lfVWo9crnE/K5kBUGgeiUtl3IYW4jCtFX1s0seXrid2xsjCrpJfaZ2Gm5Z72Hqw9FMPGkwnGwNTZxCzm/hkGwH/ua0dzFxue+u4Qf5xI4HjMDmLS8ox9LNkd1XADUyVFYHaD2QbZSRD+p/q4oUzjA7UuVEB/OPK9Op2vAQemhgwZwpAhQ8rdpygKCxYs4I033mDEiBEALF++HA8PD9avX8/48eMZPHgwgwcPNh7TokULwsPD+fLLL68bmLKxsblukVzR8CWVBqYMGTfV5WBlgZejFfEZ+Zy7nEWQrxoI2nbmMnoFOjZ1MK4wBzCqazP2Xkjl12M1C0ydjlMDU+0qCExpNBoCfZzYfDqRo9HpZQJT4Qnq8Q11Rb4bZQhMGepwCSGEEEJUh0zlEzcsJbvAGPR48Z7WeDlWXEvJ19XWWKx7xb6LN2V8tS2/qITBn+7knk928p91J1h3JJa4jHwszbQE+7sw/Z7WrHmqF87VXAK9tgwuzRL440Q8aw/FsCP8Mi+sOkpBsZ7+bZowsZcvA9q688WEbliYaYhJy0OrgS6lRW+PxaTXy7grpShw4Bt43xd+f/nG+jq+CvTF4N0NPDrUzvhqi39/9f5SDX7ZvYlT+SoTGRlJQkICISFXAmuOjo4EBwcTGhpa4XEZGRm4uLhUuN9gxYoVuLm50bFjR2bMmEFurmRo3IqSsw1T+Wr+OtnKUGcq4cp0vr9Kp/Hd2940eGnI4g1PzCKnoLha5ynRK8bC5RVN5YMr0/mOlFNn6mzpGBty4fMb4eeqBqYupeTe9jUkhRBCCFH7JGNK3LD1R+PIyCuirac9j/X2u277R+/wZUd4Ej8ejOGle9vc9KyiG7XnfDJnE7OxNNMS5OtMDz9nevi70N3XpUxdrfpwZys37HTmXM4qMK6oBOBia8n8MZ3RlK7YFtLegxVP3MGx6HSGdvbCwdqCTrM3EZ+Rz+WsfNztrerrEkzlZ8Kvz8Gpderzkz/BfR/UbOU5RYHD36mPG1K2lIEhUJYUro61OtfYQIqfJySohfcN9UIMPDw8jPuude7cORYtWnTdbKmHH34YX19fvL29OX78OP/+978JDw/n559/rvCYgoICCgoKjM8zMzOreimiDiVnlU7lq2HGFEBrdzt2nk0y1m+6nJnP32fV+oX3djD999fEXoeHg47EzALOxGeWyWiqTFRKDnlFJVhZaI0BmPJ0LQ1MHb2UbrJdURTCSjOmGnLh8xvh7WSNpZmWwhI9cel5+LjIFFshhBBCVJ0EpsQNM9TeGNzRE/MqFPnu38adZs7WxKTlseFYHOO6+9T1EGvVttLC7eN6NGPOyE71PJqyrCzMWPhQIL8eiyc5u4CU7ELyi0qYPbxDmWBTT38Xevpf+YLWsokdEZezOR6dQUj7BhCYSo6AFWMhLRK05qDoIS8VMqLBqXn5xygK7FsMnp3A707TfTEHIDkczK2h4+i6H391uQaARguFWZAVX/UgU3EB5CSpj+s5Y6q6YmNjGTx4MGPHjuXJJ5+stO2UKVOMjzt16oSXlxd3330358+fJyAgoNxj5s6dy1tvvVWrYxY3zlBjqkkNa0zBlXpNEZfVwNSKfZcoKlHo1tyJtp5lM5s6ejuSmHm53BpQlTG8x7X1dKi0ZmBnHyc0GohNzzMJ7idk5pOZX4yZVkNLd7sqn/dWYqbV4OtqQ8TlbCKTcyQwJYQQQohqkal84oYZfq1uU8Vfgs20GiYE+wLwXej1p/P9cSKe70KjUJTamR7wza5IRn2xm+d+OMLHf4Wz9lAMf59N4mRsBnHpeegrmYagKArbw9QAwMByCrw3FAPbevDJg4F893gwfzzfl20v9+eu0imUlenczAmA4w1lOt/mmWpQyrE5TN4I7qUZRXFHKz7m7EbY+BosHwFnN13ZnpUI659WH3cYCVaOdTXqmjPXgUsL9XFSeNWPyypdwcjcSl1psB4Z6j8lJiaabE9MTCxTGyouLo4BAwbQu3fvGq2OFBwcDKgZVxWZMWMGGRkZxlt0dHS1zyNql16vkJJzY6vywZXso7OJ2RQUlxinh0/u419u+w5N1f/nT8ZVL2vuevWlDOx05rR2V8d0ddaUofC5v5stOvP6z6qtK37GAuhSZ0oIIYQQ1SOBKXFD9HrlSmCqGrUzxnVvhoWZhhOxGUSUHl+eM/GZPLvyMG/+corVB278C2VOQTHzNoZx+FI6G47FsXDbOV5ec4xJ3+7n/kW76P3+Nh79dl+FQbCzidnEpuehM9fSq4XbDY+noQn0Ub+4HY3JqOeRAEX5cGGH+nj89+DTA7y7qM/jj1Z83MnSaV36Ylj9qNpHTjIsHw4p58DRBwa+UYcDv0FubdT75LNVP+bqaXw1meJYi/z9/fH09GTr1q3GbZmZmezbt49evXoZt8XGxtK/f3+CgoJYsmQJWm31346OHj0KgJdXxSuH6XQ6HBwcTG6i6kLPp9D6jT9ZfeBSrfWZlltorEPkeiM1pkqzj5KyCvh+7yWSswvxdLBicMfyi+N3LK0PdTK2eq9vxhX5KqkvZWCoM3X0qjpTZxOq/x55K/KXwJQQQgghakgCU+KGXErNJb9Ij6W5Ft9Kam9cy9VOR99WagbPnyfLrzujKApzfj+NIYHprV9P3/AH3h3hSRQW62nqZM2MIW15qGdz+rR0pa2nPe72OjQa2H0uhVMV/KJumMbXO8C1QdSTqm1XZ0zVVoZajV3cDUW5YO8Fnp3VbV6B6n1FGVNFeRD+x5W2JQXww0Ow5D5IClP7mrQBHJvV8eBvQJPW6n11MqaMgambM40vOzubo0ePGgNDkZGRHD16lEuXLqHRaHjhhReYM2cOGzZs4MSJE0ycOBFvb29GjhwJXAlKNW/enA8//JCkpCQSEhJMalDFxsbStm1b9u/fD8D58+d55513OHToEFFRUWzYsIGJEydy11130blz55ty3Y3R6gOXKCzWV/g6XROGwudONhZYVGH6d0VsdebGlfc+2awGch/t5Vthnx1LM6YiLmeTX1RS5fOcNgSmrpMxBdC1uRNgGpgyFE6valbxrUpW5hNCCCFETUmNKXFDwkuznVq521Vae6M8gzt6si3sMn+ciOe5u1uV2b/lzGV2n0vB0lxLOy8HjkWn88KqI6x9uneNv8xsPKV+ubq/sxdP9Stbk2bqysP8flxdzc7wJeZq20sDUw15Gt+NaOtlj4WZhvTcIqJT82juWo91QiI2q/ctQ65kAXl3Ve/jj5ZfHPzcFijMVrOi/rUJVk9QtyWHg607TPr1ylS5hsqQMVWtwJRhRb6bU/j84MGDDBgwwPh8+vTpAEyaNImlS5fy6quvkpOTw5QpU0hPT+fOO+9k48aNWFmpNXc2b97MuXPnOHfuHM2amQYJDQHRoqIiwsPDjavuWVpasmXLFhYsWEBOTg4+Pj6MHj2aN95owNlvtzhFUdh9PgWo3SwYQ32pG5nGZ9Daw47Y9DyyC4rRmWt5uGcFtecAL0crXGwtSc0pJDwhiy6l2U2VSckuIDGzAI2maivqBZYGpo5Fp1OiVzDTaoxT+W73jClDYXjJmBJCCCFEdUnGlLghZ2/gl+B72nkYP7RHXfNBtrBYz7u/nwbg8Tv9WfxINxytLTgWk8HCrRE1Gmt+UQnbzqh1bwZVMNVjbJD6JXn90VgKik1/Uc/ILeLQpTTgytLjtxuduZmxjsrR+q4zda40MNXq3ivbPDqAxgxyUyAjpuwxhpX72o8ACysY9x20vR9cAmDiL+BWNgDa4DQxTOWrScbUzQlM9e/fH0VRytyWLl0KgEaj4e233yYhIYH8/Hy2bNlC69atjcc/9thj5R5/dZaen58fiqLQv39/AHx8fPj7779JSUkhPz+fiIgI5s+fL1Pz6lDE5WySSlfPi07NpbBYXyv91kbhc4OrV7l7oGtTnG0rnhqo0WjoYJjOF1fxdL6o5BwSMvIBOBOvvsf5udpiq7v+b3mt3O2xtTQjp7CEc5ez2XAszlicvSqBrVuZIWMqJi2PopLa+bcihBBCiMZBAlPihhgyplrX4AO3s60lvQNcgbLT+ZaHRhGVkoubnY5n+gfg5WjNew+oK+B9vv0cR0oDRNWx53wyOYUleDjoCCydsnatvq2a4OlgRXpuEVvPXDbZ93dEEiV6hdYedjRzvn1XHOpimM531VSUmy7lvFoPSmsOLfpf2W5hDe7t1MfX1pkqzIXwjerjDqPUe0sbGL8Cph0Cj/Z1Pera4VYawMlJgtzUqh1jzJi6tVbkEw3b7nPJxsd6RZ26XRsMwS43+9oNTD3Wx++67Q2ZsCdjy5+uvT8ylZCP/+bOeduY8fMJdoSr7wPtvKq+uEenZuo5Hluyn+d+OEJRiUKQrzM+t/H7BoCHgw5rCzNK9ArRtfRvRQghhBCNgwSmxA0Jv8EpCoYitX+ejDduS8oq4NPSrKhXBrXG3soCgKGdvRgR6I1egWV7oqp9ro2lwa/BHTzRVjDt0EyrYVQ39cv9moOmxdYN0/hu12wpg86lX6qO12UB9LQo2DIbVk2Az++A95rClreu7D+3Rb1v3gusrsmIqajO1LnNUJQDTs2haTfTffVcELxadHbgUDq9raoF0G9yxpRoHHafSzF5XltTtAw1ptxuoPC5Qe+WrtjpzBnWxZu2ntfPnuvorb6+nSonYyolu4BpPxymWK9QrFf4Yf8lvt4VCVStvpRB1+bqypjxGfnozLW8GNKaFU8EV/i+c7vQaDTGlfmkzpQQQgghqkMCU6LGCopLjF9UalrU9d72nmg0ahAkJi2XEr3CC6uPkJVfTHsvB8YE+Zi0f6y3HwB/nU4kt7C4yucpLtGz+XTl0/gMxpRO5/v7bBKJmep0jhK9YvzlfGCb2zswZai7ciI2g+K6mo7x+0uw6xMI+w2Szqh1oXZ9DJE71f0Rf6n3re4pe6x3oHp/bcaUYRpfhwdurUBUeapbAD2jNGPKvuLV6YSojuISPfsuqIGpK6utZddK37VZY8rL0ZqjM+9hwYOBVWrfsakaYAqLzzKZbqbXK7y05hiJmQUENLHlu8d7EuzvYtwf6ONc5TEN6eiJvc6ckHYebH6xH8+HtMLK4vZbLKM8/m5qVtiFJAlMCSGEEKLqJDAlaiwyOYdivYK9zhwvR6sa9dHEXkcPP/XD/8aTCSzYcpbd51KwtjBjwfjAMgXVA32caO5iQ25hiTHQVBX7I1NJyy3C2caCnn4ulbZt0cSO7r7O6BX4+XAsiqLw16kE0nKLcLAyJ8i36l9QbkUBTeywtTQjr6iEc0m180XURGHOlQDU3TPhkZ8g8BH1+S/PQk4yRO1Sn19dX8rg6owpQ02iwhw4u0l93OGB2h/zzWYogF6VjKnMeMhOAI0WXFvW7bhEo3E8NoOsgmIcrMwZ2kkNeNZWsKE2a0wBmJtpq7z4RnMXG+ytzCks0ROReOX17X//XGBHeBI6cy2fT+hG31ZNWDXlDn548g4+HR9In5auVR5P52ZOHJt1L19P6l6/C0jUA1mZTwghhBA1IYEpUWOGaXytPe3R3ECGyn2lGUxf/XOBRdvOATB3VCeT2iEGGo2GEYHqdKUNR+Mq7LOoRM/BqFQy8oqAK6vx3dPeA/MqrOg3truaNbVsTxRDPv2Hp1ccBtTV+Kpy/K3MTKsx1mE5Hl0H0/midkFJITg2hzunq6vuDXlfXUkv/SJ89wAU56vPm7Qte7xnx9IC6MlXaiud3QRFueDsdyVwdSszFEBPCrt+2+i96r1Hh7LTHoWookMXU00WodhTWl+qd4AbLd3tALhQa1P5DDWmbnwqX3VpNBrjdD5DAfT9kal8sEnNTpw9vINxSqBGo6FXgCsjAptW+z3udp+2VxHDynxRyVJjSgghhBBVVyffsGNjY3nkkUdwdXXF2tqaTp06cfDgQeN+RVGYOXMmXl5eWFtbExISQkREzVZaE1Wz9lAM7/x2ulanZt1ofSmDwR3VX+MTM9UvKxN7+TKya8VFnA2Bqb/PJpGWU1hm/+XMfMb/by9jFofS9e2/eOCL3Ww4pgaxhnSs2lSn+zp5YWWhJSEzn7CELHTmWkZ1a8rMYR2qdW23KsN0vmN1sTKfoX5Uq5ArU+509jB8ofo44bh63zKk/Cl5FtZXAlZxRyEvHba+rT7vMOrWn8YHVwWmqpAxdak0MNW8V92NR9zWolNzGfffvdy/aBcRpQtaGOpL9WnpetVUvtoJTBmLn9dSxlR1GabznYrN4GxiFk8sO0CJXmFYF2/G9/C5ztGiMrX9b0UIIYQQjUOtB6bS0tLo06cPFhYW/Pnnn5w+fZqPPvoIZ+cr05/mz5/PwoULWbx4Mfv27cPW1pZBgwaRn59f28MRqF86XvvpON/simR7eFKt9Xu29AtMTetLGXg6WtGtuROgTtV7fWi7Stu3dLenvZcDxXqFP64qmg5w5FIawz7bxaGLaZhrNegVOHIpnfTcIux05vSu4nQMeysLZgxpR09/F2YNa8/+/4Tw8bhAXCpZivx2YliZr04CUxGb1fuWIabbAwZCt0lXnpc3jc/AUGcq7gisfwbSItUMrN7TanWo9cYwlS/jkjpNsTKGwJRPcN2OSdy2jkanU6JXyC4o5onlB0nIyOfQRXXl094t3YwFrZOyCsjKL7qhc+n1CinG4uf1FZhSM6Z2nUtm0rf7ycwvpmtzJ+aP7nxD2b8C47+VuIw88otK6nk0QgghhLhVmNd2h/PmzcPHx4clS5YYt/n7+xsfK4rCggULeOONNxgxYgQAy5cvx8PDg/Xr1zN+/PjaHlKjt2hbBMV6tRbP9vDL3NPeo1b6DS8NTJU35a66Zg7rwJqD0Tx3dyt05tcvEjuyqzen4zP55WgcE4J9URSFH/ZHM3vDKQpL9LRyt+Orid2xMNeyOyKZA1Gp9G/jXqW+DSb19mNSabH1xqZraaDwdFwmCRn5eF5VQ6yoRM+vx+Lo38a9+oG6lPNqEElrAf53ld1/7xy4FAqFudCiX8X9eAXC0RWwb7FaON3MEsYtA5vK64fdMmxdwcYVclMgOeJKIO5aBdmQcEJ93PyOmzY8cXsJS8g0Pr6YksvoL/dQWKLH08GKFm62aDQa3OwsSc4uJCo5l06lK3fWREZekfH9yLUWVuWriQ6lU/nOl9bMaulux7eTemBt2TgKlNclV1tL7K3Mycov5lJqbq18PhBCCCHE7a/WM6Y2bNhA9+7dGTt2LO7u7nTt2pWvvvrKuD8yMpKEhARCQq5kSzg6OhIcHExoaGhtD6fRi0rO4afDscbnO8IuoxgKRt+A7IJiolPzAGjtYXfD/QX6OPHuA53wcKhaEfVhXbzRaNTaIIcupvHYkgP8Z90JCkv03Nveg3VT++DnZktTJ2vG9fDhg7FdGNpZViyrKm8na2MB+F+OxprsW7TtHNN/PMac309Xv2PDNL7md6jT965l5QD/twueOwKWtpUMMFC9LywtXjxkHjTtVv3xNGSG6YqVFUCPPQhKiVqPy7HZzRmXuO2ciVd/ZHg4uDk2lmbEpquv7b1buhoziAxTtC7c4Mp8hvpSjtYW1fqhoDb5u9liUxqE8nSwYtm/euLcSLJh65pGozH+Wzl3uQ4WzxBCCCHEbanWA1MXLlzgyy+/pFWrVmzatImnn36a5557jmXLlgGQkKAWofbwMM3a8fDwMO67VkFBAZmZmSY3UZaiKKTmFJoEnhZui6BEr9CrhSs6cy1xGfmcTbzxD4uGOiRudjpc62E6hpejtXF1vdFf7uHvs0lYmmuZMaQtix8Jwk5X68mAjc6obmqgw7AyIUB+UQkr9l4EYOfZpOoHOY31pe6puI25Dsyv8yXRo7QAOkCXhyBocvXGcStwa63eJ4VX3ObSPvVepvGJGxAWr76njgxsyicPBhq39wlwMz6urdpBSYbC5/WULQXqAg/jezTHz9WG5Y/3pKmTdb2N5XYUWFqjcM/55DL79HqlVn4cE0IIIcTtpdYDU3q9nm7duvHee+/RtWtXpkyZwpNPPsnixYtr3OfcuXNxdHQ03nx8pDhpeZbsjqLbO5t59Jv9XEjK5nxSNuuPqNkurw1pS+8Atb7StrDLN3wuQ32ptjdY+PxGjAi8UiA90MeJP567k6f6BTTa1ZBq29BOXliaawlPzOJ06RfX34/Hk1JacD45u7B6Qc6ifIj8R318bX2p6rK0gYGvQ+cHYejHt0fB82tVZWU+w4p8Mo1P1FBGbhFxGWp9xzae9gzq4Mn8MZ15oGtT7ut0JcvU303NjL3hwFQ9Fz43mDmsPTteGSBTzepA/zZNANgRbvrjRVGJnqGLdjHk038oqsWFWIQQQghx66v1wJSXlxft27c32dauXTsuXboEgKenJwCJiYkmbRITE437rjVjxgwyMjKMt+jo6NoedvVlxsOaxyB6f32PBFCzpZbsiQTUgq6DF/zDU98dQq9ASDsPuvg4MaCtO6DWmbpR4QlqQKI+P9SP6taUf/XxZ/aw9vz0dG9aussXjNrkaGPBPe3UzEZD1tTSPVGAmnEA5f8iXqGLu6E4D+y9wb399dtfT9+XYNT/1CDV7ciQMVXRVD59CUQfUB9LYErU0JnS+lJNnaxxtLYAYFx3Hz55MNCk5lKLJrWTMRWTpk4TbOosWUq3qztauGJppiUmLc9YxwtgV0QyZ+IzCUvIMq7qK4QQQggBdRCY6tOnD+HhplNPzp49i6+vL6AWQvf09GTr1q3G/ZmZmezbt49evcpf7lyn0+Hg4GByq3d7FsKpdbDtnfoeCQBHotOJTs3D2sKM/m2aUFiiN9Z3eCGkFQAD2qiBqUMX08jIu7GVlQzFctt43nh9qZqysjBj5rD2PNbH3xgoEbVrVDc1K+2Xo3EciErjRGwGluZaHr9TXdDAsKS8QUFxCTFpueV3ZpjG1/Lu2zPDqbYZMqZSL0BxYdn9iaegMAt0DrUT6BONkmEaXzuvygP7LQxT+ZJybmgqVlRpYMvPtZIacuKWZmNpTnALdar932evrAT867E44+M6WfFVCCGEELesWg9Mvfjii+zdu5f33nuPc+fOsXLlSv73v/8xdepUQC2M+cILLzBnzhw2bNjAiRMnmDhxIt7e3owcObK2h1M3FAXC/1QfR++H4oL6HQ9XPvDd096DJY/1YPEjQXRs6sD/9QswLo3t42JDS3c7SvQK/0QkVdZdpYpK9By5lA5Ap6ZONzp00YDd1boJrraWJGcX8NKaowCM6OLN/aWF5PddSKH4qikZ01cfo+/87Ry+lFa2s6rUlxJXODQF2yagL4awX8vujy6tL9WsB2hlNTFRM2EJhmnZlf/g09zVBo0GsgqKSc4uJ1BaRRdT1MC1r+ttmukoAOjX2jCdT83Qzi8qYdOpK3VEj0Wn18ewhBBCCNFA1XpgqkePHqxbt44ffviBjh078s4777BgwQImTJhgbPPqq68ybdo0pkyZQo8ePcjOzmbjxo1YWVVtRbZ6lxSuLnkPUJwPMQfqdTgleoXfjscDMLyLNxqNhsEdPfltWl9eG9LWpO2A0toP28PKD0ydjsvkp0Mxlf4ifjwmg7yiEpxtLOq1xpSoexZmWoZ18QYwrsI4qbcfHbwdcbAyJ6ugmJNxasbFuctZ/H4iHkVRa4uYSDmvTknTmIF/v5t6DbcsjQZ6PKk+/ucTNSB+tUtSX0rcuDPGjKnKA1M6czOalU6/K286X3RqLk8uP8iuiMqn90alSMZUY2CoM7UvMpW8whK2hV0mp7DEmCx7LDqjHkcnhBBCiIam1gNTAPfffz8nTpwgPz+fM2fO8OSTT5rs12g0vP322yQkJJCfn8+WLVto3bp1XQylboT/YfrcUNC5nuy7kEJSVgGO1hbcVforZUUM0/n+PnsZvd70i+7eCymM+nI3L605VjawcE07gGB/Vyk03giMLl2dD6CnnwsdmzpiptVwRwu1mP7uc+oX0SW7o4ztjl87TeP0evW+RT+wdqq7wd5uej4JFraQeALObTXdZwhMyYp8ooZK9ArhhoUsrjOVD64ugF520YO3fzvN5tOJfLHjXIXH5xYWc7m0+LkEpm5vAU3saOpkTWGxnr0XUthwVM3qfqCrOj387OUssguK63OIQgghhGhA6iQwdUtTFMiILZudcLWzG9V7ry7qfVT9BqY2lE7ju6+TJ5bmlf8n7e7ngp3OnOTsQk7EXvnF8mBUKv9aeoD8InVa1tW1IK5lCEzdUVpDQtzeOjZ1MGbGTe7jZ9zep6W6lHzo+RTScwv56XCMcd+JmAzTrLtT69X79iPreLS3GRsX6D5Zfbzr4yvbUyMhM0bNQGvWvX7GJm55F1NyyC/SY2WhrVKgyFBn6kKSacbUoYtpbD6tLmhyJj6zwozbS6nqND4nGwscbSxuZOiigdNoNPQrzZr69Xgc20qn9D1+pz/ejlYoCpyMNc2aCk/IIiv/xupfCiGEEOLWJIGpax35Hj5pD+ueUle9ulZ20pWV+O6do97HHICivJs3xqsUFuv586Rat8Ew5aoyluZa7iwNKDy+7ABvrD/BmoPRPLbkALmFJbRyV38R33w6kYListdfWKznYJRaP+iOANfaugzRgGk0Gr6a2J2vJ3ZnyFXLx/cu/e9/ICqVpXuiyC/S09rDDnOthpScQmLTS/+fSL0ACcfVIErb++vjEm5tdzwDWgt1VcNL+9Sg1Pej1X0+PcFSMk9EzZyJV7Ol2njYV2kBCX9DYOqqqXyKovDBpjDj87TcImNW1LWikkvrS7lIfanGoH9pBvfPh2MpLNYT0MSW9l4OdPFxAkzrTP19NolBC3byn3Un62GkQgghhKhvEpi6ml5/JSvh+Gr47YWymVMRfwEKeHYGv75g7w0lhVcKEd9kO88mkZFXhLu9jmD/qgWKJvX2w9nGguTsQr7fe4lX1h4nu6CYO1q48MuzffB0sCKroJh/zpatFXI8Jp28ohJcbC1p7S71pRoLHxcbQtp7mGxr6W6Hu72OgmI9X2w/D8CTfVsYpwQdjyn9Nfz0L+q9f1+wlWBmtTk2hS7j1ceb/gPf3Aup58GxOQxfVL9jE7c0w+qq1yt8bmAITJ2/nG3MivonIpm9F1KxNNfibq8DrtStutbF0vpSvjKNr1Ho3dINC7MrAc/hXZqi0WiuBKaumvK9Yu9FQM3AFUIIIUTjI4Gpq53bomZ3WNiARguHl8PGGabBKUN9qTb3qcWJ/fuqz+upzpRhGt/9nb2r9Is3QK8AV/a/HsKyf/VkXPdmuNpa0reVG99M6oGNpTlDOnkC8MeJ+DLHXqkv5SL1pRo5jUZjzJoqLNHjZmfJ8EBv40qNxi8dhsBU+xE3f5C3iz7PAxqIPQg5l8GjIzz+F7i1qu+RiVuYIWOqXRXqSwG09rBHq1Ezph78717OJmbxwaZwAB69w5ee/i4m/V4rqnRFPj9Zka9RsNOZ0933ypT/YV3UjNsuzZyAKwXQU3MK2V461S85u4CU7Ppf6VgIIYQQN5cEpq62/7/qffd/wYjP1cf7voSNr6lT9Yry4fx2dXubIeq9nyEwtfPmjhXIKyxhyxm1rsfwwOtP47uahZmWfq2bMH9MFw69eQ/fPR6Mrc4cgKGl07XKm86390IqoAa3hOgd4GZ8/MgdvujMzejSzBGA49EZkBYFcUfUQG/bYfU0ytuAWyvoOEp97NcXJv8BDl6VHyPEdRgym9peZ0U+A09HK94Z2RFrCzP2R6UyaMFOTsRmYGtpxjP9A4wr+0nGlDAY0FadztexqQMtmqilAjo1c0Sjgdj0PC5n5fPrsTiKSq78ABieUH5gU9w+Pv/8c/z8/LCysiI4OJj9+/dX2Parr76ib9++ODs74+zsTEhISJn2iqIwc+ZMvLy8sLa2JiQkhIiICJM2qampTJgwAQcHB5ycnHj88cfJzi67kIMQQoj6cUsHpvKLyqkBVVPJEWrGFBro8QQEPgz3faju27cYPusJ296Bohx1+p6h8LkhYyruMBTc3De4v88mkVtYQlMna2MwoDZ0a+5c7nS+wmI9By+qgSnDimyicevTyg0zrQZLcy0Tgn0B6Fz6a/jJ2Az0pzaoDX37gF3lK0aK6xj5JTy6Hh75Gaxq7/930Thl5hcZ68C1q+JUPoAJwb5snn4XIe3cjcnET/Rtgaudzph5ZZgieK2LhowpN8mYaiwevcOP/+sXwPujOhu32enMjfUsj0dn8HPpwhnmpVnYYRKYuq2tXr2a6dOnM2vWLA4fPkyXLl0YNGgQly9fLrf9jh07eOihh9i+fTuhoaH4+Phw7733Ehsba2wzf/58Fi5cyOLFi9m3bx+2trYMGjSI/Px8Y5sJEyZw6tQpNm/ezG+//cbOnTuZMmVKnV+vEEKIqrmlA1N/hyeZPI/PyKPP+9t4ec2x6ne2/yv1vvVgcPFXH/d8EsZ9Bw7NIOMShH6mbm8zWJ3GB+Dsp9Z60RdfWb79JvnzpDrV7r5Onmg0tTetTqvVGKfz/X7VdL5jMenkF+lxtbU0fqgUjVtTJ2uWTe7JD0/eQZPS+jKtPezQmWvJKiim8PjPakOZxnfjzHUQMADMLet7JOzcuZNhw4bh7e2NRqNh/fr1Jvvr6tfr/Px8pk6diqurK3Z2dowePZrExMTavrxGIax0up23o1W1V8hr5mxjXBDhlUFteLp/AIAxY+p8Uk6ZH44KikuIy1ADYZIx1XhYW5rx2pC2dGxqGkw3TOf7+UgMx2IyMNdqGNfDB5CMqdvdxx9/zJNPPsnkyZNp3749ixcvxsbGhm+//bbc9itWrOCZZ54hMDCQtm3b8vXXX6PX69m6dSugvt8sWLCAN954gxEjRtC5c2eWL19OXFyc8b3pzJkzbNy4ka+//prg4GDuvPNOFi1axKpVq4iLq3gVaiGEEDePeX0P4Eb8ejyWsb1bG59/F3qR2PQ81h6KYUhHT+5u51HJ0VfJz4SjK9THwdf8etJ+OLS8G3YtgN2fQkkBdBhl2sb/Ljj6PUTthFYhNb+gasgvKmHrGfXXpatXSqst93f2YsnuKLacTiS/qAQrCzP2lhYlvaOFa60GwsSt7c5WbibPzc20dPB2IPFSBFaXjwAaaDe8fgYn6kROTg5dunThX//6F6NGjSqz3/Dr9bJly/D39+fNN99k0KBBnD59GisrK0D99To+Pp7NmzdTVFTE5MmTmTJlCitXrqzwvC+++CK///47a9aswdHRkWeffZZRo0axe/fuOrvW25Uhq6ldFafxXUuj0RDS3sNkUQRPByscrS3IyCvi3OVsk2BEdGoeiqJmy7ja1n9wVdSvLj5OrDkUwx8n1FWF+7dpQp8AN1buu0RYogSmbleFhYUcOnSIGTNmGLdptVpCQkIIDQ2tUh+5ubkUFRXh4qLWL4uMjCQhIYGQkCufvx0dHQkODiY0NJTx48cTGhqKk5MT3bt3N7YJCQlBq9Wyb98+HnjggSpfQ25hMeaFxVVuL4QQjVluNV4vb+nA1K6IFJKzC3Cz01FYrOfHg9HGfW//dpo+Ld2wsjC7fkfHfoDCbHBrAy0GlN1vaQsDX4egxyArHpp1N93v31cNTNViAfTcwmL0pR/iSY+G0+uh6yNg7QyoKyFlFxTj5WhFYOkvj7Wpq486nS8hM59vd0dyfydvQi8YAlMu1zlaNHadmzlRHHtUfdK8F9hXMUgsbglDhgxhyJAh5e679tdrgOXLl+Ph4cH69esZP3688dfrAwcOGL8oLFq0iPvuu48PP/wQb++yNfMyMjL45ptvWLlyJQMHDgRgyZIltGvXjr1793LHHXfU0dXengzTpdp41t7qqhqNhnZe9uy9kMqZ+EyTwJShvlRzFxv5YUMQWLoyn8Gobs1o7aH+W4xIzEKvV2SBldtQcnIyJSUleHiYfibw8PAgLCysSn38+9//xtvb2xiISkhIMPZxbZ+GfQkJCbi7u5vsNzc3x8XFxdjmWgUFBRQUXCnEn5mpBvN7vrsVrU6mIwshRFXoC3Kr3PaWnspXrFf4tXRVus2nE0nOLqSJvQ4PBx0XU3L5Zlfk9TvJToJdn6iPez55ZYpeeRyblg1KgZoxBWqR57gjpvuK8mDf/9TV/qoou6CY+z79h/4f7CAjtwh+fR7+egO+GwUF6peJP0un2A3u6FknH960Wg33lWZizd8Yzl0fbGfPVRlTQlSmi48jXbWlU7cM/3+IRuF6v14D1/31ujyHDh2iqKjIpN+2bdvSvHnzKv/SLq4Ir4PAFFzJwLq2TlCU1JcSV2njaY+lufoR1MHKnIFt3fFztcHSXEtuYQnRaVX/ICsaj/fff59Vq1axbt06Y/ZtXZk7dy6Ojo7Gm4+PT52eTwghGrtbOmMKYN2RWCb38Wfl/osAPNjdh1Yedjy/6iifbTvHA12b4u1kXf7B+hL46XE1C8qtNQROqNkgHLyh0zg48SP8+W/416YrAa4/XoEj38GB1vB/u0nM1aPRgLt9xW+oi7ZGGD/Ebw/dw8jz6jx64g7DyvEUjF/N5tLV+IbWwTQ+g6f7B5BXVMKJ2HTOJmRTWKInoIktLaW+lLiOzs2c0GjOAVDiHUQV8hbFbaKufr1OSEjA0tISJyenCvstT0W/ejdmiqJwtjRw1LYahc+rwlBI/dqV+WRFPnE1CzMtHb0dOHwpnfu7eBuz21u523EqLpMz8Vnyb+U25ObmhpmZWZnagImJiXh6elZ67Icffsj777/Pli1b6Nz5SjF9w3GJiYl4eV35TJyYmEhgYKCxzbXF1YuLi0lNTa3wvDNmzGD69OnG55mZmfj4+LD/9btxcKjd100hhLhdZWZm4rWgam1v6cCUuVbD8ZgMNp9OZPe5FDQaGN/Th6ZO1qzYe4n9Uam8+/sZPnu4a/lTB3a8D5F/g4WNWuTc8gZ+yb3nLQj7HaL3UXj0Ry5630erlG1qUAog+SzZOz7m3t3dyCsq4b+PBjGgjTsU5kDaRUiLhMw4opx78c2uS8ZutQdLi0F6dYHUSLi4i+zlD5Of/zju9rZ0a+5c8zFfRxN7HXNHdQKgqETPxZQc3B2sZBqGuC5/6wK0WjVYEGHRhrb1PB7ReM2dO5e33nrruu2iknM4n5Rd9dqEt7C4jHyyCoox12rwd6vdL/+GjKkz8ZkoimJ8vzBmTLlKxpRQ/V+/AL7ZFcn/3RVg3NbG055TcZmEJ2QxuGPlgQpx67G0tCQoKIitW7cycuRIAGMh82effbbC4+bPn8+7777Lpk2bTDJtAfz9/fH09GTr1q3GQFRmZib79u3j6aefBqBXr16kp6dz6NAhgoKCANi2bRt6vZ7g4OByz6nT6dDpdGW221iaY2N5S399EkKIm6a4Gq+Xt/RUvjtbqVPKXv7xMAD9WzehmbNav2L28A5oNeqqciM+38328MsohrWtASI2w8756uNhC8H9Br86O3hDX/WXlezf/sNTC1ZRuK70TdZHfdPT7f4I+/xYCov1PLN8P9HfPwPvNYUve8Gqh+GPl7FZNRqdPpdgfxfstQX0z/1L7WPgTHh4NZhb4xr/N7PMlzGkjqbxlcfCTEtLd3scrKq3epNonLRxhwA4r/fiaLIEMhuTq3+9vtrVv4jX5NdrT09PCgsLSU9Pr7Df8syYMYOMjAzjLTo6utx20344wuPLDrLnfHKl13c7MGRLBTSxM06nqi2tPOzQaiAtt4jLWVcy1SRjSlzr3g6erH6qF82vCla2LZ1aGp4omY23q+nTp/PVV1+xbNkyzpw5w9NPP01OTg6TJ08GYOLEiSbF0efNm8ebb77Jt99+i5+fHwkJCSQkJBhXcdVoNLzwwgvMmTOHDRs2cOLECSZOnIi3t7cx+NWuXTsGDx7Mk08+yf79+9m9ezfPPvss48ePL7emoRBCiJvvlg5MDe/SlAlmWzisPMQg7QEeDvY17mvv7cBbwztgY2nG8ZgM3ln6C6s/eIbwRaNJ/yQY/Q8Pqw17PAGdx9bOgHo9S4GdDy4lyfxi+SaWRZkUe3aFSb+R1+xOLJRC3jJfRu9mOr7Qzsfn3ApAAStH8AqkQOeCe0kCb1qu5IMxXXjF6zgOmlxSdc0gYCD49qZ4zBIAxpr9zf2t5Zdn0UDFHADgiNKKYzHp9TsWcVNd/eu1geHX6169egGmv14bXO/X66CgICwsLEz6DQ8P59KlS8Z+y6PT6XBwcDC5AaTmFBrb5BWWcCouA1DrFd7uDPWf/p+9+w6PqtoaOPybmWTSewcSEgi99yo1FDtFQeQqYLtXwU/kYkGlWvCi145iA7xKExUrRaWJEIqhQ4AACQmpJCG9Z873x8lMGJNA+iRkvc8zD5NzzuzZJxNmz6yz9tpta7m+FICttY5WXup079Ml0/kKiw3EXs0FIFACU+I62vmWX6NM1MyxmDSORF8lv6jY0l1h8uTJvPnmmyxYsIDu3btz9OhRtm7dapr+HR0dTXx8vOn4jz76iIKCAu655x78/PxMtzfffNN0zLPPPsuTTz7JY489Rp8+fcjKymLr1q1mdajWrFlD+/btGTlyJLfddhuDBw/mk08+qb8TF0IIcV2NOhd1SLAbt1h/jw6FefqvadH2JbP9DwwI5E7POBJ+eZ22V/9Am6PANfU0T+q70nbkK9TawtXWtnxoM4Ons5bgpMklW7Hhbft/85KVnv9aPcqzSigjdUcYUTgbjS6GXEXPU0UzOWU7BH+NHS6F+/mYRdyn3Q6pexlf9AsAqwtD+D9FfbFWX2nHQENLOmov0StzB9CqtnovRO0xBqYMwfxxLtlsSo+onqSMPLadTuTu7s0snrmYlZXF+fPnTT9HRkZy9OhR3N3dCQgIMF29btOmDUFBQcyfP7/Cq9crVqygsLCwzNXr2NhYRo4cyf/+9z/69u2Li4sLDz/8MHPmzMHd3R1nZ2eefPJJBgwYUK0V+S4kZRHo5wlAeEIGhpKE2t3nrtTsl9MInEs01peq/cCUsd3zSVmcic9keDtv4tJyKTIo2Fpr8XYqOzVGCCPj32RUcjZ5hcWVW1lZXNfmE/E8sUadWaC3Umt7jezgwz+HtMJKZ5nr07Nmzapw6t6uXbvMfo6KirphexqNhiVLlrBkyZIKj3F3d2ft2rVV6aYQQoh61KgDU7ZRO3AmFYBAYiFiK3S4Q92pKPD9E7geW4srgAaiPYdwwroLJ3O92JXizJkMb578I5o5o9vVSn8ORqbybmw7euq7MVR7jEVF09l4Wov7rvN8dsYaZ6s7+T+r79Gkx6DYe7DS71V+PeUMabnEpuUCbdnocDv3Fv8CG2fgVJBJLnpW5wykR0QyVjoNr20OZ7p2CAu0X6I9thb6PlIrfa9QcgTEHYXEE5B0BoJugYFP1u1zisYlPRZ01uBYUszaYIBYNRPmhKYdsWm5nEnINNWeEdXz3LfH2Xn2Cmv2X+KLh/ri41y3KxJdz19//cXw4cNNPxsLxE6bNo3Vq1fz7LPPkp2dzWOPPUZaWhqDBw8u9+r1rFmzGDlyJFqtlokTJ/Lee++Z9hcWFnL27FlyckqvJrz99tumY/Pz8xkzZgwffvhhtc4hIimTkSX3T8Wmm7ZfvJJNTGoO/u43b0aqKWPKp24CUx38nPn5eLypALqxvlSAu329TT8XjZO3kw1u9tZczSnkfFIWnZu7WLpLjdrFK1k8+81xAOysdeQWFnM4Oo3D0WkYDApPjmxj4R4KIYQQqkYdmOLw/wAosHFHn58Ke9+B9rerK+IdWw/H1oJGB92mwMAnCfBuTwBwO9Cl5ArS8l0XGNnBh27+rjXuztu/nQM0/N71LYYOc8F5fyH8GcmyrWcBuNThcchPhMJcNPesZKZHayZn5XMpJZtLKTnEp+fRo807sOkspKjZCKc9x5Jx2ZEPd53nXGIWBgWKO92Dcn4dmtgwuHIWvGonsFbGsQ2w6THzbed/U1cvtHevm+cUjUtOqlojzdoeZv0FNo6QfBbyM8DaAd/A7hw/k8JvpxMlMFUDEYmZ7DyrZvKcSchkwof7+N/DfWntZZkVMocNG2Zes+9vauPqdWBgYJnnsLW1Zfny5Sxfvrzqnf6biKQs0/1Tceb1bHadu8ID/Vv+/SE3hcJiAxdKzr2uMqY6+KntnoxLp6DIIPWlRKVpNBra+Tqx/2IqZxIyJTBVA7kFxTyx5jBZ+UX0DXJnzSP9iL2ay8/H43jz13O8uz2Coe286NrC1dJdFUIIIRp3jSmi9gAa9A9sBJ2NOn3o0j7IiIetz6nHjHgJxi0vU9z8ti5+3NWtGcUGhTlfHyWvsGbz7vdfTCH0YgrWOg3/CukEnm2YM6otzV3tAHUFwSfHdIEZW+Cfu8FDXYXG09GGXi3dmdCzBTOHBxPcwhvGfwwa9aVxGfoEAIeirpKeW0iPAFfm3XsLmjaj1Sc+WodpyYc+Vf/17gS9HwbXAFAMcGFH3T2naFwu7oS8dMiMh7DV6raSaXw078nITuq0rKZQt6cuff5nJAD9W7kT6GFPbFou93y0j+NSv6vazieWDUx1KfkSvPtsUrmPaQyikrN5ZuMx4tJyy91/KSWbgmID9nqdaXyqbR391N/jxSvZ9Hz5Nz7efRGQFflE5bQvqTN1NkEKoNfEgh9OciYhE09HPR9M6YG1TkugpwMzhwdze1c/igwKT284Sm6B5etOCSGEEI07MAXQZhS06A09pqo/730Hfn5a/bLcrAcM/L8KH7rk7k54Odlw4Uo2b247W6NuqNlSMKm3v+nDvoONFcvu6YqNlZZ/DW1NoKeDms11Iy16w9RvYPJXBHcZYMo08XW25eN/9FJrLnSboh57fAMY6uBDRcoFNcCg0cID38Edb0HHceq+89uv+1DRhJy/JkgZ+gEU5ZcGplr0ZkR7HzQaOBGbTnx6+V+UxfVdycznuyOxAMwd3Y5vHh9I1xYuXM0p5MVNJy3cu8Yr4komiqJQWGzgbMnUtpnD1QsG+y6kNIgiwdXxn61n2Bh2mU/+uFju/mun8dXVtDpfF1ueGtkGLycbsvKLSqaqo46BQtxAu5JMPimAXn0/H49jY9hltBp4b0oPvK+Z+q3RaHh1XGe8Sz7/vr4l3II9FUIIIVSNPzDV+2H134FPqkGUiF/h3BbQWsPdH4Ku4tmKrvZ6/jOxCwCf743kTDWvzsWk5nAgMhUrrYaZw4PN9g0K9iR8yVjmjqnidLvgkdDhTgDm3dqeQcEefDatd+mHi7Zjwc5dzVS5sLNa/b6uY+vVf1uPAKeSpdiDQ9R/z/+u1hESTZuilGbPaa3Vv8Vj6+HyX+q2Fn3wcrKhR8k02d/DG28WiiV9tf8SBUUGuvu70qulG56ONnzyQG9AnSqVmVdo4R42Tll5xcSn5xGRmEVBsQEnWytGd/TFy8mGnIJi/oq6aukuVlleYbGpePvJa+pmXetcyZf9dnVUX8ro6VFtOTBvJN/PHMSTI4KZ0tefu7s3r9PnFDcHY2DqrASmqu37kosZjw5pxcDWnmX2u9rreePebgB8EXqJPyOS67V/QgghxN817sCUcws1YwrAvRV0vLt039DnwKfjDZsY0d6HMZ18UBT4+tDlanXjSEwaAJ2aOdOsnKkRNb0qPaStF2se6W9ea8FKD13uUe8fq+XpfAYDHC8JTBkzswAC+oO1A2QnQaJkajQpmYnqNNlrXTkDmXFgZQvDnle37XkTkkquvjZXgyejOqqBTZnOV3V5hcV8uf8SAI/cEmRa2dDXxZYWbnYoChwtef8RVXc2MZNTcWoAp1MzZ7RaDUPbegGwqxFO5wu9kEJOybScU3EZFBvK1gEzZqG0q6P6UtfSajV093fl36PbsXRCVxxtGndZS1E/jEHTpMx8rmTmW7g3jY/BoHCoJLA+tpNvhccNbevF1H4BAHz+Z/kZlkIIIUR9adyBqe73g/aapYRv+bdaa6p5Lxg8u9LN3NdHHZh/OBpLYXH5mUAGg8KqvZHM2XCU7Pwis31Ho9PU7tRCAfUq6X6/+m/4z5Bbg6v7xUXmGVDRoZAWDXonaHdb6XYrGwgaot4//3v1n080LooC6+6DVbfC2S2l243ZUi0HQb9/gZ2b+neDotYjc/IBYFRH9d/QC8mS3VNF3x2OJTW7gOaudmW+YPRq6QZA2KXGl9nTUJxNyDTVl+rUTA38GwNTxsyjhmL/xRQe+PwA55MqziL59Zrgb25hMZHJWWWOOZeoPr6uCp8LUVMONlZ0LClhsO+CZPJUVURSFum5hdhZ625YPH7GoEAA/jyfTHqujM9CCCEsp84DU6+//joajYbZs2ebtuXl5TFz5kw8PDxwdHRk4sSJJCZWI5vi2mweAN8uMPsETP9FXb6+km5p44mXkw0p2QXsOlv2y0hsWi73f7afxT+d5rsjsfx8PM5s/9EY9Yth9wDXKp9Cjfh1B++OUJwPJ76p2mOzU+DIGlh3PyxtAZ+HQFZJhoAxW6rj3aD/W7Ha4JIF1qXOVNMRfxTiDqv39/xXDVRB6d9A6xHqanz9/lX6mBZ9THdbezkQ5OlAYbHCH+fkS0ZVrNqrFj1/aHAQVjrzt+veEpiqsXMJ5hlToI4HWg2cS8yqsIC4Jby/I4I9Ecm8sOlkuSsiGgwKv4er46idtXrB5sTfpvPlFBRxKTUHgLYSmBIN2C1t1elne2SKWZUdjEoFoEeAK9a663/MD/Z2oq2PI4XFimQ1CyGEsKg6DUwdOnSIjz/+mK5du5ptf/rpp/npp5/YuHEju3fvJi4ujgkTJlT9CRy9ym5z8gHrqq00ZKXTMr6HWvvim7AYs30/HI1l7Dt/sP9iqmnb3vMppvsFRQZOllxx7+7vVqXnrTGNBno+qN4//L/KPy78J/hvW/jhCTj7CxTlQmwYfD4aks7Aqe/V47rdV/axxjpTMfshT1bMaRIOf1l6//IhNaOuMA8u7VW3GYOVfR9Tp3qCWWBKo9GYsqZ+O51QHz2+KaTlFBCRpGa83NOrRZn9PUsCU0ej08qdsiVuLDwhk9Ml79/GzAJXe70p+3XHmfqdzldQZGDZ1jP8FZVqtj23oJhDkWoA8mBkarkXUI5dTuNKZj6ONlaM76mOZydjzd+jzydloSjg6ajH09Gmjs5CiJob0kb9fLcn4kq5gVhRsUOR6vtH3yD3Sh1/Wxc/ADafiK+zPgkhhBA3UmeBqaysLKZOncqnn36Km1tpwCY9PZ3PP/+ct956ixEjRtCrVy9WrVrFvn372L9/f609v6IoFBYWkpeXV6nb+C7eNHfSceZyCgmpGeTl5bHlWDTLfjmBs7VCSFs33p7YkeZOOi4kXCU3N5e8vDzCLyfjZaehvZcNvg7aSj9frd3ajSfPuRV5WVfJiz5Succc20SevR95LW4hb8TL5E3ZRJ5fP/IKi8j76n7yrJwp9OyIEjCw7C/WPQjcW4OhCCL/qLXXSzRQBTlwYqN630ddKIC970L0PijKA6dm4NVe3W7vDre+DgEDofNEs2aMgakdZ5IoqmC6rDB3MTkbUFfjdLErmwHazscJB72OzPwiIq4zvUtULDw+g+yCYmystLS6ZsW4kR3Uv9f/bD3DicvlFxGvC98fieXDXReYu/GY2Zfxg1GpFFzz/+Y/W8+UCUYasx2GtvWiZ4A65v49Y+raFfmEaMh6tXTD1lpLYka+KUAvbkxRFA6VBLb7BlYuMHV7SWBqT8QVmc4nhBDCYuqsEunMmTO5/fbbCQkJ4ZVXXjFtDwsLo7CwkJCQENO29u3bExAQQGhoKP3796/xcxcUFBAfH09OTk6VHvdaiA8FxQox0ZdIstKiz8ln0XBvHG10JV8Mc1kywhuDAhEXLmKt01KQX8Si4d7YWmuJioqqcd+rZch7UJgDybmQHXn9YxUDtLwPWk4GJz91yqMBGPwWZF+B4gL1OBtH7C9fxs/PD71eb95GcAgcvKDWmepwR52ckmggwn+E/AxwbQn3roIP+sC5rerfEajT+DTXFPfv+WBpFt81ega44WJnTXpuISdi0+kRUM/ZhY3QxStqYCromoDJtax0WroHuLL3fAphl67S3te5PrvX6Nlaayl5t6ODn7PZVMkZgwLZdTaJQ1FX+cfnB1j7aD9TDaq6ZKynE5WSQ3h8Jh1Lphf+GaFmSI3p5EPohRTOJGTyw9FYJvQszaQzBqZGdfShQ0l9ntNxGRgMimkBjnP1WPhciJqwtdbRL8iD3eeu8Me5KxJMraTLV3OJT8/DSqup9DjbxseJNt6ORCRl8fvpRCaWk6ErhBBC1LU6CUytX7+ew4cPc+jQoTL7EhIS0Ov1uLq6mm338fEhIaH8aT75+fnk55euzJKRUfEUMoPBQGRkJDqdjmbNmqHX600rWd2Ia3YBSZl56K10KIqCp6MBe72OFm72pjasU7PJKSjGy8kWNwc98Wm56PMKcXe0wctSUyPyvSA9GtCBZ4B5Qfi/y00Dx3y1SLxHa/N9hkBIj0UpzKPAsTlXUtOIjIykTZs2aLXXJNe1GQUHP1ZrDCmKeWBC3FyM0/h6/AM820CHO9VgVcSv6vbgEZVqRqfV0L+VO9tOJbLvQooEpirh4hU1S6CVV/mBKYBeAW6mwNTUfi3rq2s3hWAvR06nqAtZGOtLGdnrrVg1oy8PfH6AI9Fp/OOzA3z5cL8bFhKuCUVRCL1YOk18y8l4U2DKWGfnjq7N6ObvyrKtZ/nvr+e4vasfNlY6opKziUjKQqfVMLydNw42OmyttWTlFxGVkk0rL0dAXYUQSlc9E6Ihu6WNpxqYikjmkVtaWbo7jYIxW6pzcxfs9Nf5LPg3t3Xx493tEWw+ES+BKSGEEBZR61P5YmJieOqpp1izZg22tra10ubSpUtxcXEx3fz9/Ss8tqCgAIPBQLNmzXBxccHOzg5bW9tK3bxcHdFa21CIjiKNFTa2tgT5uJm14erkgMZKT76iw9bWlgKs0FjpcXGwr/Tz1PrN2QNbGxtsrQzYkq9us7HBVmvA1trK/FglB1srDbZObmXbsXfE1rctdv5dcXH3pFmzZhgMBgoKCsx/yS0HqYGt9GhIPlcrr7FogFIuwKU/QaMtXQFy0FPXHKCBVsMr3dygYLWYrayyVDmRJVP5jEGF8hjrTB2WAuhVFuxd+nstL+DkaGPFFw/1pVsLF67mFHLH+38y8r+7WPTjKf6sg4LMUSk5JGaUXoD55UQ8iqKQlJHHmYRMNBr1/9CMgUH4ONsQm5bLkp9OE3Yp1bQgR78gd1zsrbHSaU1ZU8YaiJl5haa/k47NJLtONHxDSlbIPHAxhbzCYgv3pnEwTeOrZH0po9u7GqfzJZMhq+cKIYSwgFoPTIWFhZGUlETPnj2xsrLCysqK3bt3895772FlZYWPjw8FBQWkpaWZPS4xMRFfX99y25w3bx7p6emmW0xMTLnHXcssw6eSrHRanG3VJDKtRkNLD4cyK2E52qj7s/OLKCo2kF+kfliyr8KVqVqn0YC9h3o/JwUKc9WgQvJZNXBknHZlMEB+SS0aW9eK2yrJgKrwd6i3B/++6v3o2qsLVmVZSfDJcPh6Gly9ZLl+3KyOlGRLtR4JLiVXUFv0hpaD1fvNeqh1pSppYGv1b/SvqKu18iXjrV/P8vhXYWTnF9W4rYbIOJXvehlTxsyzqJQckrPyKzxOlNXGpzQw9feMKSNnW2v+91A/RrT3RquBC1eyWb0vin98foA9EWULkNdE6IUUU1/0Oi0Xr6hZUH+eTzZtd3fQY6fXMTukLQBrDkQz8aNQ3vxVvUBgrOUG0Llk6uHJkjpT3x2OJbugmNZeDnSpw8wvIWpLG29HfJxtyC8y8FeUBN8r42BJ4fM+lawvZdTWx4lgb0cKig38LqvzCSGEsIBaD0yNHDmSEydOcPToUdOtd+/eTJ061XTf2tqa7du3mx5z9uxZoqOjGTBgQLlt2tjY4OzsbHarK95OtjjorQhwtzctuX0tW2sdOq2GYkUhJVvNJNJbacsEsOqdXcmHkIIsuHIGCkoCUMX5kF1ydT8/Qw1S6fRVXrmwjGbd1X8TjtesnZr4ayXEHYbT38PyvrDrP+pqcaLmiovg6Fr1fs8HzPeNWgxuQTBgZpWabO3liLeT+iWjphk+eYXFfLDzPFtOJrDox1M1aqshKjYoRKaoganWnhVnTLnYWdO2JMAiWVNV06ZkOptOq7lu/RoXe2tWTu/DkQWjWfGPnqZMhE1HYmu1P8ZpfCEdfBjSVs0u3Hwi3pSddUub0lVo7+vjz9IJXQjp4GNaXc9er2Ns59KLO8bg04nL6SiKwhehUQBMGxhY6entQliSRqMx/d3XdiD4ZpSclc+FkgsavVtWfbq8rM4nhBDCkmo9muLk5ETnzp3Nbg4ODnh4eNC5c2dcXFx4+OGHmTNnDjt37iQsLIwZM2YwYMCAWil8XlN2eh2tvR1xLmcVLFA/KBmzpowZCvb6OqshX3lWerC5JmBn66oWNwdWf/axWtMrr2SFJluXmteF8u2m/htvocCUwQBH16j33YLUFeJ2vQYf9ofLf1mmTzeTuCOQlaj+HbW91Xxfi97w1FHock+VmtRoNKasqX0XUm5w9PWdT8rCuCjZxrDL/HgsrkbtNTRxabkUFBnQ67Q0d7t+ELlXSzVQEhYtgamq6OHvRs8AV6b2C8C2nIsQf+diZ83Yzn48M6YdAL+dSjRlzNaUoiimjKkBrT24tXPpF8Q9JRlTt5RMhQX1/9KUvgF8Nq03h14cyZ/PDWfXM8Pwcyn9W+nU3DiVL509EclcvJKNo42VWcF0IRq6W9qof/d/1MH02ZvNXyXT+Nr5OOHmoL/B0WXd1kUNbP8RkSxTJ4UQQtQ7i6T5vP3229xxxx1MnDiRIUOG4Ovry3fffWeJrlSLMTBlXK7botP4ruXSAhy8wKMNuAeBow9Y2alZUopiHpiqKb+u6r+JJ8FggQ8wl/6EtGg1GPf4PrhnFTg1g6uRsHIM/Pm2GrwCyE6Bc9sg7cZTQEWJyyULFwT0V4OetWRgyZfrvdepM3UyNp2wG2T/hMerdXOsSlYbe/G7E8SkVm0VzobsQknh85Ye9ui01w8i95I6U9Vip9fx3RODWHJ35yo9rleAG77OtmTmF/HHudr5snzhSjbJWfnYWGnp7u9KSAcfrHUaziVmcSUzH1trLb0Cy8+A0Gg0tHCzx9vJvKZjWx8n9DotmXlFLN1yBoB7erUwjV9CNAaDgz3RaNT3/KRMyYi+noOR6hjQJ6h6i4u083HC28mGgiIDh+VChxBCiHpWL4GpXbt28c4775h+trW1Zfny5aSmppKdnc13331XYX2phujvH+ztK3G1vV5Y2ajBKZuSqT8aDbg0L9lpAKUYNDrQVzw1qNI8gsHaHgpz1HpWNXX4S3ivJ0TuqdzxxmlmncarNa86T4AnQtWfDUXw+yJYORpWDIY3WsHaSfDleDVAV1l/vgMrboEdr8CVJlbk3RiYatG7Vps1Zkwdv5xOZjkFVqNTcpj40T6mfLKfpIyKv4ScLVn2fkrfAHq1dCMzv4j/W3+EwmJDrfbXUkoLn1dcX8rIGJg6djmdgqKb4/wbMq1WY5ry8svx2snUM07j6xnghq21Dhd7a9NiAQD9gjywsaraOGOt09LeT52iaAzkPjBAVm4UjYuHo42pXtre85I1dT3GwudVrS9lZJbVfL5mWc1CCCFEVVm4MFLjpLfSYl1SU0qj0WBbSxlTBoOBZcuWERwcjI2NDQEBAbz66qsAPPfcc7Rt2xZ7e3tatWrF/PnzKSws/WJ/7Ngxhg8fjpOTE87OzvTq1Yu//voLbJxM9aS27dpHh6ETcHRyYuzYscTH16COgFYHPp3U+zWtM6UosHsZpF6ADVMhOeL6x+dnwukf1Ps9/lG63c5VzZy66301U+zyIUg4oe7TaCElovLT/HJSYedr6rn98QYs7wOfDGs6ASrj76lFn1pttoWbPS097Ck2KKYirdda8vNp8osMFBQbrptVdaYkMNW5uTPvTO6Ok60VR6LTWHcwulb7aymlhc9vHEQO9LDHxc6agiIDF5Oz6rprgtIVrH47nVgrU172XzONz+i2kul8UDqdqao6NSvNjr2ljSetK/H3JERDYwyWlDdmVEexQeF0XAYGQxUuVDVwaTkFnIpTs+L7BXnc4OiKDWwtq+cKIYSwjCYRmFIUhZyColq75RYWo9NoTF9I8gqLyz1OqUp2Durqg6+//jrz58/n9OnTrF27Fh8fdZUlJycnVq9ezenTp3n33Xf59NNPefvtt02PnTp1Ki1atODQoUOEhYXx/PPPY21dUifLzo2c3DzeXPElX678jD/++IPo6Gjmzp1bs1+sb8l0vvhjNWsn5iCklwQU8tJhzb3q9LuKnNqkZmp5tCkbONFooOeD8M8/YPiLMPFzmBsBXe5V95/YWLk+HV2rFo53bw1txqiZZnFHYMuzVT+/xiYzseT10ECznrXevPGD796/XZHddTaJ38NLVwP6+/5rGQNT7Xyd8Xe356mRbQD4+fjNUbTVGGBq5XnjjCmNRkMzVzX4HJ8uU13qQw9/V5q52JJdUMyuszUryqwoCvsvlg1MjeroY5qqem3h86q4dvW9aQMCq99JISzImBV6oynelbXmwCVue28P/954rMqf0xqqP88nY1CgrY8jvi62N35ABQYGq+9Bxy6nk3WTrngrhBCiYWoSxSZyC4vpuGBbvT/v6SVjKl0YPTMzk3fffZcPPviAadOmAdC6dWsGDx4MwEsvvWQ6NjAwkLlz57J+/XqefVYNlERHR/PMM8/Qvn17ANq0aVPauM6awsIiVrz3Fq27DQCNhlmzZrFkyZKanaCxzpQxK6m6Tn6j/ttmNFw5q9aJ2jAVHvxBnZ74d0dKip53v7/iIu5ebWHoNUGkzvfA8Q1qUGvMa6C7zuuiKBC2Wr0/cBb0fggST8FHAyFqD+ReBbvq1XBoFGJLsqW8O4Bt7a+AOSjYg3UHo82uyBYUGVjy02kAuvu7cjQmjb3nk1EUpcwKYslZ+SRn5aPRYFqRbmxnX175JZy/olJJzS7AvRqFXxuS0oypGwemAHydbQiPh0QJTNULrVbD7V39+HRPJD8fjzNbDa+qIpKySMkuwM5aR7cWrqbtbg56Pri/J2k5BbTzrXjVwOvpG+SOVgOBng4Mb+9d7T4KYUk9SwJT5xKzSM8pxMW+/MVpKutQlBrg2nQklk7NnHnkllY17qOl/XFODZAPqWYQ26iFmz0B7vZEp+ZwMDKFEe19aqN7QgghxA01iYypxiA8PJz8/HxGjhxZ7v4NGzYwaNAgfH19cXR05KWXXiI6unTa0pw5c3jkkUcICQnh9ddf58IF87pP9vb2tO4+0BTI8fPzIykpqWadNmZMJRyvWu2maxUXqcEigD6Pwv1fqwXNo0PLz05KuQAx+9Wped2mVP55Wg8HO3fIToKoP65/bNSf6rQ/vWNpppVPJ/Bqr9avOvdr5Z+3Maqj+lJGA1qpV2TPJGSaCpav3BvJxeRsvJxs+PTB3uh1WuLT80y1lq5lrC/V0t3eFPht4WZPp2bOGBTYfk3WVWOUU1Bkynxq5Vm5qVe+JauxJVynLpeoXbd3bQbA9vAkcguqP53PuBpf70A39FbmQ/LYzr7c1zeg2m0Hezvy46zBrH+0/w2L6AvRUHk62hBUkj16OKbmWVMXr5ROeX5tc3ijr12lKIppIYYhbWsWmAIqrDNVdJPUcBRCCNEwNYmMKTtrHaeXjLHI81b6WLuKl4QPDQ1l6tSpLF68mDFjxuDi4sL69ev573//azpm0aJF3H///fzyyy9s2bKFhQsXsn79esaPHw9QOq2vhEajqXkKu3dHdYpbTgpkxF1TaL0Kov6A7Ctq0Kj1cNBZw72r4asJatZSl0kQOKj0+AMr1H9bjwRnv/JaLJ/OGjqNg79WwolvofWIio8NW6X+2+UetUaXUfs74MoZOPMTdJtc+edubOqovpSRh6MN7X2dOJOQyS3LduJsa0VeofqB9/mx7fFysqFXSzdCL6aw93xymTpLxkLO7X3Ns7lGdfThVFwGv51O5N7e/nXS9/pgDMa52VtXeslvX2d16kaiBKbqTbcWLrRws+Py1Vx2nEky1Z2qqr9Kpif1C6peweIb6XzNdD4hGqteLd2ITM4mLOoqw9tVP/vPYFBMGakDWnkQejGFWWsP8+Oswfi729dWd+tVRFIWCRl52Fhp6VsL7yMDgz1ZfyiGvRdKA1MXrmRx//JKLk4jhBBCVEOTyJjSaDTY663q/fb3KUjX06ZNG+zs7Ni+fXuZffv27aNly5a8+OKL9O7dmzZt2nDp0qUyx7Vt25ann36aX3/9lQkTJrBq1aoa/d5uyNoWvNqp96tbAP3Et+q/He9Wg0cAwSOh13T1/s+zoShfvX9uGxz8RL3f719Vfy5j9lP4j1BYwRf47GQ4/aN6v9cM830d7lT/Pb8dCnKq/vyNQXERxB5W79dRYArg8WGt8XFWp2lm5BVRUGygd0s3xvdQg5uDSupclFdn6qypvpT59KZRHdUpB39EXKlRBoulVaXwuZGvi/q7lBpT9Uej0VxTBD2h2u3EXlXfS6QwuRAVM9aZ+utSzQqgJ2TkkVtYjJVWw6fTetO1hQtXcwp5esPRWuilZRin8fUNcse2FlaJNmY1h8dnkJpdQFGxgX9/fUzGFyGEEHWqSQSmGgNbW1uee+45nn32Wf73v/9x4cIF9u/fz+eff06bNm2Ijo5m/fr1XLhwgffee49NmzaZHpubm8usWbPYtWsXly5dYu/evRw6dIgOHTrUfcdNBdCrEZgqyofwn9T7Xe4x3xeyCBy8IPkc7H0P0mJg0z/VfX3/CW1Cqv58/v3BuQXkZ8D538o/5ugaMBSqRb+bdTff59cNXALUwusXdlT9+RuDK+FQmK1Op/RsV2dPc3f35hx4IYTwJWPZNnsIq2f04fPpfdCWTDcaGFy6MlDx31ZOMhY+7+BnHpjq6OdMc1c78goN/HnN1IyY1BxTcenGwBiYCqpE4XMjn5KMqYQG9MUhMzOT2bNn07JlS+zs7Bg4cCCHDh0y7ddoNOXe3njjjQrbXLRoUZnjjXX1LKF/yepXp+Iyqt1GYoYaeK9JwWIhbna9SwJTx2LSKaxgStmeiCvc+u4ejsWkVdiO8f01wMMeRxsrPvpHL3RaDX9dukp0SuO84PRHhDreDa2FaXwAXk42pvqN+y+m8MmeixyNScPRtnZWoBZCCCHKI4GpBmT+/Pn8+9//ZsGCBXTo0IHJkyeTlJTEXXfdxdNPP82sWbPo3r07+/btY/78+abH6XQ6UlJSePDBB2nbti2TJk3i1ltvZfHixXXfab9r6kxVVcRvkJ8OTs0gYKD5Pjs3GLNUvf/HG7B+ilp0vFkPGP1y9fqq1ULnCer9ExuhuBCSz6v9OLIG/nwbDpRkZPWeUfbxGg10uEO9f+bn6vWhoTPWl2reU/191TE7vY52vk4Ma+eNi13pdNOuzV1wsrEiI6/ItAQ2qMt8n0ssXZHvWhqNxpQ1ZcxgiUjM5LZ393DfJ/v5bM/Fuj6dWmFaka+Shc8B/EpqTDWkqXyPPPIIv/32G19++SUnTpxg9OjRhISEEBsbC0B8fLzZbeXKlWg0GiZOnHjddjt16mT2uD///LM+TqdcHfzUv8GLydmmVVqrwmBQTK+ZBKaEqFhrL0dc7KzJLSw2Tee+lsGgsPCHU4THZ/Dl/rIZ5UalK56qgZfmrnb0CVSDXr/WIPPRUvIKizlQcuGlNupLGRlXz/0y9BLv/BYBwPNj6+FipxBCiCZLAlMNiFar5cUXXyQqKoqCggIuXbrEvHnzAFi2bBnJyclkZmayfv16Zs+eTVpaGgB6vZ5169YRHR1Nfn4+sbGxvP/++9jaql90pk+fbjrWaNy4cbWzTHJNMqaMq/F1nlB+EKTLPdBqOBTnqyv/2bio9afKW6mvsozT+U7/CK/4wAe9YM098MMT8PsiyLisPk/nCr4cty8JTJ3doga2bjZ1XF+qsqx0WvqVTCe4NvspKiWb/CIDdtY6AsqpBzK6kxqY2h6exJXMfB764hCZJUtev/JLON8dvlwPva8Z01S+ShY+h9IaU1dzCqsVIKltubm5fPvttyxbtowhQ4YQHBzMokWLCA4O5qOPPgLA19fX7PbDDz8wfPhwWrW6/gpZVlZWZo/z9PSsj1Mql4+zDW721mYB06pIzs6nyKCg1YCXYw3e14S4yWm1GnoGuAIQdqlsAfTfwhO5WFKf71BUxdP9LiSpganW3qWB/1Ed1VU1fzvd+BbOOBiZSn6RAV9nW9p41950YGMB9NCLKRQUGwjp4MPd3ZvVWvtCCCHE30lgStSMbxf13/RoyKlC7YecVDW4AxUHgTQauP2/YFWSSTBuObgFVrurgNpfv26AAkoxWNuDdye1mHq3KTDwSZj6NegryFYJ6A/2npCXpq7e11DFHYEdr8KP/wdr74Mv7oTLYTd+nGlFPssGpgAGB5ddGehMvPrlv62PY7mrjPUNdMfFzpqU7AImfLSXmNRcAtztub+furLZs98cZ+fZGq5GWYcURTEVP29dhYwpZzsrbK3Vt/OGkDVVVFREcXGxKThuZGdnV26GU2JiIr/88gsPP/zwDduOiIigWbNmtGrViqlTp5qtTlqe/Px8MjIyzG61RaPR0LGZmjVVXhaHqc+JmYz/cC/fH4k1256Yrk7j83KywUonw7EQ19M7UC3s/dffAlOKorBid+lKxJdSckiq4H3QGLxqfU3gf3RJpu2hqFSuZhfUap/rmrG+1JC2nlWqa3oj/Vp5YBxiXe2teW1C51ptXwghhPg7+SQsasbOFVxbqvcTTlT+cWGroSgPfDqr0/Mq4tEaZmyGf3xXWny8JjQaeOB7mLEV5oTDC3HwxD544DsYvwJGv6IGnyqi1UH729T7DXU6X3EhrLkX/lgGh7+Ac1sg8g/YMFUt7n6ts1th+xI1kJV7Va3pBdC8V/33+28GldSZOhSVasoCOptQ/op8RlY6LSPaqys2xaTm4mRrxcrpvXnl7s6M79GcIoPC41+FceJyermPt7Qrmflk5Reh1ag1UCpLo9GYsqYaQp0pJycnBgwYwMsvv0xcXBzFxcV89dVXhIaGEh8fX+b4L774AicnJyZMmHDddvv168fq1avZunUrH330EZGRkdxyyy1kZlacrbR06VJcXFxMN3//2l2xsYOvMTBVfh8Kigz83/qjHIlO46u/TTGKT88FSjPehBAV6xmgTrkLi7pqlvH916WrHIlOQ6/T0sJNndZ8KKpsVhVcu7hEaeDf392e9r5OGBTYcab0wkVWfhGr9kY26NpTf0QYA1O1N40PwMXOmv4lWcuvjOuMt5O8RwkhhKhbEpgSNVfVOlPFhXDwU/V+/yfUYNH1NO+lrtRXW+zdoeUAcG524+cuT/uSANmhz+C9nvDto7B/hRrcKS6qvX5WV+QfkH1FrdM17AW44x3wbAuZ8fDdo2AoKRx7+EtYdx/s+S98Mgw+HKBudwsCB8tNjzIK9nbE28mG/CIDe0um84VXsCLftYxXv3VaDcvv70mwtxNarYZl93RlaFsv8goNLN95vu5PoBoulHxpauFmj41V1QrNGmsUJTSAjCmAL7/8EkVRaN68OTY2Nrz33ntMmTIFbTnTdleuXMnUqVPLZFj93a233sq9995L165dGTNmDJs3byYtLY2vv/66wsfMmzeP9PR00y0mJqbG53YtY52p0xVkTL2/I8KUTRVz1fwLrjG7zUcCU0LcUHd/V6y0GhIy8oi7JgD/8W61fuDEXs0ZWXJhorzpfLkFxcSmqcHgv696OtpUn7B0Ot9z3xxn8U+nuWv5nxyMrNlqgHUhPj2Xc4lZaDUwOLj2x+wPp/Zk8//dwh1dZQqfEEKIuieBKVFzvt3Uf89sLg16XM+p7yEzDhy8y67G1xi0GlZarD31Apz4GrY+pwZ3Xg+AL+6CqL2W69+p79R/O02AYc+phdzv/QKs7NTVBPf8Fw59Dj/OAhR1BUIrWzVwBQ1iGh+oWUAjO6hfMmatPcLmE/GcLQlMtfe7TmCqky+zhgfz0dSeZleRrXVanr9VXcFtx5kk0nMbXo2wE7FpALT1qfj8KtKQMqYAWrduze7du8nKyiImJoaDBw9SWFhYpobUnj17OHv2LI888kiVn8PV1ZW2bdty/nzFgUYbGxucnZ3NbrXJGJgKj88oU7fvWEwaH+4qnWKUmJFvVgPMGET0k8LnQtyQnV5Hp5Kps3+VBJ7OJ2Xye3giGg08cksr03S/8gJTxsLnbvbWuDvozfYZ60z9EXGFvMJifj+dyC8n1DExLaeQf3x2gB+Omk/FtbRVe6MANZPM1V5//YOrwdVeb5qqXJuWL19OYGAgtra29OvXj4MHD1Z47KlTp5g4cSKBgYFoNBreeeedMsfcaAVYUGut/n1F17Fjx9b2qQkhhKgBCUyJmutyjxr0iN4HYSuvf6yiwP7l6v2+j9askLmlWOnhoS3wbCT841sY/hK0GQ22LlCYDZG74auJlqlBVVQA4SVTDDuNL93u01Gt1wWw81X4ZY56v/8T8OgOmHsO7nofej4IQ5+r3z5fx3Nj2zM42JPcwmKeWHOY6FQ146SiqXygZkrNHdOO0Z18y+zr4OdMOx8nCooNbD1ZdkqZpR24qH6Z6hfkXuXH+jSwjCkjBwcH/Pz8uHr1Ktu2bePuu+822//555/Tq1cvunXrVuW2s7KyuHDhAn5+frXV3SoL9nbEWqchM6/IlI0B6mpZ/954jGKDwh1d/XC0sQLg8tXSY+JLgog+EpgSolJ6tlSn863ZH83SLeHM3ahmao/u6ENrL0f6lASmwuMzyMwzv/hQOo2vbJHwzs2d8XOxJaegmF9PJzL/h5MATB8YyNhOvhQUG3hq/VE+/aNhrO6akJ7HF/uiAJg5ItiynamCDRs2MGfOHBYuXMjhw4fp1q0bY8aMISmp/NqPOTk5tGrVitdffx1f37JjOtx4BVijsWPHmq3oum7dulo/PyGEENUngSlRc+5BELJIvf/rArgaVfGx0fvVKW86G+j9UH30ru7Yu0NwCAx9BqZuhGej4PFQCB4FRbmwdjLEHLphM7UqcrdamN3BG1oONN/XYyp0nwqUZHUMegrGvKZOZ7R1UYNSd70Png3nQ66rvZ7VM/rw2JDSLBtvJ5syV7ur4u4e6rSE74/E1bh/tanYoHCw5Cp/v1ZVD0wZM6YaQvFzgG3btrF161YiIyP57bffGD58OO3bt2fGjBmmYzIyMti4cWOF2VIjR47kgw8+MP08d+5cdu/eTVRUFPv27WP8+PHodDqmTJlS5+dTEb2VltYlX3SvrTP1/o4Izidl4eVkw8t3dzbVvrl2Op/xtZIaU0JUjjHwdDAqlY93X+RoTBoAjw1pDahTmv3d7TAocDg6zeyxpSuell1YQqPRENJBnc73/LfHiU/PI8DdnufGtufDqT1NY9DrW8+QnJVfF6dWJe9ujyC/yEDfQHeG1XJ9qbr01ltv8eijjzJjxgw6duzIihUrsLe3Z+XK8i9q9unThzfeeIP77rsPG5uyFzIrswKskY2NjdmKrm5ubnVyjkIIIapHAlOidvR9DFoOUjOGfphV8ZQ+Y7ZUt8kNoo5RrdJq1cykyV9B0FAoyFIzp+KO1l8fTm1S/+14t1qo/e9uexP6/lP9N2Rx9Wps1TMrnZYXbuvAu/d1x9nWqsb1Lu7qpj5+f2RKg5n2BnAmIYPMvCIcbazo6Ff16RPG6WDxDeSc0tPTmTlzJu3bt+fBBx9k8ODBbNu2DWtra9Mx69evR1GUCgNLFy5cIDm5tGD/5cuXmTJlCu3atWPSpEl4eHiwf/9+vLws+8Xs7yvz5RUW89V+dbXAJXd1ws1Bj7+7Wsz+cmppYMr49+crGVNCVMqojj48NqQVk3q34OHBQTwd0pZPH+xNr5alQQZj8OrQ3+pCGafylZcxZWwbIKdAnW772vgu2Ol1aLUaXritA91auFBsUPj5mGUvakQmZ/P1X2qtvGfGtms0q+UVFBQQFhZGSEiIaZtWqyUkJITQ0NBqtVmVFWB37dqFt7c37dq14/HHHyclJQUhhBANh5WlOyBuElot3L0cPhoIUXvUwuD9HjM/JjUSzvyi3u//RP33sb5Y28KUdWpQKjoUvrgTbl0G3e6r20DQtdP4OlewupneHm5bVnd9qEN3d2/OHV2bodPW7HfYws2ePoFuHIq6yo/HYk1X2i3NWFy3V0s3rHRVv2ZgLKCd2EACU5MmTWLSpEnXPeaxxx7jscceq3B/VFSU2c/r16+vja7Vuo5+znxHLKfj1MDUb6cTSc8tpJmLrWlKqb+bGpiKuWYqnykwJRlTQlSKdcmFiuvpE+jOd4djy9SZunBFDUy19iqbMQXQv5UHTjZWZOYXMaFncwa3Mb94Nr5Hc45dTmfTkVimDwqqwVlUzQc7IjgRm874Hs0J6eDDW7+do9igMLydlykI1xgkJydTXFyMj4+P2XYfHx/OnDlTrTavXQG2Q4cO+Pj4sG7dOkJDQwkOLs3+Hjt2LBMmTCAoKIgLFy7wwgsvcOuttxIaGopOV/5CI/n5+eTnl2bHZWSUv8CFEEKI2iEZU6L2uAfBqCXq/d8XqoGoa/22ABQDtB4J3tf/YNno6R3g/q/VIun5GfD9v+DrByA7+caPraxTm+DtLuqKgIoCF3dCfjo4+oJ//9p7ngakpkEpo7u7Nwca1nQ+Y32pvtWoLwWlWTdJmfkUG5QbHC1qk6kAeoL6xcWYzTCxVwvT36y/uzqVz7j0fGZeIdklmRmSMSVE7TEGa47GpJFfpP4fUxSFyOvUmAJ1Wu682zowppMP82/vWGb/Hd3UCyPHLqebglx1LSUrnzd/Pce2U4n866vDDHx9Bz+VZGzNHdOuXvrQ0FVmBdj77ruPu+66iy5dujBu3Dh+/vlnDh06xK5duypsd+nSpbi4uJhu/v7+9XA2QgjRdElgStSu3g9D4C1QmAM/Plk6pS/iNwj/ETS60uDVzc7WGab9BCPmg9YKwn+CDwdAwsnaaT90OaRHqysCrrsPwlar2zuNUzPYRIVu7+KHlVbD6fgMIhIzb/yAOqYopfWl+lejvhSAl6MNWg0UGRRSGkANlKbEGJi6lJJDRGImf55XA9D39GphOqY0Y0oNTBnrSznbWmGvl+RlIWpLay8H3B305BcZOBmrBosTM/LJLihGp9UQUDKttjz39wvg4wd641ZOHUNPRxuGltRz+v5I/azQd6Akk9bdQY+Hg56kTPW9/c5uzejUzKVe+lBbPD090el0JCYmmm1PTEyssLB5ZVR2BdhrtWrVCk9Pz+uu6Dpv3jzS09NNt5iYmGr3UQghxI3Jt9dGbNeuXWg0GtLS0izdlVJaLdz1Hljbq1P6Dq+GwlzYPFfd3/9x8O1s0S7WK50VDJmrrnzn1R6yk2DdFMi6UrN2s5Lg8l8lz2ED57bC2c3qz9euxifK5eagZ1g79QvGD0ctnzV1PimL1OwCbK21dGnuWq02rHRavJzU4rANbWW+m527gx4fZ/V3/8ov4SiKGmBs6VE6ZchYYyqmpMZUQrr6BVOypYSoXRqNht4lNaeM0/kulmQ4Bbjbo7eq/kff8T3UbNtNR2Ix1ENmaugFtQ7SXd2aETpvJO9P6cEjg4NYeGfZjK6GTq/X06tXL7Zv327aZjAY2L59OwMGDKhx+zdaAfZaly9fJiUl5borutrY2ODs7Gx2E0IIUXckMCVqn3srGLlAvf/rAtj8jLpSn1MzGPa8RbtmMX7dYMYW9XeTHq1O6ysqqH5757YBCvh1V4NeniUp/c4toEXf2ujxTe+ukul8v5yIt3BPYH/JVfGeAW41+tJkrFXUkIq6NxXGrKnd59Sg86Te5tM+jFP5MvKKSM8tJD5drTXlI/WlhKh1xul8O88kUVhsuGF9qcoa1dEHRxsrLl/N5a9LV2vczxsJvagGpvq38kBvpeXObs146Y6OeDqWXaGuMZgzZw6ffvopX3zxBeHh4Tz++ONkZ2ebVmt98MEHmTdvnun4goICjh49ytGjRykoKCA2NpajR4+aZTrdaAXYrKwsnnnmGfbv309UVBTbt2/n7rvvJjg4mDFjxtTvL0AIIUSFJDDVgAwbNownn3yS2bNn4+bmho+PD59++qlp0HZyciI4OJgtW7YQFRXF8OHDAXBzc0Oj0TB9+vQqt1Nn+j4G/v2gIBOOfKluu/V1sHGqu+ds6OzdYcoGsHFWi6L/MketDVUd57aq/7a7Vc1Ae2wXjH4F7l0l0/gqaUhJYdvI5Gwy8got2hdj4fN+QR41ascY5JCMqfp37UqKjjZW3NrZ/Eq8vd4KT0d1elBMao5pKp+fZEwJUeuGtPVCo1Gnwt3z0T52n1On11ZUX6qybK113NpZnXa26cjlGvfzepIy8jiflIVGU/0p3g3N5MmTefPNN1mwYAHdu3fn6NGjbN261VQQPTo6mvj40otFcXFx9OjRgx49ehAfH8+bb75Jjx49eOSRR0zH3GgFWJ1Ox/Hjx7nrrrto27YtDz/8ML169WLPnj3Y2DTOAJ8QQtyMav0b7NKlS+nTpw9OTk54e3szbtw4zp49a3ZMXl4eM2fOxMPDA0dHRyZOnFhmznmtUhQoyK7/WzWCDl988QWenp4cPHiQJ598kscff5x7772XgQMHcvjwYUaPHs0DDzyAl5cX3377LQBnz54lPj6ed999t8rt5OTkVNSVmtHq1FX6rEq+dAWPgg531c1zNSZebeGelaDRqgG7/R9VvY3CPLiwQ73f7lb1X709DHwS/CVbqrJc7fU0KwkKnIm3XJ0pRVE4UHJVvLqFz42MQQ7JmKp/Ha4JTN3ZrRl2+rIrPbUoqTN1+WqOKXgoK/IJUfva+Trx3n09cLa14tjldH4PVz9jtvKsWcYUlE7n+/l4PHmFxTVuryLGbKmOfs642petedVYzZo1i0uXLpGfn8+BAwfo16+fad+uXbtYvXq16efAwEAURSlzu7Zo+aRJk7hw4QL5+fnEx8fzwQcf4OJSWn/Lzs6Obdu2kZSUREFBAVFRUXzyySdlVgcUQghhWbVecXX37t3MnDmTPn36UFRUxAsvvMDo0aM5ffo0Dg7qB4Knn36aX375hY0bN+Li4sKsWbOYMGECe/fure3uqApz4LVmddP29bwQp67OVgXdunXjpZdeAtTCi6+//jqenp48+uijACxYsICPPvqIEydO4O6ufon19vbG1dW1Wu0cP36c/v3raAU3zzZw1/twbB3c8RZoamdFtUavzSgY9TL8+qJ682gNbauQTh75h/o37dwcfLvWXT+bgA5+zsSl53E6Lr3GQaHqupSSQ1JmPnqdlh4BrjVqy8dFMqYs5drA1KTeLco9xt/dnqMxaUSn5piChz6SMSVEnbizWzP6BLrzzDfH2BOhZky18alZxhSo0+r8XGyJT88j9GIKw9t517jN8uwvCUwNaFWzTFohhBCiMaj1wNTWrVvNfl69ejXe3t6EhYUxZMgQ0tPT+fzzz1m7di0jRowAYNWqVXTo0IH9+/fXXZCkkejatTTQoNPp8PDwoEuXLqZtxis8SUlJ1y3EWJV26lTXSepNmBswE66cUbOmvnkIHtpW+aLwxiLnbcdKsK+GOjZzZvuZJMItmDF1IFL98tHN3wVb67JZNlVhzL5JlMBUvWvl6cC9vVpgbaWlu79rucf4u6l1pmJSc03BQ5nKJ0Td8XWx5X8P9WVj2GUuX82lh79bjdvUajX0DHDjlxPxXEjKqrPAlLHw+YDWEpgSQghx86vzNarT09MBTNk9YWFhFBYWEhISYjqmffv2BAQEEBoaWjeBKWt7NXupvllXvCRxhQ8pmRNvpNFozLZpSgIRBoOhXtoRdUSjgdvfUovCR+2BtZPVIuZO5aSWX40CB291up6imNeXEjVizHIJT8io0+cxGBR+D0+kd6A77tcsQ64oCj8fV+tp1LS+FJQGpuJlKl+902o1vHFvt+seY1qZ72qOaVU+KX4uRN3SaDRlFiOoqUBP9f9yVEp2rbZrFJeWS1RKDloN9LFQNq8QQghRn+o0MGUwGJg9ezaDBg2ic2c1GyQhIQG9Xl9m6pmPjw8JCQnltpOfn09+fr7p54yMKn6J1GiqPKWuMdDr1S+4xcV1V+NA1CErPUz+Ej4LgZTzsH4KTN8M1td8UT35nZpR5dwcJnys/h1nxoO1AwTeYrm+3ySMgakzCZkUFRuw0tVN4fhvD1/mmW+OE+hhz8Z/DcTLSS24unJvFHsiktHr1NWWasq3JPsmUQJTDVJASWAqMjmb5Cx1TJMaU0I0Pi091M+Ul1Lqpk6nMVuqSwtXnG2tb3C0EEII0fjV6fJdM2fO5OTJk6xfv75G7SxduhQXFxfTzd+/dq98NVYtW7ZEo9Hw888/c+XKFbKysizdJVFVdm5w/9fqv7FhsOWZ0n1XL8FPswEFMi7D6jvghyfVfa2HmwewRLW0dLfHXq+joMhAZHLdXPkG2HQkFoColBymrTxIRl4hR6KvsnRzOAAv3t6Bdr41X7HSGJjKLigm08IrDYqy/EuKnxu/zOp1WrMMOiFE4xBYEpiqq3EjVOpLCSGEaGLqLDA1a9Ysfv75Z3bu3EmLFqWFYH19fSkoKCAtLc3s+MTERHx9fctta968eaSnp5tuMTExddXtRqV58+YsXryY559/Hh8fH2bNmmXpLonq8GgNEz8HNHD4fxD2BRQXwXePQX46tOgDPf4BKJB4Qn1Mu9ss2eObhlaroX1JQOh0fN1M57uSmW8qYutmb83p+AweWf0Xs9YeocigcHsXPx4c0LJWnsteb4WTrZoIKyvzNTx+rrZorykL5+NiY5pWLYRoPIxT+eLScskvqt2sdUVRpL6UEEKIJqfWp/IpisKTTz7Jpk2b2LVrF0FBQWb7e/XqhbW1Ndu3b2fixIkAnD17lujoaAYMGFBumzY2NtjY2NR2Vxuca5e/NYqKiiqzTVEU0/358+czf/78GrcjLCx4JIx4CXa8DJvnQtSfELMf9E4w8TNwC4TgUfDTU2AoVgufi1rRsZkzh6PTOB2fwd3dm9d6+1tOxmNQoJu/K6+O68x9n+znYFQqAC097Fk6sUutBid8nW3JzMsiISOPNj41z8IStcdap8XPxY7YtFxApvEJ0Vh5OdrgoNeRXVBMTGouwd41X+3PKCY1l9i0XKy0Gnq3rHmxdiGEEKIxqPWMqZkzZ/LVV1+xdu1anJycSEhIICEhgdxc9YO4i4sLDz/8MHPmzGHnzp2EhYUxY8YMBgwY0ORX5BNN3OA5aiZUcQGc+FrddsfbalAKoNM4mH0C/u8wOMhV1NpirDN1Oq5uMqZ+OqYuvHBnVz86N3fh0wd7o7fSYmOlZfn9PWu9fohxOp9kTDVM/u52pvu+LnbXOVII0VBpNJpr6kzV7nS+nWfV1ZK7+7viYFPnaxQJIYQQDUKtj3gfffQRAMOGDTPbvmrVKqZPnw7A22+/jVarZeLEieTn5zNmzBg+/PDD2u6KEI2LVgvjV8AnwyH1AnSdDF3vNT/G1hlwtkj3blYdjSvzxWfWetvx6bkciroKwG1d/AB1asbOucMwGBTTKm21yZiFI4GphsnfzZ79qBlzvs43fyawEDerQE97TsdnEFXLBdB/KVmpdWzn8stbCCGEEDejOpnKdyO2trYsX76c5cuX1/bTC9G42brAjC1wYTt0mmDp3jQJ7Xyd0GggOSufpMw8vJ1sCbt0lRc3nWDu6HaEdPSpdtvGLxh9At1o5lqaHdPcte4yZVqUFNiOTq2b1aJEzVwbjPSRqXxCNFrGAuhRtVgAPSE9j0OX1MC18WKGEEII0RTU6ap8QohqcPKB7vfLqnv1xF5vRZCn+gUjPD6TgiIDz3xzjDMJmbz4/QlyC6pf2PbnksDUHV2b1UpfK6OlR8nKbxKYapACrglM+clUPiEaLVNgqhan8m05GY+iQK+W5hczhBBCiJudBKaEEE3etXWmVu2N5OIV9YtGYkY+K/dGVqvNmNQcjsakodXArV3qb0qGMTAVXcvTS0TtMK8xJVP5hGisjO+1tRmYKr2YIdlSQgghmhYJTAkhmjxjnand55J4b3sEAKNKpvCt2HWB1OyCKrf5ywn1C0a/IA+8neov+81YkDchI4+8wtpdxlzUnL+bTOUT4mZgzLSNvZpLQZHBtH313kjWHLhU5fbi0nIJu3QVjQZu7SyBKSGEEE2LBKaEEE2eMTC1/2Iq2QXF9AhwZcU/etG5uTOZ+UW8vyOiSu2l5xSy8k810+rObvU3jQ/Azd4aJ1u1fKDUmWp4vJxs6N3SjS7NXWQqnxCNmJeTDfZ6HQYFYq6q77URiZks+uk0L246SXh81VZ63VxyMaNPS3fT6qpCCCFEUyGBKSFEk2ecygeg0cDiuzqh02p4fmwHAL7af6lKU+Ne/uU0SZn5tPJ0YELP5rXe3+tRlzEvmWJSi0V5Re3QaDRs/NcAfpg5CJ1WY+nuCCGqSX2vVbOmLpVM5/v1dKJp/6d7LlapPWOW7e0yjU8IIUQTJIEpIUST5+Nsg7uDHoDJvf3p2sIVgMFtPLmljSeFxQrPf3ec03E3vgK+82wS34RdRqOBN+7tiq21ri67Xi7jlyXJmGqYNBoNWglKCdHoBZZcBIhMVt9rf7smMPXj0Tji03Mr1c7lqzkciU4rmcZXfzUJhRBCiIZCAlNN1PTp0xk3bpyluyFEg6DRaPi/EcEMb+fFs2Pbm+17/tb26LQa9l1I4bb39nDXB3/y3eHL5baTkVfIC9+dAGDGwCB6tXSv876Xp2XJym+XLFgAPTMzk9mzZ9OyZUvs7OwYOHAghw4dMu2fPn06Go3G7DZ27Ngbtrt8+XICAwOxtbWlX79+HDx4sC5PQwghKhToWZoxlZSRx9GYNADa+zpRZFBYvS+qUu1sNtUkdMdbas8JIYRogiQw1YAMGzaM2bNn1/ljhBBlTR8UxKoZfU2ZU0admrnw9T/7c3sXP6x1Go5fTmfO18fYUvJF4lpLN4cTn55HSw97nhnTrr66XkZdLGNeVY888gi//fYbX375JSdOnGD06NGEhIQQGxtrOmbs2LHEx8ebbuvWrbtumxs2bGDOnDksXLiQw4cP061bN8aMGUNSUlJdn44QQpRRmjGVzW/harZUd39X0/v/2v3RZOYV3rCdPRHJAIztJNlSQgghmiYJTAkhxA30aunO8qk92T9vJBN7tgDg85Li5kan4zJYdzAGgP9M7Iqdvv6n8BkFlHxZstRUvtzcXL799luWLVvGkCFDCA4OZtGiRQQHB/PRRx+ZjrOxscHX19d0c3Nzu267b731Fo8++igzZsygY8eOrFixAnt7e1auXFnXpySEEGUEmmpM5Zim8Y3q6MPwdt609nIgM7+IDYdirtuGoiicjE0HoGfL678HCiGEEDcrCUw1ENOnT2f37t28++67pmktUVFR7N69m759+2JjY4Ofnx/PP/88RUVF131McXExDz/8MEFBQdjZ2dGuXTveffddC5+hEI2fh6MNz41th5VWw1+XrnLicrpp3/Kd5wF1Fb7+rTws1UUAU/Hzy1dzKSw23ODo2ldUVERxcTG2tuZTUuzs7Pjzzz9NP+/atQtvb2/atWvH448/TkpKSoVtFhQUEBYWRkhIiGmbVqslJCSE0NDQCh+Xn59PRkaG2U0IIWqDcSrf5as57Duvvn+N7uiDVqvh0VtaAbDyz0g2n4jnu8OX2fhXDMlZ+WZtxKXncTWnECuthna+TvV7AkIIIUQDYWXpDtQHRVHILapcAcraZGdlh0ZTuQK37777LufOnaNz584sWbIEgOLiYm677TamT5/O//73P86cOcOjjz6Kra0tixYtKvcxXl5eGAwGWrRowcaNG/Hw8GDfvn089thj+Pn5MWnSpDo7XyGaAm9nW27v6scPR+NYvS+K/07qxvmkTDafVKf2zRoebOEego+TLTZWWvKLDMSl5ZqKodcXJycnBgwYwMsvv0yHDh3w8fFh3bp1hIaGEhys/n7Gjh3LhAkTCAoK4sKFC7zwwgvceuuthIaGotOVzTZLTk6muLgYHx8fs+0+Pj6cOXOmwr4sXbqUxYsX1+4JCiEE4O1kg521jtzCYgqKDQR62BPs7QjAuB7NefPXs8Sl5/HEmsOmx4zp5MPHD/Q2/Wy8wNHWxwkbK8tl2gohhBCW1CQCU7lFufRb26/en/fA/Qewt7av1LEuLi7o9Xrs7e3x9VVrDLz44ov4+/vzwQcfoNFoaN++PXFxcTz33HMsWLCg3McA6HQ6sy9iQUFBhIaG8vXXX0tgSohaMH1gID8cjeOnY3HMu609H+w4j6KoXzgawhVvrVZDgLs9EUlZXErJqffAFMCXX37JQw89RPPmzdHpdPTs2ZMpU6YQFhYGwH333Wc6tkuXLnTt2pXWrVuza9cuRo4cWWv9mDdvHnPmzDH9nJGRgb+/f621L4RoujQaDS097DmTkAmo0/iMFyRtrXW8fHdnPt1zESutFjRwMDKVvedTKCo2YKVTJy2cilMDU52bO1vmJIQQQogGQKbyNWDh4eEMGDDALOtq0KBBZGVlcfly+auCGS1fvpxevXrh5eWFo6Mjn3zyCdHR0XXdZSGahB4BbnTzd6Wg2MDSzWf48VgcAE+OaGPhnpVq6VG6WpQltG7dmt27d5OVlUVMTAwHDx6ksLCQVq1alXt8q1at8PT05Pz58+Xu9/T0RKfTkZiYaLY9MTHRLDD/dzY2Njg7O5vdhBCitgReE/gf/bfi5bd28eO7Jwbx9b8GsO7R/jjZWpGVX0R4fKbpGGN9qc7NXeqnw0IIIUQD1CQypuys7Dhw/wGLPK8lrF+/nrlz5/Lf//6XAQMG4OTkxBtvvMGBA/X/OxDiZjVjYCCzNxzl28NqkHhEe+8G9cXCWGfqUoplCqAbOTg44ODgwNWrV9m2bRvLli0r97jLly+TkpKCn59fufv1ej29evVi+/btjBs3DgCDwcD27duZNWtWXXVfCCGuy1hnysNBT8+AiouX67Qa+gS6s+NMEgciU+jSQh0vTsapde8a0vghhBBC1LcmkTGl0Wiwt7av91tl60sZ6fV6iouLTT936NCB0NBQFEUxbdu7dy9OTk60aNGi3McYjxk4cCBPPPEEPXr0IDg4mAsXLtTgNyiE+Lvbuvjh5WRj+nnWCMvXlrqWcRnzKAsFprZt28bWrVuJjIzkt99+Y/jw4bRv354ZM2aQlZXFM888w/79+4mKimL79u3cfffdBAcHM2bMGFMbI0eO5IMPPjD9PGfOHD799FO++OILwsPDefzxx8nOzmbGjBmWOEUhhGBga3Wxi3t6tUCnvf7nvr5B7gAciEwFIDEjjyuZ+Wg10MFXsjmFEEI0XU0iMNVYBAYGcuDAAaKiokhOTuaJJ54gJiaGJ598kjNnzvDDDz+wcOFC5syZg1arLfcxBoOBNm3a8Ndff7Ft2zbOnTvH/PnzOXTokIXPToibi95KywP9WwJwSxvP614pt4SAkukl0amWmcqXnp7OzJkzad++PQ8++CCDBw9m27ZtWFtbo9PpOH78OHfddRdt27bl4YcfplevXuzZswcbm9Jg34ULF0hOTjb9PHnyZN58800WLFhA9+7dOXr0KFu3bi1TEF0IIerLkLZe7H1+BM+MaXfDY/uVBKYORaViMCimaXzB3o7Y6aXwuRBCiKarSUzlayzmzp3LtGnT6NixI7m5uURGRrJ582aeeeYZunXrhru7Ow8//DAvvfTSdR/zz3/+kyNHjjB58mQ0Gg1TpkzhiSeeYMuWLRY8OyFuPo8Pa42fiy0j2ntbuitlGDOmolNzMBgUtDe4kl/bJk2aVOFiC3Z2dmzbtu2GbURFRZXZNmvWLJm6J4RoUJq7Vq50Q+fmLtjrdaTlFHIuKZOTsSXT+JrJND4hhBBNmwSmGpC2bdsSGhpqti0wMJCDBw9W6TEAq1atYtWqVWbbli5darq/evXqmnVWCIG1Tsu9vRvmCm/NXO3QaTXkFRpIyszH18XW0l0SQogmzVqnpVdLN/ZEJHMwMpUTUvhcCCGEAGQqnxBC3JSsdVrTVXxLrcwnhBDCXN/A0jpTp+IkMCWEEEKABKaEEOKm1VBW5hNCCKEyFkD/4+wV4tPzAOjYTAqfCyGEaNokMCWEEDcpU2DKQgXQhRBCmOvm74reSktmfhEArTwdcLRpOpU1li9fTmBgILa2tvTr1++65SpOnTrFxIkTCQwMRKPR8M4775Q5JjMzk9mzZ9OyZUvs7OwYOHBgmQV/FEVhwYIF+Pn5YWdnR0hICBEREbV9akIIIWpAAlNCCHGTCixZmS9KMqaEEKJBsLXW0d3f1fRzU5rGt2HDBubMmcPChQs5fPgw3bp1Y8yYMSQlJZV7fE5ODq1ateL111/H19e33GMeeeQRfvvtN7788ktOnDjB6NGjCQkJITY21nTMsmXLeO+991ixYgUHDhzAwcGBMWPGkJeXVyfnKYQQouosFpiqyhUTIYQQVRfgrmZM7TufzMo/I0nPLbRwj4QQQvQvmc4H0Ll505nG99Zbb/Hoo48yY8YMOnbsyIoVK7C3t2flypXlHt+nTx/eeOMN7rvvPmxsbMrsz83N5dtvv2XZsmUMGTKE4OBgFi1aRHBwMB999BGgZku98847vPTSS9x999107dqV//3vf8TFxfH999/X5ekKIYSoAosEpqp6xaQ6FEWptbaaKvkdCtG49Qhww83emqs5hSz5+TQj/rvL0l0SQogmr2+Qh+l+52ZNI2OqoKCAsLAwQkJCTNu0Wi0hISHlri5dGUVFRRQXF2Nra77qrJ2dHX/++ScAkZGRJCQkmD2vi4sL/fr1u+7z5ufnk5GRYXYTQghRdywSmKrqFZOqsLa2BtT0X1Ezxt+h8XcqhGhcvJxs+OPZ4bw8rjPtfZ3ILzRYuktCCNHk9WzpipOtFfZ6HZ2ayFS+5ORkiouL8fHxMdvu4+NDQkJCtdp0cnJiwIABvPzyy8TFxVFcXMxXX31FaGgo8fHxAKa2q/q8S5cuxcXFxXTz9/evVh+FEEJUTr1XWzReMZk3b55p242umOTn55Ofn2/6+XpXLXQ6Ha6urqbsK3t7ezQaTS31vmlQFIWcnBySkpJwdXVFp9NZuktCiGpysrXmgf4t+Ue/AHafvMTwdyzdIyGEaNrs9VZs/NcAiooVXOzk4l9NfPnllzz00EM0b94cnU5Hz549mTJlCmFhYTVqd968ecyZM8f0c0ZGhgSnhBCiDtV7YOp6V0zOnDlT7mOWLl3K4sWLK/0cxgKJtTk1sClydXWtsNikEKJx0Wg09GzpfuMDhRBC1Ln2vk2nthSAp6cnOp2OxMREs+2JiYk1+qzZunVrdu/eTXZ2NhkZGfj5+TF58mRatWoFlH4nSExMxM/Pz+x5u3fvXmG7NjY25da1EkIIUTcaxfq0Vb1qodFo8PPzw9vbm8JCKfZbHdbW1pIpJYQQQgghakyv19OrVy+2b9/OuHHjADAYDGzfvp1Zs2bVuH0HBwccHBy4evUq27ZtY9myZQAEBQXh6+vL9u3bTYGojIwMDhw4wOOPP17j5xVCCFE76j0wVZ0rJtW9aqHT6SS4IoQQQgghhIXNmTOHadOm0bt3b/r27cs777xDdnY2M2bMAODBBx+kefPmLF26FFDLf5w+fdp0PzY2lqNHj+Lo6EhwcDAA27ZtQ1EU2rVrx/nz53nmmWdo3769qU2NRsPs2bN55ZVXaNOmDUFBQcyfP59mzZqZAmRCCCEsr94DU3V9xUQIIYQQQgjRsEyePJkrV66wYMECEhIS6N69O1u3bjWV94iOjkarLV2XKS4ujh49eph+fvPNN3nzzTcZOnQou3btAiA9PZ158+Zx+fJl3N3dmThxIq+++qrZwj3PPvss2dnZPPbYY6SlpTF48GC2bt1aZjU/IYQQlqNRFEWp7yfdsGED06ZN4+OPPzZdMfn66685c+ZMmdpT5cnIyMDFxYX09HScnZvWHH0hhKguee+U34EQQlRHU3/vbOrnL4QQ1VGV906L1Ji60RUTIYQQQgghhBBCCHHzs1jx81mzZlV76p4xySsjI6M2uySEEDc143umBRJlGwwZP4QQouqa+vghY4cQQlRdVcaORrEq39+lpKQAXHdlPiGEEOVLSUnBxcXF0t2wCBk/hBCi+prq+CFjhxBCVF9lxo5GGZhyd3cH1CKJVR0c+/Tpw6FDh6r1vBkZGfj7+xMTE1PuHMmatH0jddl2XbdfX32/0etTk7brys3we7+e6r4mDaHvN2Pb6enpBAQEmN5Dm6Lqjh81/d1f7/+C/L1bpv1r225s48fN8nuviIwdDa/9pj5+NMSxozbav56G/jdpqbavbb+xjR113b6l267J62HpvjfU9utz7GiUgSnjih0uLi5V/qPT6XQ1fuNwdnYut43aaLsiddl2Xbdf332v6PWpjbZr2830e7+eqr4mDanvN2Pb16561NRUd/yord99ef8X5O/dMu2X13ZjGT9utt97RWTsaHjtN9XxoyGOHbXZfnkay99kfbddXvuNZeyo6/YbStvVeT0aSt8bWvv1OXY0udFl5syZ0nY9ty99t0z70nfLtN9Y2xbX15hfV+l7/bdd1+1L3+u/7bpuvzH3XVSsMb+u0nfLtC99r/+267p96XvlaJRGWMXQUku2ylKxDZu8Pg2PvCYNi7weMn6I8snr07DI69HwNPXXRMYOUR55fRoWeT0anqq8Jo0yY8rGxoaFCxdiY2PTJJ5XVI68Pg2PvCYNi7weMn6I8snr07DI69HwNPXXRMYOUR55fRoWeT0anqq8Jo0yY0oIIYQQQgghhBBCNH6NMmNKCCGEEEIIIYQQQjR+EpgSQgghhBBCCCGEEBYhgSkhhBBCCCGEEEIIYRESmLpGTEwMDz30EM2aNUOv19OyZUueeuopUlJSKvX4Xbt2odFoSEtLq9uONiHTp09Ho9Hw+uuvm23//vvv0Wg0FupV02Z8TTQaDdbW1vj4+DBq1ChWrlyJwWCwdPeEqHcydjQ8MnY0PDJ2CFGWjB8Nj4wfDYuMHU2HBKZKXLx4kd69exMREcG6des4f/48K1asYPv27QwYMIDU1FRLd7HJsrW15T//+Q9Xr161dFdEibFjxxIfH09UVBRbtmxh+PDhPPXUU9xxxx0UFRVZuntC1BsZOxouGTsaHhk7hCgl40fDJeNHwyJjR9MggakSM2fORK/X8+uvvzJ06FACAgK49dZb+f3334mNjeXFF18EID8/n+eeew5/f39sbGwIDg7m888/JyoqiuHDhwPg5uaGRqNh+vTpFjyjm0dISAi+vr4sXbq0wmO+/fZbOnXqhI2NDYGBgfz3v/817XvhhRfo169fmcd069aNJUuW1Emfb3Y2Njb4+vrSvHlzevbsyQsvvMAPP/zAli1bWL16NQBpaWk88sgjeHl54ezszIgRIzh27JhZOz/99BN9+vTB1tYWT09Pxo8fb4GzEaL6ZOxouGTsaHhk7BCilIwfDZeMHw2LjB1NgwSmgNTUVLZt28YTTzyBnZ2d2T5fX1+mTp3Khg0bUBSFBx98kHXr1vHee+8RHh7Oxx9/jKOjI/7+/nz77bcAnD17lvj4eN59911LnM5NR6fT8dprr/H+++9z+fLlMvvDwsKYNGkS9913HydOnGDRokXMnz/f9EY1depUDh48yIULF0yPOXXqFMePH+f++++vr9O46Y0YMYJu3brx3XffAXDvvfeSlJTEli1bCAsLo2fPnowcOdJ0BfCXX35h/Pjx3HbbbRw5coTt27fTt29fS56CEFUiY0fDJmNH4yBjh2iKZPxo2GT8aPhk7LgJKULZv3+/AiibNm0qd/9bb72lAMqBAwcUQPntt9/KPW7nzp0KoFy9erXuOtvETJs2Tbn77rsVRVGU/v37Kw899JCiKIqyadMmxfjne//99yujRo0ye9wzzzyjdOzY0fRzt27dlCVLlph+njdvntKvX7867v3N6drX5O8mT56sdOjQQdmzZ4/i7Oys5OXlme1v3bq18vHHHyuKoigDBgxQpk6dWtfdFaLOyNjRcMnY0fDI2CFEKRk/Gi4ZPxoWGTuaDsmYuoaiKNfdHxUVhU6nY+jQofXUI3Gt//znP3zxxReEh4ebbQ8PD2fQoEFm2wYNGkRERATFxcWAeuVi7dq1gPo6r1u3jqlTp9ZPx5sQRVHQaDQcO3aMrKwsPDw8cHR0NN0iIyNNV4+OHj3KyJEjLdxjIWpOxo6GTcaOhk/GDtFUyfjRsMn40bDJ2HFzsbJ0BxqC4OBgNBoN4eHh5c41DQ8Px83NrUyqrahfQ4YMYcyYMcybN6/Kc+inTJnCc889x+HDh8nNzSUmJobJkyfXTUebsPDwcIKCgsjKysLPz49du3aVOcbV1RVA/j+JRk/GjsZBxo6GT8YO0dTI+NE4yPjRsMnYcXORjCnAw8ODUaNG8eGHH5Kbm2u2LyEhgTVr1jB58mS6dOmCwWBg9+7d5baj1+sBTJFyUftef/11fvrpJ0JDQ03bOnTowN69e82O27t3L23btkWn0wHQokULhg4dypo1a1izZg2jRo3C29u7Xvt+s9uxYwcnTpxg4sSJ9OzZk4SEBKysrAgODja7eXp6AtC1a1e2b99u4V4LUX0ydjQeMnY0XDJ2iKZIxo/GQ8aPhknGjpuQxSYRNjDnzp1TPD09lVtuuUXZvXu3Eh0drWzZskXp3Lmz0qZNGyUlJUVRFEWZPn264u/vr2zatEm5ePGisnPnTmXDhg2KoijK5cuXFY1Go6xevVpJSkpSMjMzLXlKN4Xy5hU/8MADiq2trWmed1hYmKLVapUlS5YoZ8+eVVavXq3Y2dkpq1atMnvcp59+qjRr1kzx9PRUvvzyy3o6g5vPtGnTlLFjxyrx8fHK5cuXlbCwMOXVV19VHB0dlTvuuEMpKipSDAaDMnjwYKVbt27Ktm3blMjISGXv3r3KCy+8oBw6dEhRFLUuglarVRYsWKCcPn1aOX78uPL6669b+OyEqBoZOxomGTsaHhk7hDAn40fDJONHwyJjR9MhgalrREVFKdOmTVN8fHwUa2trxd/fX3nyySeV5ORk0zG5ubnK008/rfj5+Sl6vV4JDg5WVq5cadq/ZMkSxdfXV9FoNMq0adMscBY3l/IGh8jISEWv1yvXxlW/+eYbpWPHjoq1tbUSEBCgvPHGG2Xaunr1qmJjY6PY29vLwF0D06ZNUwAFUKysrBQvLy8lJCREWblypVJcXGw6LiMjQ3nyySeVZs2amf4/TZ06VYmOjjYd8+233yrdu3dX9Hq94unpqUyYMMESpyREjcjY0fDI2NHwyNghRFkyfjQ8Mn40LDJ2NB0aRblB1T0hhBBCCCGEEEIIIeqA1JgSQgghhBBCCCGEEBYhgSkhhBBCCCGEEEIIYRESmBJCCCGEEEIIIYQQFiGBKSGEEEIIIYQQQghhERKYEkIIIYQQQgghhBAW0eQCU0uXLqVPnz44OTnh7e3NuHHjOHv2rNkxeXl5zJw5Ew8PDxwdHZk4cSKJiYmm/ceOHWPKlCn4+/tjZ2dHhw4dePfdd83a+O677xg1ahReXl44OzszYMAAtm3bVi/nKIQQonbJ2CGEEKI6ZPwQQogba3KBqd27dzNz5kz279/Pb7/9RmFhIaNHjyY7O9t0zNNPP81PP/3Exo0b2b17N3FxcUyYMMG0PywsDG9vb7766itOnTrFiy++yLx58/jggw9Mx/zxxx+MGjWKzZs3ExYWxvDhw7nzzjs5cuRIvZ6vEEKImpOxQwghRHXI+CGEEDemURRFsXQnLOnKlSt4e3uze/duhgwZQnp6Ol5eXqxdu5Z77rkHgDNnztChQwdCQ0Pp379/ue3MnDmT8PBwduzYUeFzderUicmTJ7NgwYI6ORchhBD1Q8YOIYQQ1SHjhxBClNXkMqb+Lj09HQB3d3dAvSJRWFhISEiI6Zj27dsTEBBAaGjoddsxtlEeg8FAZmbmdY8RQgjROMjYIYQQojpk/BBCiLKsLN0BSzIYDMyePZtBgwbRuXNnABISEtDr9bi6upod6+PjQ0JCQrnt7Nu3jw0bNvDLL79U+FxvvvkmWVlZTJo0qdb6L4QQov7J2CGEEKI6ZPwQQojyNenA1MyZMzl58iR//vlntds4efIkd999NwsXLmT06NHlHrN27VoWL17MDz/8gLe3d7WfSwghhOXJ2CGEEKI6ZPwQQojyNdmpfLNmzeLnn39m586dtGjRwrTd19eXgoIC0tLSzI5PTEzE19fXbNvp06cZOXIkjz32GC+99FK5z7N+/XoeeeQRvv76a7MUXSGEEI2PjB1CCCGqQ8YPIYSoWJMLTCmKwqxZs9i0aRM7duwgKCjIbH+vXr2wtrZm+/btpm1nz54lOjqaAQMGmLadOnWK4cOHM23aNF599dVyn2vdunXMmDGDdevWcfvtt9fNCQkhhKhzMnYIIYSoDhk/hBDixprcqnxPPPEEa9eu5YcffqBdu3am7S4uLtjZ2QHw+OOPs3nzZlavXo2zszNPPvkkoM7nBjWFdsSIEYwZM4Y33njD1IZOp8PLywtQU2inTZvGu+++a7bcq52dHS4uLnV+nkIIIWqPjB1CCCGqQ8YPIYSoBKWJAcq9rVq1ynRMbm6u8sQTTyhubm6Kvb29Mn78eCU+Pt60f+HCheW20bJlS9MxQ4cOLfeYadOm1d/JCiGEqBUydgghhKgOGT+EEOLGmlzGlBBCCCGEEEIIIYRoGJpcjSkhhBBCCCGEEEII0TBIYEoIIYQQQgghhBBCWIQEpoQQQgghhBBCCCGERUhgSgghhBBCCCGEEEJYhASmhBBCCCGEEEIIIYRFSGBKCCGEEEIIIYQQQliEBKaEEEIIIYQQQgghhEVIYEoIIYQQQgghhBBCWIQEpoQQQgghhBBCCCGERUhgSogaGjZsGLNnz7Z0N4QQQjQiMnYIIYSoDhk/xM1IAlNCCCGEEEIIIYQQwiIkMCVEDUyfPp3du3fz7rvvotFo0Gg0HDlyhKlTp+Ll5YWdnR1t2rRh1apVlu6qEEKIBkLGDiGEENUh44e4WVlZugNCNGbvvvsu586do3PnzixZsgSAxYsXc/r0abZs2YKnpyfnz58nNzfXwj0VQgjRUMjYIYQQojpk/BA3KwlMCVEDLi4u6PV67O3t8fX1BSA2NpYePXrQu3dvAAIDAy3YQyGEEA2NjB1CCCGqQ8YPcbOSqXxC1LLHH3+c9evX0717d5599ln27dtn6S4JIYRo4GTsEEIIUR0yfoibgQSmhKhlt956K5cuXeLpp58mLi6OkSNHMnfuXEt3SwghRAMmY4cQQojqkPFD3AwkMCVEDen1eoqLi822eXl5MW3aNL766iveeecdPvnkEwv1TgghREMkY4cQQojqkPFD3IykxpQQNRQYGMiBAweIiorC0dGR9957j169etGpUyfy8/P5+eef6dChg6W7KYQQogGRsUMIIUR1yPghbkaSMSVEDc2dOxedTkfHjh3x8vJCr9czb948unbtypAhQ9DpdKxfv97S3RRCCNGAyNghhBCiOmT8EDcjjaIoiqU7IYQQQgghhBBCCCGaHsmYEkIIIYQQQgghhBAWIYEpIYQQQgghhBBCCGEREpgSQgghhBBCCCGEEBYhgSkhhBBCCCGEEEIIYRESmBJCCCGEEEIIIYQQFiGBKSGEEEIIIYQQQghhERKYEkIIIYQQQgghhBAWIYEpIYQQQgghhBBCCGEREpgSQgghhBBCCCGEEBYhgSkhhBBCCCGEEEIIYRESmBJCCCGEEEIIIYQQFiGBKSGEEEIIIYQQQghhERKYEkIIIYQQQgghhBAWIYEpIYQQQgghhBBCCGEREpgSQgghhBBCCCGEEBYhgSkhhBBCCCGEEEIIYRESmBJCCCGEEEIIIYQQFiGBKSFuYNGiRWg0mio/bvr06QQGBtZ+h4QQQgghhBBCiJuEBKaEqCc5OTksWrSIXbt2WborQgghhBBCCCFEgyCBKSHqSU5ODosXL5bAlBBCCCGEEEIIUUICU0IIIYQQQgghhBDCIiQwJcQ1/vzzT/r06YOtrS2tW7fm448/Lve4r776il69emFnZ4e7uzv33XcfMTExFbYbFRWFl5cXAIsXL0aj0aDRaFi0aBEAx48fZ/r06bRq1QpbW1t8fX156KGHSElJqfVzFEIIcWO7du2id+/eZuPB32sOrlq1ihEjRuDt7Y2NjQ0dO3bko48+KtNWYGAgd9xxh6lNOzs7unTpYsqg/e677+jSpQu2trb06tWLI0eOmD1++vTpODo6Eh0dzR133IGjoyPNmzdn+fLlAJw4cYIRI0bg4OBAy5YtWbt2rdnjU1NTmTt3Ll26dMHR0RFnZ2duvfVWjh07Vsu/NSGEEJXxzTffoNFo2L17d5l9H3/8MRqNhpMnTwJw5swZ7rnnHtzd3bG1taV37978+OOPZR53/Phxhg4dip2dHS1atOCVV15h1apVaDQaoqKiTMf98MMP3H777TRr1gwbGxtat27Nyy+/THFxcZ2drxA3olEURbF0J4RoCE6cOEG/fv3w8vLi8ccfp6ioiA8++AAfHx+OHz+O8b/Kq6++yvz585k0aRJDhw7lypUrvP/++zg6OnLkyBFcXV0B9YvErl27iIqKIjs7my+//JLHH3+c8ePHM2HCBAC6du1K165d+e9//8sPP/zAqFGj8PX15dSpU3zyySd06dKF/fv3V6v4uhBCiOo5cuQIAwYMwM/Pj3/9618UFxezfPlyvLy8OHbsmGk86Nu3L506daJbt25YWVnx008/8euvv/LBBx8wc+ZMU3uBgYHY2tqSkZHBP//5T1xcXHjzzTdJT09nxYoVvPDCCzzxxBMALF26FC8vL86ePYtWq14/nD59Ohs2bKBVq1YMGTKELl26sGbNGvbt28eqVat48cUXmTp1KgEBAaxYsYIzZ84QERFBUFAQAH/99Rf33Xcf9957L0FBQSQmJvLxxx+TlZXF6dOnadasWT3/hoUQomnLzc3F29ubBx980HSRwWjEiBEkJSVx8uRJTp06xaBBg2jevDnTpk3DwcGBr7/+mj179vDtt98yfvx4AGJjY+natSsajYb/+7//w8HBgc8++wwbGxuOHTtGZGSkaVGm8ePHo9fr6dOnD46OjuzYsYONGzcyd+5c3njjjfr+VQihUoQQiqIoyrhx4xRbW1vl0qVLpm2nT59WdDqdYvyvEhUVpeh0OuXVV181e+yJEycUKysrs+3Tpk1TWrZsafr5ypUrCqAsXLiwzHPn5OSU2bZu3ToFUP74448anpkQQoiquPPOOxV7e3slNjbWtC0iIkKxsrJSrv3oVN5795gxY5RWrVqZbWvZsqUCKPv27TNt27ZtmwIodnZ2ZuPOxx9/rADKzp07TdumTZumAMprr71m2nb16lXFzs5O0Wg0yvr1603bz5w5U2asycvLU4qLi836FBkZqdjY2ChLliypxG9ECCFEbZsyZYri7e2tFBUVmbbFx8crWq3W9N48cuRIpUuXLkpeXp7pGIPBoAwcOFBp06aNaduTTz6paDQa5ciRI6ZtKSkpiru7uwIokZGRpu3ljV3//Oc/FXt7e7PnEaI+yVQ+IYDi4mK2bdvGuHHjCAgIMG3v0KEDY8aMMf383XffYTAYmDRpEsnJyaabr68vbdq0YefOndV6fjs7O9P9vLw8kpOT6d+/PwCHDx+u5lkJIYSoquLiYn7//XfGjRtnlkkUHBzMrbfeanbste/d6enpJCcnM3ToUC5evEh6errZsR07dmTAgAGmn/v16weoV8avHXeM2y9evFimb4888ojpvqurK+3atcPBwYFJkyaZtrdr1w5XV1ezx9vY2Jiyr4qLi0lJScHR0ZF27drJGCOEEBYyefJkkpKSzBZG+uabbzAYDEyePJnU1FR27NjBpEmTyMzMNH3vSElJYcyYMURERBAbGwvA1q1bGTBgAN27dze15e7uztSpU8s877Vjl7HdW265hZycHM6cOVNn5yvE9VhZugNCNARXrlwhNzeXNm3alNnXrl07Nm/eDEBERASKopR7HIC1tXW1nj81NZXFixezfv16kpKSzPb9/cuNEEKIupOUlERubi7BwcFl9v192969e1m4cCGhoaHk5OSY7UtPT8fFxcX087XBJ8C0z9/fv9ztV69eNdtua2trqlV47bEtWrQoM93bxcXF7PEGg4F3332XDz/8kMjISLM6Ih4eHmXOUwghRN0bO3YsLi4ubNiwgZEjRwKwYcMGunfvTtu2bTl48CCKojB//nzmz59fbhtJSUk0b96cS5cumV38MCpvLDt16hQvvfQSO3bsICMjw2yffO8QliKBKSGqwGAwoNFo2LJlCzqdrsx+R0fHarU7adIk9u3bxzPPPEP37t1xdHTEYDAwduxYDAZDTbsthBCill24cIGRI0fSvn173nrrLfz9/dHr9WzevJm33367zHt3eWPG9bYrfysBWpPHv/baa8yfP5+HHnqIl19+GXd3d7RaLbNnz5YxRgghLMTGxoZx48axadMmPvzwQxITE9m7dy+vvfYagOn9ee7cuWYzOK5VXuDpetLS0hg6dCjOzs4sWbKE1q1bY2try+HDh3nuuedkTBAWI4EpIQAvLy/s7OyIiIgos+/s2bOm+61bt0ZRFIKCgmjbtm2VnqOiAuZXr15l+/btLF68mAULFpi2l9cXIYQQdcvb2xtbW1vOnz9fZt+123766Sfy8/P58ccfzbKhqjuluy598803DB8+nM8//9xse1paGp6enhbqlRBCiMmTJ/PFF1+wfft2wsPDURSFyZMnA9CqVStAnZEREhJy3XZatmx5w3EL1BVnU1JS+O677xgyZIhpe2RkZE1PRYgakRpTQqBecR4zZgzff/890dHRpu3h4eFs27bN9POECRPQ6XQsXry4zNVsRVFISUmp8Dns7e0B9YvA35/b+PhrvfPOO9U5FSGEEDWg0+kICQnh+++/Jy4uzrT9/PnzbNmyxew4MH/vTk9PZ9WqVfXX2UrS6XRlxpiNGzeaapMIIYSwjJCQENzd3dmwYQMbNmygb9++phVVvb29GTZsGB9//DHx8fFlHnvlyhXT/TFjxhAaGsrRo0dN21JTU1mzZo3ZY8obuwoKCvjwww9r87SEqDLJmBKixOLFi9m6dSu33HILTzzxBEVFRbz//vt06tSJ48ePA2rG1CuvvMK8efOIiopi3LhxODk5ERkZyaZNm3jssceYO3duue3b2dnRsWNHNmzYQNu2bXF3d6dz58507tyZIUOGsGzZMgoLC2nevDm//vqrXLkQQggLWbRoEb/++iuDBg3i8ccfp7i4mA8++IDOnTubPvSPHj0avV7PnXfeyT//+U+ysrL49NNP8fb2LvcLhCXdcccdLFmyhBkzZjBw4EBOnDjBmjVrTFfjhRBCWIa1tTUTJkxg/fr1ZGdn8+abb5rtX758OYMHD6ZLly48+uijtGrVisTEREJDQ7l8+TLHjh0D4Nlnn+Wrr75i1KhRPPnkkzg4OPDZZ58REBBAamqqaebGwIEDcXNzY9q0afzf//0fGo2GL7/8sszFCyHqm2RMCVGia9eubNu2DS8vLxYsWMDKlStZvHgx48ePNzvu+eef59tvv0Wr1bJ48WLmzp3Ljz/+yOjRo7nrrruu+xyfffYZzZs35+mnn2bKlCl88803AKxdu5YxY8awfPly5s2bh7W1tdmVeSGEEPWnV69ebNmyBTc3N+bPn8/nn3/OkiVLGDlyJLa2toC6MMY333yDRqNh7ty5rFixgscee4ynnnrKwr0v64UXXuDf//4327Zt46mnnuLw4cP88ssvZQqvCyGEqH+TJ08mKysLwGyVVVBXdP3rr7+4/fbbWb16NTNnzmTFihVotVqzEiD+/v7s3LmTDh068Nprr/HOO+8wbdo0HnroIQDT2OXh4cHPP/+Mn58fL730Em+++SajRo1i2bJl9XS2QpRPo0h4VAghhBDihsaNG8epU6ekBqAQQohGYfbs2Xz88cdkZWVVuFiGEA2BZEwJIYQQQvxNbm6u2c8RERFs3ryZYcOGWaZDQgghxHX8fdxKSUnhyy+/ZPDgwRKUEg2eZEwJIYQQQvyNn58f06dPp1WrVly6dImPPvqI/Px8jhw5Qps2bSzdPSGEEMJM9+7dGTZsGB06dCAxMZHPP/+cuLg4tm/fbrYCnxANkRQ/F0IIIYT4m7Fjx7Ju3ToSEhKwsbFhwIABvPbaaxKUEkII0SDddtttfPPNN3zyySdoNBp69uzJ559/LkEp0ShIxpQQQgghhBBCCCGEsAipMSWEEEIIIYQQQgghLEICU0IIIYQQQgghhBDCIhpljSmDwUBcXBxOTk5oNBpLd0cIIRoFRVHIzMykWbNmaLVN87qEjB9CCFF1TX38kLFDCCGqripjR6MMTMXFxeHv72/pbgghRKMUExNDixYtLN0Ni5DxQwghqq+pjh8ydgghRPVVZuxolIEpJycnQD1BZ2dnC/dGCCEah4yMDPz9/U3voU2RjB9CCFF1TX38kLFDCCGqripjR6MMTBlTaJ2dnWVwEEKIKmrK0xBk/BBCiOprquOHjB1CCFF9lRk7mt4kcSGEEEIIIYQQQgjRIEhgSgghhBBCCCGEEEJYhASmhBBCCCGEEEIIIYRFSGBKCCGEEEIIIYQQQliEBKaEaGAik7P5YEcEWflFlu6KEEIIIW5SWflFfPrHRVKy8i3dlUbjj3NXSMzIQ1EUS3dFCCFuKhKYEqIByS0oZsaqg7z56zkW/3jK0t0RQgghxE3q/R0RvLo5nBW7L1i6KzWydOlS+vTpg5OTE97e3owbN46zZ8+aHZOXl8fMmTPx8PDA0dGRiRMnkpiYWOXnemLNYfq9tp0+r/7OP7/8i8/2XORoTBp5hcW1dTpCCNEkSWBKiAZk2bYzRKXkALAx7DKHolIt3CMhqm/58uUEBgZia2tLv379OHjwYIXHfvrpp9xyyy24ubnh5uZGSEhImeMVRWHBggX4+flhZ2dHSEgIERERdX0aQghxU9p3PgXA9Lmjsdq9ezczZ85k//79/PbbbxQWFjJ69Giys7NNxzz99NP89NNPbNy4kd27dxMXF8eECROq/FzB3g5oNZCcVcC2U4m88ks445bvpcOCrdyybAczVh3krd/OcTj6KsUGyaoSQojK0iiNMBc1IyMDFxcX0tPTcXZ2tnR3hKgV+y+mcN8n+wHoEeDKkeg02vk48fP/DcZapyU7v4jFP50iM6+I96f0wEoncWVRNfX53rlhwwYefPBBVqxYQb9+/XjnnXfYuHEjZ8+exdvbu8zxU6dOZdCgQQwcOBBbW1v+85//sGnTJk6dOkXz5s0B+M9//sPSpUv54osvCAoKYv78+Zw4cYLTp09ja2tbqX7J+CGEEJCRV0j3xb9iUKBrCxd+nDX4+sc3ovfOK1eu4O3tze7duxkyZAjp6el4eXmxdu1a7rnnHgDOnDlDhw4dCA0NpX///jds89rz19s5cDI2nb8uXeVQZCph0VdJyyks8xh3Bz1D2ngyuI0Xg4I98HOxq/VzFUKIhqwqY4dVPfVJCHEd2flFPPPNMQDu6+PPc2PbM/Kt3ZxNzGTV3khu6+LHI1/8xZmETADCLl2lXysPS3ZZiOt66623ePTRR5kxYwYAK1as4JdffmHlypU8//zzZY5fs2aN2c+fffYZ3377Ldu3b+fBBx9EURTeeecdXnrpJe6++24A/ve//+Hj48P3xf/u8gAAlEVJREFU33/PfffdV/cnJYQQN4m/olIxJvQkpOdZtjO1LD09HQB3d3cAwsLCKCwsJCQkxHRM+/btCQgIqHRg6lq21jp6B7rTO9Cdfw1tjaIoJGcVcD4pi/NJmey/mMof566Qml3A90fj+P5oHACtvByY2q8lDw5oibVcXBRCCDO18q5YlekaAO+88w7t2rXDzs4Of39/nn76afLybq5BUYiqWLolnJjUXJq72vHi7R1wc9Dz/K3tAXjn9wju/mCvKSgFsO9CiqW6KsQNFRQUEBYWZvYlQKvVEhISQmhoaKXayMnJobCw0PTFIjIykoSEBLM2XVxc6NevX6XbFEIIoTpwsbRUQHJWPkXFBgv2pvYYDAZmz57NoEGD6Ny5MwAJCQno9XpcXV3NjvXx8SEhIaHcdvLz88nIyDC7VUSj0eDlZMOA1h48MCCQ5VN7cnjBKDY81p8nhrWmm78rWg1cvJLNyz+f5vb39hAqn+OEEMJMjQNTGzZsYM6cOSxcuJDDhw/TrVs3xowZQ1JSUrnHr127lueff56FCxcSHh7O559/zoYNG3jhhRdq2hUhGqUdZxL5an80AP+Z2BUnW2sA7unZgj6BbuQUFJOSXUBHP2eeHBEMQOhF+UAjGq7k5GSKi4vx8fEx2369LwF/99xzz9GsWTNTIMr4uKq2WZUvF0II0VTsjywNTBkUuHKTrMw3c+ZMTp48yfr162vUztKlS3FxcTHd/P39q/R4a52Wfq08eHZse36YOYgjC0bz6vjOuDvoOZeYxZRP9/PsN8cwSB0qIYQAaiEwde10jY4dO7JixQrs7e1ZuXJlucfv27ePQYMGcf/99xMYGMjo0aOZMmXKDbOshLgZJWXkMXfjcQCmDwxkcBtP0z6tVsNr47sQ5OnAhB7N+ebxAUzo2QKAo9Fp5BbICjDi5vT666+zfv16Nm3aVOnaURWp6ZcLIYS42WTlF3EyVp3uZq/XATfHdL5Zs2bx888/s3PnTlq0aGHa7uvrS0FBAWlpaWbHJyYm4uvrW25b8+bNIz093XSLiYmpUd9c7KyZ2q8lO/49lH/0D0Cjga//uszXf9WsXSGEuFnUKDBVnekaAwcOJCwszBSIunjxIps3b+a2226r8Hnkire4GRkMCv/eeIzU7AI6+Dmbpu5dq42PEzvnDuOtyd2x11sR6GGPr7MtBcUGwi5dtUCvhbgxT09PdDpdmaW4r/clwOjNN9/k9ddf59dff6Vr166m7cbHVbXN2v5yIYQQjd1fUakUGxT83e1o7+sENO7AlKIozJo1i02bNrFjxw6CgoLM9vfq1Qtra2u2b99u2nb27Fmio6MZMGBAuW3a2Njg7OxsdqsNrvZ6XhnXhRdv6wDAa5vDuZJ5c2SrCSFETdQoMFWd6Rr3338/S5YsYfDgwVhbW9O6dWuGDRt23al8csVb3Iw+/zOSPRHJ2Fpree++7tha6274GI1Gw8DWatHz0IvJdd1FIapFr9fTq1cvsy8BBoOB7du3V/glAGDZsmW8/PLLbN26ld69e5vtCwoKwtfX16zNjIwMDhw4cN026+rLhRBCNFYHSqbx9QvywNdFzUpNyGi8gamZM2fy1VdfsXbtWpycnEhISCAhIYHc3FxArUf48MMPM2fOHHbu3ElYWBgzZsxgwIABVS58XlumDwykUzNnMvKKePWX02b78gqLiUnN4WhMGjvOJHIm4cYX5HMLiskrlEx6IUTjVe+r8u3atYvXXnuNDz/8kH79+nH+/HmeeuopXn75ZebPn1/uY+bNm8ecOXNMP2dkZEhwqpHYeSaJH47GMv+Ojng42li6Ow3Gydh0lm07A8D8OzrSxsep0o/t39qD747ESuFM0aDNmTOHadOm0bt3b/r27cs777xDdna2aZW+Bx98kObNm7N06VIA/vOf/7BgwQLWrl1LYGCg6eKGo6Mjjo6OaDQaZs+ezSuvvEKbNm0ICgpi/vz5NGvWjHHjxlnqNIUQotE5UFKnsl+QO6fj1aBHYw5MffTRRwAMGzbMbPuqVauYPn06AG+//TZarZaJEyeSn5/PmDFj+PDDD+u5p6WsdFqWTujCuOV7+f5oHPf08qetjyMf7b7A2gPR5BeVFqPX67TsmDuUFm72pm2FxQb+++s5jsWkEZWSTXx6HrbWWqYPDOLxoa1xsbe2xGkJIUS11SgwVZ3pGvPnz+eBBx7gkUceAaBLly5kZ2fz2GOP8eKLL6LVlk3isrGxwcZGghqNTXpuIU9/fZS0nELsbax4bXwXS3epQcgrLObpDUcpLFYY08mH+/sGVOnxxoypY5fTycovwtGm3uPLQtzQ5MmTuXLlCgsWLCAhIYHu3buzdetWU4ZtdHS02fv9Rx99REFBAffcc49ZOwsXLmTRokUAPPvss6bxIi0tjcGDB7N169Ya16ESQoimIqegiOOX1fpS/Vt5kJpdAEBiI5/KdyO2trYsX76c5cuX10OPKqdrC1ceHBDI6n1RPLX+CFn5RaaAlN5Ki6eDnuyCYtJzC/nhaBwzhwebHvvTsThW7L5g1l5eoYEVuy+w5sAlHhncCj9XW/ILi8krNBDs48jgYE+sdbWyILsQQtS6Gn2jvXa6hvGKtXG6xqxZs8p9TE5OTpngk06nTmGqzMAiGo8Pd54nLacQgK8PxfD40Nb4u9vf4FE3v/9sPUNEUhZeTjYsndAVjUZTpce3cLPH392OmNRcDkWlMryddx31VIiamTVrVoVjwa5du8x+joqKumF7Go2GJUuWsGTJklronRBCND1hl65SZFBo7mpHCze7m2IqX2P279Ft2XIynsQMtc5Ur5ZuzA5pw+BgTzQaDV8fiuHZb4/z/ZFYnhjW2vSZ0Vg0fVLvFtzXN4AgDwcOR19l2daznE3M5O3fz5V5Lg8HPXd09eOu7s3o7u+GTlu1z59CCFGXapxqUdXpGnfeeSdvvfUWPXr0ME3lmz9/PnfeeacpQCUav8tXc1i1LwqA5q52xKbl8v6OCJbd082yHbOwPyOSWbU3CoBl93TF3UFfrXYGtPIgJvUy+y+kMLydN9n5RXy65yJ9g9wZ2Nrzxg0IIYQQosk5cNFYX8odjUaDr7MamDIGRkT9crK1ZsU/erHmQDR3d29mCkgZje3iy0s/nCQiKYvT8Rl0aubCpZRs9l9MRaOB2SFtaeZqB8DIDj4Ma+fNj8di+eFoHBrA1lqHTqth/8UUkrMK+CL0El+EXsLV3ppb2ngxpI0n7X2dCXC3l+l/QgiLqnFgqqrTNV566SU0Gg0vvfQSsbGxeHl5ceedd/Lqq6/WtCuiAXlz21kKigwMaOXBM2PbMeHDfXx7OJYnhgUT6Olg6e5ZRHpOIXM3HgPgH/0DapTpNLC1J1//dZl9F1JIzMjj4S8OcTI2Az8XW/Y9P6LKWVhCCCGEuPkdiCypL9XKHcCUMRWfnouiKPL5wQJ6BLjRI8Ct3H3OttaMbO/NlpMJ/HA0jk7NXEzZUre08TIFpYx0Wg3je7RgfI8WZtuLig38eT6Z74/Esv1MEmk5hfx0LI6fjsWZjnGytWJYO29evK2D6e9CCCHqS60Up6nKdA0rKysWLlzIwoULa+OpRQN04nI63x9VB7oXb+9A5+YuDG/nxc6zV3hvewRvTe5u2Q5awNXsAh5fE0ZCRh6tPB14oWSZ4OoaUFJn6lRcOuOW7yW+pDZEfHoe5xKzaOdb+WLqQgghhLj5FRQZOFZSX6pPoBqY8inJmMorNJCRWyRZMw3Q3d2bs+VkAj8ejeOZMe34JuwyAJN7V34hKCudlmHtvBnWzpuiYgNHY9LYdfYK+y+mcCk1hyuZ+WTmFfHTsTh2nkli7ui2PDAgUKb7CSHqjVRNFrVKURRe2xwOwPgezenc3AWAOaPasfPsFb4/GssTw4MJ9na0ZDfr1bnETB79319cSsnBXq/j7cndsdfX7L+ej7MtrTwduJisrsTS2ssBRxsrjl1O549zVyQwJYQQQggzp+LSKSgy4O6gJ6gke93WWoervTVpOYUkZORJYKoBGt7eC2dbKxIy8nhj21kSM/Jxs7cmpGP1Mu+tdFp6B7rTuyQ4CWpR/PD4TF795TSHo9NY9NNpVu+Lws1Bj0EBrQb6BrpzV/dmdPRzlsw6IUStk6UZRK3aeTaJ0Isp6K20/Ht0W9P2Li1cGNXRB4OiFkVvKraHJzLhw31cSsmhhZsd3z0xkG7+rrXS9oj26geS/q3c+e7xQdzdvTkAu89dqZX2hRBCCHHzOBKdBkAPf1ezwIKxzpQUQG+YbKx03N7VD4BP/rgIwLgezbGxqr3avPZ6K3q1dOObfw3k5XGdcbKxIiolhyPRaRyLSeNIdBof/3GR29/7k5C3dvP1oZhae24hhADJmBK1qKjYwGubzwDw0KAgWriZr8D3xLDW/HY6kc0n41kyrjOONjf3n9+Biyn888swigwK/YLc+egfvapd7Lw8/x7djuHtvekb5I61TsuQtl4AHIxMJaegqMZZWUIIIYS4eRyOvgpAjwBXs+0+zracScgkMV0CUw3V3d2bs+5gaTBocp/KT+OrCq1WwwP9W3JbZ18OlwQytRrIyi9i26kEfg9P4sKVbJ799jjOdtaM7exbJ/0QQjQ98s1V1JoNf8VwPikLN3trnhjeusz+7v6upulnW08mcE+vFuW0cnOIS8tl5trDFBkUbu/ixzv3dcdaV7sJinZ6HYOCS1fga+3lYFoB8cDFVIa3r35xdSGEEELcXIwZUz3/Vmjbz0Uyphq6voHuNHOxJS49j24tXGjv61ynz+fhaMOojj5m2+7u3pzMvEL+s/UMX+2P5plvjtHBz4mWHk1zUSMhRO2SqXyiVmTlF/H2b+cAdelaZ9uyNQo0Gg3jeqjTzb4/Eluv/atPeYXF/OurMJKzCujo58yb93ar9aBUeTQaDUPbqVlTFU3nKzYofPrHRXacSazz/gghhBCiYUjMyCM2LRethjIlBYwF0OMlY6rB0mo1TB8UCMBjQ8pe/K0vTrbWLLyzEz0DXMnMK2Lm2sPkFRZbrD9CiJuHBKZErfh49wWSswoI8nTg/n4BFR43viQwtfdCMgk34Qcgg0HhxU0nOX45HVd7az5+oBd2+tqrAXAjQ9qogak//r+9+w5vslz/AP59s7v33qWlpYyWWTYi24mLISriHrg4jh8eBefR4zrq0eNAERdDHLgQlL33LqV00r33TJu8vz8yoHbQNmmTtN/PdfVSkjdvnpCSJ+/93M99txGY+mp/Bl7dmIh7vzra5jFERETUuxy7oNvGF+XrDIe/lVLw1WdMFTBjyqrdOyEcJ5dNN9abshS5VIIPbh0GN3s5zuRU4vkNZ7AvtRhbEwuw6UweKuoaWzymsLIe3x3JwuGMUlTVt7yfiIhb+chkeRV1WLFbV4zxmZnR7WYHBbnbY2SoGw5nlOHnEzm4f5LlVn3MpbCyHvtSS7DzfBF2JxehuFoNiQB8MH8YgtztL38CMxob4QGZREBacQ0yS2oR7HHx+fMq6vDW5iQAusyph789hh8fGotIn4sd/ERRZKcVIiKiXuZ4VjkAYNjf6ksBlxQ/74ULhr2JIAhW0zXR39UO/5kbhzu/OIz1R7Ox/mi28b5hwa747v4xkOmvB+obNbj980NIKqgyHhPiYY/ZcQG4f1I4a6ISEQAGpsgMfj+Vh/pGLYYFu2LGQJ/LHn/D0EAczijDT8dtNzC1J7kYv5/Ow8H0EqQV1TS7z0EhxXPXxGB8pGcbj+4+zio5hoW44VB6KXYmF+F2jxDjfct/TkCNWoOhwa6QSQQczijDXV8exo8PjsPxzDKs3JuOA2mlePuWWNzUi+t/ERER9TWGjKmhf6svBVzcyseMKeqMK6K88c+rBuDrAxeglElgp5AipbAaxzLL8f7WZCyZHgUA+Pemc0gqqIKTSgYnpQy5FfW4UFKL97Ym47sjWfi/WdGYHO2NA6kl2J1cjLTiasQFuWJipBeGhbj1SDkMIrI8BqbIZCmF1QCA8RGeHcq2uXqwH174JQHn8qtwNrcSMf7dW8DR3PIq6nDHyoPQiro/CwIQ4+eMCZFemNTfC8ND3KCQWW4SndTfC4fSS7HrfBFuH60LTG1OyMefZwsgkwh47cbB8HZSYfaHe5FZWotxr2+DWqM1Pn7j6TwGpoiIiHoJdZMWp3IqALSRMaXfyldSo0ZDkwZKWc+VICDbdu/EcNw7Mdz4519O5uLRNcfxwfYUjIvwREOTFl/szQAAvD9vKCZHe6OsRo1dyUV4c3MSssvq8NjaEy3OuzelBB9uT4WTUoaHJkfgwStscyGbiDqOgSkymSFjKNzLsUPHu9jLcWW0NzYl5GPDiRybC0ztSS6GVgTCPR3w7FUDMDLU3WpSqwFdYOrNzUnYm1KMd7ech7+LHf6zRVeY/t6J4cZOLivvHIEb/rcPVfVNcLGTY3ykJ34/lYdz+VXtnZ6IiIhsyNm8SqibtHCzlyPMs2UHNTd7ORQyCdRNWhRWNvR4GQLqPa6L9ceu80X4/mg2nlh3Ao36Vdw7xoQYu0W7OShwfVwAZgz0xWe70/Dh9lTUNWoQ5umAiZGeiPRxwpGMUuxKLkZpjRr/3nQO9gopFo4NteArI6LuxsAUmSytWJcx1a+DgSkAuGFYgC4wdTwHz8yMhlTSdqbV3pRilNc2mq3YY1V9Iy6U1CLM06FFAdCO2J9aAgCYNdgXU2Muv3Wxp8X4OcPXWYX8ynq8uyXZeHuwuz0evTLS+OcIbyf89NBYJOZVYeoAH6g1Wvx+Kg855XWorG9stbMiERER2ZZLt/G1ltkuCAJ8nVXILK1FQWU9A1NkkheuG4gjGaXIKKkFAER4O+LZqwa0OE4ll2LxlZFYODYU1Q1N8HOxM9532+gQaLUiPtiegnf+Oo8Xfk2Al5MSVw22bOF3Iuo+DEyRSSrqGlFcrQYAhHm1XIVry+QobzipZCisasDpnArE/a11sUFOeR0WfXEYao0W9sqRmBzlbfKY7/ziMI5eKIMgACHu9ojydUKQmz18XVTwd7XDqDB3eDoqW32sKIrYm1oMABjbr+drSHWERCJg1V0j8VdCAXIr6pBTXo/KukY8f82AFh0CI7ydEOGtK35uByn8XVTIrahHUn4VRoa6W2L4REREZEbtFT43MASm8lgAnUzkqJTh/flDcdNH+wAA782Lg0re9vZQJ5UcTq0shkokAh65MgJFVQ34+sAFPL72BNwdFBgd7tFtYyciy2FgikySVqTLlvJxVsKxE9lHCpkE4/p5YlNCPnadL2ozMPXh9hRj/aPlPydgzBMe7U5ul5NbXoej+pVDUQQySmqNKzoG4Z4O2PqPSa2uKqYV16CgsgEKmQTDQ1oWELUW0b7Oxi17nXqcnzNyK+pxjoEpIiKiXqG9wucGPi4sgE7mMyTQFRseHgcBgkklOwRBwAvXDURRVQM2JeTj/q+PYvczk5nVT9QLsc0BmSTVUF/Ks+Pb+AwmRXkBAHaeL2r1/qzSWnx3OAsA4KySIbO0Fh/tSO3iSHV26Z9rWLArjj43Fd/eE4/l18bg3glhuHqIH5QyCdKKa3Ayu6LVx+/Tb+MbHuxmUoDMWkX56rKnzuVVWngkREREZKrCynrklNdBIgCxbSwCAoCvsy5TPJ8ZU2QmA/1dzFJHVioR8O68OAS42qGirhFHM8rMMDoisjYMTJFJDBlT4Z3Yxmcwsb8uMHU8swwVtY0t7v9wewqatCLGR3ji9ZuGAAA+2pmK9OKaLo93R5IuMHVFlDc8HJUYF+GJRePC8M+rY/DhrcMwTV8z6o8zea0+fr9xG1/vTCOONgSmWACdiIjI5h3KKAUARPk6t5vZ7uOsy5jKZ8YUWSGVXGrcwnc8k4Epot6IgSkyiaEjX2cKnxsEuNohwtsRWhHGuk0GWaW1+P5oNgDgiWmRmDXIFxP7e0HdpMXyXxIgimKnn69Ro8XeFN3zTNIHxf5u1iBdUcU/Tue3eA6tVjQWPh8b0TsDUwP8dCtbSflVXfo7JiIiIutxIE33vWV0ePvb8w2Fp7mVj6zVUH2NNEPNNCLqXRiYIpMYOvJ1JWMKuBgg2pnUfDvff7clo0krYkKkJ4aHuEMQBLx03UAoZBLsOl+ELYmFnX6u45nlqGpogruDAoMDXFo95oooLyhlEmSW1uLs37azJeZXoqy2EfYKKYYEunb6+W1BmKcD5FIB1Q1NyC6rs/RwiIiIyAQH0nQZU5crGO3rotvKx+LnZK0MgakTmeXQarl4StTbMDBFXabRisgo1hUO70rGFHBJYOp8kTFDJ62oGj8cywEAPDGtv/HYUE8H3DE6BACw4UROp59r53ldMGtCpCckkpaFzQHAQSkzjmnTmfxm9xmypUaFuUMu7Z3/dORSibFLH7fzERER2a6iqgakFFZDEID4sPYzptzsFQB03ZaJrFGUjxPs5FJUNTQhVV9KhIh6j955dU09IrusFmqNFgqZBP6udl06x6gwdyhlEuRX1iO5sBoarYinvj8FjVbEldHeGPa3DjJXDdFttduVVAR1k7ZTz3WxvlTr2/iMzzFY9xwbTzevM2UofD6un2enntfWDGABdCIiIpt3MF33vSXa1xmu+sBTW5T6hi6d/W5F1FNkUgmGBOp2PBzPLLfsYIjI7BiYoi4z1JcK83CAtI0MpMu5tJjhzqQirNidhqMXyuColOHl2YNaHB8X6ApPRwWqGppwWF/QsyMKq+qRkKsLtEyIbD8wdeUAb8ilAlKLapBcoMsaatRocVBfp2FMLy18bmDszFfAjCkiIiJb1dH6UgCg0GeCNzRpWWOSrNZQ/YL1MRZAJ+p1GJjqI5b9fAbXfbAHlfXmS9E2pNH28+5afSkDQ3e+dUey8M6f5wEAy66JQUArWVgSiYDJUd4AgC2JBR1+jt3ndUXPBwe4wNNR2e6xzio5xkfosqL+0G/nO5xRihq1Bi52csT4md761ppF618fM6aIiIhsV0frSwGAUn7xkqBRw8AUWSdjAXQzZEwdvVCGVXvT0aRhliCRNWBgqg84l1+Jr/ZfwKnsCuN2NnNIK9ZlTIV7dq2+lIGhplNKYTXUGi2ujPbGLSMC2zx+ygAfAMDWxMI2V/UKq+rx+Z50HMssg1YrYsf5jm3jM5il38730/EcPL72OO74/BAAYGw/jzbrU/UWhq186cU1qG/UWHg0RERE1FmdqS8FXMyYAoCGJs79ZJ0MganzhVWoMmGxvVbdhHu/OoIXfj2L538+wyxBIisgs/QAqPut3JNu/P+DaSW4LtbfLOdNKzKtI59BPy8HBLjaIae8Di52crx+42AIQtvBnwmRnlBIdZ3zUgqrEenj1GJct39+CDnluq5yfi4qYzFPQxDscqYN8IFUIiC9uAbp+gBcfJg7/nn1gK68RJvi5aSEm70cZbWNSCmsxqA2OhgSERGRdepMfSkAUMouBqZYZ4qslbeTCoFudsguq8Op7AqMi+ha3de1h7JQWqMGAKw5lAV/Fzs8MiXyso9LK6rG63+cw/hITyyID+lyKRMiaokZU71cUVUDNhzPNf75YHrH6zJdTqq+xlR4FzvyGQiCgDkjgiCXCnj9xsHwdla1e7yDUmas87QlsbDZfaeyy3Hzx/uRU14HbyclHBRS5FXUo1atgbNKhrgg1w6Nyc1BgRuGBkAmETA7zh+/Lh6PdfePQaCbfZdeoy0RBAHRvrrtfInczkdERGRzOlNfCtDN/ZfWmSKyVoY6U8e7WGdK3aTFit1pAHSL3QDw9l/nsf5IVruPq2/U4KFvj+HPswVY9nMCZn+4F6eyy7s0BiJqiYGpXu7rAxeg1mgRpc8qSimsRnF1g8nnrapvRFGV7jymZkwBwGNTI3H6hRnGLXSXMzXGsJ3vYp2p3clFmP/pAZTWqDE4wAUbH5uAo89Pw4o7RuC20cF485ZYyKQd/5V/46YhOPfyTLw7bygGB/atrKFoP30B9HwWQCciIrI1nakvZWDImmLGFFmzofpF5q7WmdpwPAd5FfXwdlLis4Uj8OAV/QAAS388jX2pxW0+7s3NSTiXXwVXezmcVDKczqnA9R/uxYu/JrD0BZEZMDDVi+xNKcb1H+7FT8ezAegi+98cuAAAeHRKJKL1tYMOmSFrytCRz8tJCWeV3OTzAboOfR01JVpXAP1YZhmKqxvw4fYULFx5CDVqDcZFeGDNfaPh6aiESi7FtBgfvDJ7MGYM9O3UeCQSoVOBrN7E8LuSxMAUERGRTelsfSkDQwF0W8uY2rVrF6699lr4+/tDEARs2LCh2f133nknBEFo9jNz5kzLDJZMZiyAnlXe6dpQGq2Ij3amAgDunRAOpUyKp6ZH4fo4fzRpRSz98XSrNdZ2nS/C5/rSKO/MicXWf0zC7Dh/iCLwxd4M3PC/fcYSJ0TUNX3zqruX+nhnKk5mleOJdSexZN0JfHPgAkpr1AhwtcOMgT7GLycH9endpkgr1teX8jQ9W6or/F3tEOPnDK0IzP5wL97cnAStCNw0LBAr7xwJRyXLp5nCsJUvIbcCWi0LQlLXfPjhhwgNDYVKpUJ8fDwOHTrU5rEJCQm46aabEBoaCkEQ8O6777Y45oUXXmhxcREdHd2Nr4CIyPZ0tr6UwcWtfLaV/VFTU4PY2Fh8+OGHbR4zc+ZM5OXlGX/WrFnTgyMkc4rxd4ZCKkFpjRqZpbWdeuwfZ/KQXlwDFzs5bo0PBqBbiH71hsHwdlLiQkmtMQBlUFqjxj/WnwQA3D46BFdG+8DbSYV35w3FF4tGwsNBgcS8Slzz3z1YdzgTxdUNLKZO1AUMTPUSVfWNxnoCEgH48XgOXvk9EQCwaFwoZFIJ4vXp3Ib0blOkmam+lCmmDtBlTWWX1UEpk+CNm4bgrVuGQCnreOYVtW6AnzOcVDKU1TbieFZ5s/uqG5rw3pZkZHXyywD1LevWrcOSJUuwfPlyHDt2DLGxsZgxYwYKCwtbPb62thbh4eF4/fXX4evbdnbjwIEDm11c7Nmzp7teAhGRTTp6QVd7pzPZUgCg1Geu29pWvlmzZuGVV17BDTfc0OYxSqUSvr6+xh83N7ceHCGZk1ImxcAA3QLqsU7UmRJFEf/brsuWWjQuFA6XLGI7KmVYepVuoeuDbSkoqKwHoPvO+/C3x1BU1YAIb0c8e1XzJkiTo7yx8bEJGBPugVq1Bs/8cBojXtmCIS/+ies/3Ivt51r/zkNELZklMNWZVXEAKC8vx8MPPww/Pz8olUr0798fGzduNMdQ+qxd54vRqBER7umAdfePQYCrHQDdB+3ckUEAgFH6LyhJBVXGThRdlapPV+1nhvpSXXVtrD9kEgHhXg74efE4zBkZ1G43P+o4hUyCyVG6wN+fZ/Ob3fffrcn4z5bzeH3TOUsMjWzEO++8g3vvvReLFi1CTEwMPv74Y9jb22PlypWtHj9y5Ei8+eabmDdvHpRKZZvnlclkzS4uPD271pGHiKi3MiweGrbld1RvLn6+Y8cOeHt7IyoqCg8++CBKStrfPdDQ0IDKyspmP2Q9DNc0Px7L6fBj9qWW4GxeJewVUtw5NrTF/bPjAjAs2BW1ag1e/+McSqobcOuKA9ifVgI7uRTvzYuDnaLl4rePswrf3BOPp2ZEIdDNDoIAVNU34WRWOV74NYE7D4g6yOTAVGdXxdVqNaZNm4aMjAx8//33SEpKwooVKxAQEGDqUPo0QxHwKQO8MTLUHRsfnYAnpvbHR7cNg5O+BpSnoxKR3roMJ1PrTBmKYvfztlzGVKSPEw79cyr+fHyicesZmc/0gboC838lXCww36TR4sfjui8BRzO61g2Fej+1Wo2jR49i6tSpxtskEgmmTp2K/fv3m3Tu5ORk+Pv7Izw8HAsWLEBmZma7x/Pigoj6mvRiXWAqtJPlFgw1pmwtY+pyZs6cia+++gpbt27Fv//9b+zcuROzZs2CRtP2lsXXXnsNLi4uxp+goKAeHDFdzm3xIZBKBOxOLsaZnIoOPebr/bq6uzcPD2x1i6sgCHjhuoEQBOCn4zm49r97cCq7Am72cqy5bzQG+rfdCEkqEfDw5AjseeZKJL40E388NgFOShkulNRiX6rpJVSI+gKTA1OdXRVfuXIlSktLsWHDBowbNw6hoaGYNGkSYmNjTR1Kn6XRitiepAsEThmgCya42Mvx2NRITIj0anZsvL5tsKH+QFdU1DYaV+NiA127fB5zcHdQ9NkC5d1tUn8vKKQSpBXXIKVQlyG3J6XY2I0xv7IeeRV1lhwiWani4mJoNBr4+Pg0u93Hxwf5+fltPOry4uPjsWrVKmzatAkfffQR0tPTMWHCBFRVtV2knxcXRNSXqJu0yC7TbbXvbB1QW60xdTnz5s3Dddddh8GDB2P27Nn47bffcPjwYezYsaPNxyxduhQVFRXGn6ysrJ4bMF1WkLs9rhmi6+T9ya60yx6fV1GHv/SL+LeNDmnzuCGBrpg7Qvc9IbeiHgGudvj+wbGI03cC7AiVXIoBfs6YPVSXdLHmUPsLaESkY9IVfVdWxX/55ReMGTMGDz/8MHx8fDBo0CD861//anfVgive7TuWWYay2ka42MkxIqT9PfPxYbo6UwdbqTOl1Yp49qfTmPL2DhRXN7R5jhPZ5QCAUA97uDt0vKgm2RYnlRxj+ul+Xwzb+X74W8r0sQvlPT0s6sNmzZqFW265BUOGDMGMGTOwceNGlJeX47vvvmvzMby4IKK+JLO0FloRcFBI4eXU9rbo1thqV77OCg8Ph6enJ1JSUto8RqlUwtnZudkPWZf7JoYDAH4/lYvMkvbrnq45mAmNVkR8mDv6+7S/xfXJGVEI93TA0GBX/PDgWPTrYj3d+aN0xdU3J+QbF3Uvp6K2EYVV9V16PiJbZ1Jgqiur4mlpafj++++h0WiwceNGPP/883j77bfxyiuvtPk8XPFu3xb9CsAVUV6XzR4yZEwl5leiorax2X3v/HUeqw9mIrWoBhtP57V5jhOZ5QDQqdUDsk3G7XxnC1BZ34g/E3T/ro2tejtRdJL6Dk9PT0ilUhQUFDS7vaCgoN3C5p3l6uqK/v378+KCiEgvQ7+NL8TDodN1N3tzjalLZWdno6SkBH5+fpYeCplgoL8LJvb3glYEPtvTdtaUukmLNYd1i1J3jAm97Hk9HZXYsmQSfnpoHHxdVF0eX4y/M+KCXNGkFfH90ezLHl9Wo8aMd3dh9L+2YumPp4wF2In6ih7fA6XVauHt7Y1PP/0Uw4cPx9y5c/HPf/4TH3/8cZuP4Yp3+7YmNt/G1x5vJxXCPR0gisD+tIvb+b4/mo0Ptl+8uNuZVNTmOY5n6YIRDEz1flP1v1PHM8uxam8GGpq0iPR2xO36NOi/d0Opb9QYa1tQ36VQKDB8+HBs3brVeJtWq8XWrVsxZswYsz1PdXU1UlNTeXFBRKRnmIPDutCcxtDV2NYCU9XV1Thx4gROnDgBAEhPT8eJEyeQmZmJ6upqPPXUUzhw4AAyMjKwdetWXH/99YiIiMCMGTMsO3Ay2QP6rKnvjmShpI3dHn+e1WUseTkpjQuulyORmKeZ0q3xuqypNYcyL1sE/aXfziK/sh5aEVhzKAuT3tyOtzYnoUljW/8eibrKpMBUV1bF/fz80L9/f0ilF7saDBgwAPn5+VCrW+8UxxXvtmXo6//IJAIm9fe6/AMAxIfrtmctXn0MD397DF/vz8DSH08BAGYO1L1v+9NKWq0xIIoiTmSVAwCGBrPVbm/n46wyBiD/uy0ZAHDT8EAM07/3Z3Irm/2e/OO7k5j81o5Ote+l3mnJkiVYsWIFvvzySyQmJuLBBx9ETU0NFi1aBAC44447sHTpUuPxarXaeGGhVquRk5ODEydONMuGevLJJ7Fz505kZGRg3759uOGGGyCVSjF//vwef31ERNYovUQfmPLoQmDKRoufHzlyBEOHDsXQoUMB6OafoUOHYtmyZZBKpTh16hSuu+469O/fH3fffTeGDx+O3bt3t9sBlmzDmH4eGBLogvpGLb7UFzf/O0PR8/mjgiHv4bq01w7xh5NKhszS9ougbz9XiJ+O50AiAK/eMAjDgl1R36jFB9tT8Pme9B4cMZHlmPSvsyur4uPGjUNKSgq02ouT3vnz5+Hn5weFgvWKOsuwjW9kqDtc7OQdesy9E8IwLFiXWvr76Tw8/3MCGjUirhrsiw8XDIOXkxK1ak2rXdcySmpRXtsIhUyCAX4MEPYF02J0q0uNGhESQddON8TDHm72cqibtEjM0xWezq+oxx9ndFtA97MDSZ83d+5cvPXWW1i2bBni4uJw4sQJbNq0ybj1OzMzE3l5F7cM5+bmGi8s8vLy8NZbb2Ho0KG45557jMdkZ2dj/vz5iIqKwpw5c+Dh4YEDBw7Ay6tjQXkiot4uXd+cJqyThc8B2y1+fsUVV0AUxRY/q1atgp2dHTZv3ozCwkKo1WpkZGTg008/bVGGhGyTIAh4YFI/AMA3By60+N1Nyq/CwfRSSCUC5o/q+VIwdgopbtAXQV+xOw0phVVo/FsGVFV9I5796TQA4K5xYVgQH4IfHhyLp2ZEAQB+/Ft9V6LeSmbqCZYsWYKFCxdixIgRGDVqFN59990Wq+IBAQF47bXXAAAPPvggPvjgAzz22GN45JFHkJycjH/961949NFHO/3cmsukRPYFF7fxeXf4MeFejvjxoXE4m1uJ1YcuYMPxXAz0d8bbt8RBKhEwMdILPxzLxs7zRRgb4dnssSf02/gG+TtDIWM3vL5gxkAfvLk5CQAwLsLTuN9+aLAbtp0rxLELZYgLcsUPx7Jh+CeZlN92lzTqOxYvXozFixe3et/fuyGFhoZCFNv/TF+7dq25hkZE1Ctl6DOmQrsQmLLVjCnq26bH+MDXWYX8ynr8mVCAa2P9jfet2pcBAJg2wAd+LnYWGd+t8cH4av8F7DxfhJ3vFEEmERDu5YC4IFcMDXbD4fRS5FXUI8TDHv+YrgtGCYKA2+JD8O6W80gqqMK5/EpE+zIhgHo3kyMLnV0VDwoKwubNm3H48GEMGTIEjz76KB577DH83//9X6ef+2RWy4yerYkFfabGTVV9Iw5n6LrrTe1Afam/i/F3xiuzB+P0C9Ox9r7RsFPotldOitJlH+w837LO1MXC59zG11f083JEP32tipuHBxpvH2YogJ5VDlEU8cMlhR0ZmCIiIupZdWoN8ip0BZPDu5QxZZs1pqhvk0klmDNSlw215lCm8fbCqnr8cEz33fSu8WEWGRsARPs646kZUYgNdIG9QoomrYjzBdX47kg2lv54Gj8e12VEvX7jEOO1GAC42MtxRZQu8eCXE7kWGTtRTzI5Ywro3Ko4AIwZMwYHDhww+Xm3ny/CFYNDjX/el1KMu788Aj8XFXY8dYWxiGNvtS+1BE1aEaEe9l1aGTP4e9eWCRGeEATgXH4V8ivqm3WkOK6vLxWnD0pQ7ycIAj64dRhOZJXjuktWoQw1xo5nluFYZhnSimsgkwho0opILaqGuknLrDoiIqIeYsiWcrGTw82h8+UxmDFFtmruyCB8sC0Z+1JLkF5cgzBPB3yxNwPqJi2GBbtiZKhlF9QfnhyBhydHQKsVkVdZj7O5lcbvz4l5Vbg1Phhj+nm0eNx1sf7462wBfj2Vi6dmRHW60yaRLbHpq8Yd5wqb/fknfcQ5r6Ie649cvi2nrTNkNHW06HlHuTkoEBvoCgDYdUnWVH2jBmdzKwEAQ9mRr08Z4OeM+aOCm02IQwJdIAhAdlkdPtqRCgC4Ls4fjkoZmrSi8QsyERERdT9jR74uLlbaao0pogBXO2N20dpDmaiqb8Q3B3RFzx+Y1M9qAjoSiYAAVztMi/HB0zOjsfa+MTi5fDqemRnd6vFTB/jAXiFFVmmdMTmAqLey6cBUenEt0oqqAegm0U0J+cb7PtqR2qtXfERRxM4kfWAqyvyFfw3Brku38yXkVqBJK8LTUYFAN8vs0ybr4aSSo7+3EwBgi77W2S3Dg9DfxxGALuOOiIiIeoapgSlmTJEtmz8qGACw/mg2vtyXgar6JvTzcuhSuRNrYaeQYrq+CRG381FvZ9OBKeBiV7pd54tRVd8EH2clvJyUyCmvw4/Hem/WVFpxDXLK66CQSjA6vGXqp6km6gNTu5OL0KTvHnH8kvpS1rLyQJY1LMTV+P+BbnaID3NHlL4443kGpoiIiHpMhj4wFephasYUA1NkeyZHecHXWYXSGjX+syUZAHD/xH6QSGz7muW6OF0Zjd9O5RmvyYh6I9sPTJ3VZWr8elIXRb5miD/unxgOAPhwR0qLlpy24ou96XhvS3KbXaoM2VKjwtxhrzBLqbBmYgNd4GInR2V9E05mlwO4WF9qKOtLkd7QS4rg3zw8EBKJgCh9xlRSAQNTREREPcWYMeXV1YwpffHzRtv87kx926VF0DVaET7OSlw/1P8yj7J+EyK94GYvR3F1Aw6klVp6OETdxuYDU0culCKnvA5/ndVlTl0b648F8SHwdFQgq7QOG/R1p2zJyaxyvPjrWfxny3mcyq5o9Zjuqi9lIJNKMD7SEwDwyOrjeGr9SRxMKwHA+lJ00aUZUzcN03Xs6++r297HznxEREQ9x1DbMayLGVNKfcMStY0u6hLNHRkEQ4LU3ePDekUjLLlUglmD/QAAH+9MRWFlvYVHRNQ9bDowFeXrBK0IPL/hDOoaNQhyt0NsoAvsFFLcp8+a+mB7Cspq1BYe6UVf7svAp7tS28yEAoD/bDlv/H9DwO1S9Y0aHNAHibqjvpTBzcMDIZcKyK2ox/qj2SiuVkMQgMGBLt32nGRbIryd8PTMKLwyexCC3O0BAFE+usBUZmktatVNlhweERFRn1BZ34jiat333VBP+y6dwxCYYvFzslUBrnZ4dEokpkR749b4EEsPx2zmjtAF3PakFGPCG9vx8m9nUVTVYOlhEZmVTQemJuuzhbbpu/NdO8TfWPvottEh8HBQ4EJJLaa8sxM/HM1uNxhkTmdyKvDBtmTUNzaf2E9nV2D5Lwn418Zz+J++i9nfHcssw46kiwXH/zyb3+KYg+mlaGjSwtdZhUhvR/MO/hKTo7xx5J/T8MWdI/HQFf0wtp8HHp/SH04qebc9J9meh66IwG2jL07+Ho5KeDoqAQDJBdWWGhYREVGfYagv5emo7PL3NGPGFGtMkQ17fGp/fH7nSDgqzV/qxFJig1yx+t7RGBHihoYmLT7fk46Jb2zHO38mobqBi8DUO9h0YOqK6ObZQtfGXtxHbK+QYdWiUYjycUJpjRr/WH8S81ccwHeHs5CQW9Fttae0WhGPrjmOt/48jw+3pzS7b8XuNOP/v7k5Cb+fymvx+P/8pcuWmjnQFzKJgPMF1cYvGwa7LtnG191FyF3s5Zgc7Y2nZ0Zj9b2j8djUyG59Puodonz1daa4nY+IiKjbGepLhXexIx8AKGQsfk5krUaHe2D9A2Pw1V2jEBvkirpGDd7floJJb2zHqr3p0Gh7JgGDqLvYdGAqxs8FPs66zIwIb0dE62vbGAwOdMFvj47HMzOjoZJLcCCtFE//cApXv78HA5dtxhubzpl9TLtTipGm/3Lw+Z50Y5plTnkdfj+tC0QZ2pYu+e4ETuoLigPA4YxS7E4uhkwi4J9XD0B8uDuAltv5jPWlunEbH5Ep+uu387EAOhERUfczBKa6uo0PgLEeDzOmiKyTIAiY2N8LGx4ai48WDEO4pwNKatR44dezeOX3s5YeHpFJbDowJZEIuHqwLkvqpmGBrWYPyaUSPHhFP/z1xCTcPzEcY8I94KSSQa3R4n87Uo21mszly30ZAABBAGrVGmPW1Bd7dJHssf088Mntw3FltDcamrS4+8sjeGPTOfx8IgdvbkoCANwyIghB7vaYHuMLoPl2vqzSWqQUVkMqETAuwtOsYycyF0OQ+DwDU0RERN3O2JHPs+slHpgxRWQbBEHArMF+2PzERCy7JgYA8MXeDGPyApEtsunAFAA8PTMKXywaaSx23pYgd3ssvWoA1tw3GieXTcet8cEAgFd/T4TWTKmPF0pqsD1JV+/q5esHAQBWH8xEYl4l1h7OAgDcOzEcUomA9+cPRbSvE4qrG/C/Hal4bO0JHMoohVwqYPGVEQCAaTG6zKojF8pQXN0AURTx4q+6aPjIUDe42LHWE1knQ8bUOW7lIyIi6nYZxsCUKRlTrDFFZEvkUgnuGh+GhWN0tV6fXH8SpVbU9IuoM2w+MKWSSzE5yhtSScdrLUkkApZM6w9HpQyncyqw4USOWcby1f4LEEXgiigv3DY6BGP7eUCt0eK2zw6iuqEJkd6OuEJfsN1RKcN3D4zBy9cPxK3xwRge4gZPRwUemxKJAFc7AIC/qx0GBThDFIGtiQVYfyQbWxILoJBKsPzagWYZM1F3iNQHpoqqGjhBEhERdSNRFI1lJEJNqDFl2MrHrnxEtuX/Zg1APy8HFFU14NkfT/dYwy8ic7L5wFRXeToq8fBkXWbSG5uSUKc2bRKuaWjCd0d0WVELx4YCAJ6eGQ0AKNFfmN87IbzZdkNnlRy3jwnFv24YjB8eHIsjz03D4iubFxc3bOdbfTATL/6aAABYMr0/Bvg5mzReou7kqJQhyF0XYOV2PiIiou5TXK1GVX0TBAEI9TBD8fNGZkwR2RI7hRTvzRsKmUTApoR8rD+SbekhmUzdpG3R4Z56tz4bmAKAReNCEeBqh/zKenx2Sce8rvjpeA6q6psQ6mGPSZG6rKi4IFfMGKjbjufpqMT1Q/3bO0WrpusffzK7AjVqDUaFuuPeCe1vWySyBlGGAujczkdERNRtUouqAQCBbnZQyaVdPo9hK19DN3WuJqLuMyjABUum9wcAPPfzGbPXUe4JoijiUHopnvn+FIa//BfGvr4NZ3IqLD0s6iF9OjClkkvxzCxdVtNHO1NRXN3QpfOIooiv9mcAAG4fEwrJJdsKn7s6BuMjPPHS9QONKdKdEeXjZMw8cVBI8fac2E5tWySyFNaZIiIi6n5pRbptfOEmFD4HLmZMqZu03ApEZIPun9gP02N8oG7S4t4vj+BsbqWlh9RhhVX1mPnubsz5ZD/WHclCVUMTSmvUuP3zgziXbzuvg7quTwemAODaIX6I8XNGrVqDTWfyL/+AVmSW1uJ8QTUUUgluHh7Y7L4gd3t8c088rhrs16VzC4KABfEhkEoEvHLDIAS5d72oJVFPGujvAgA4nllm4ZEQERH1Xmn6jKlwr65v4wMuZkwBgJpZU0Q2x9Bga1SoO6oamrDwi0PIKq219LA6ZOWeDCQVVMFBIcUtwwPx5V2jMCTQBWW1jbjts4NIKaxGZkkt3tuSjKvf341lP5/hVr9eRmbpAViaIAi4JtYPZ/MqsSWxALeNDun0ORLzdBkh/X0du6VT3gOT+mHhmFDYKbqenk3U0+LD3QHoMqZKqhvg4ai08IiIiIh6H0Ph835e5smYAoCGJm2XMv2JyLJUcilWLByBuZ/sx7n8Ktyx8hB+WTwOTqru6+beqNHi9s8PIqe8DuP6eWJCpBfGR3jCxb5jz6lu0uL7o7pazW/PicPMQboay7GBLrh1xUGczavEtf/dg7pLAlEJuZU4lF6K/y0YhnATP/vIOvT5jCkAmDZAV8dpX0oJahqa2jxu/ZEsPP39yRaF0g3phVE+3VeQnEEpsjWejkpjnamD6aUWHg0REVHvZK6MKYX0koypJmZMEdkqFzs5vrxrFPxdVEgvrsGnu0yrpXw5284V4kBaKbJK67D2cBYeXn0MY17f2uE6V3+dLUBxtRreTkpMGeBtvN3VXoFv7olHfx9H1DVqIBGACZGeePaqaHg6KnAuvwrX/ncP1h7KRFFV10rykPVgYApAhLcjQjzsodZosTu5qMX9jRotnttwGk99fwrfHcnGpoS8ZvcbijsP8HPqkfES2Yox/TwAAPtTba8Ao7Upr1Xj15O5TFsmIiKjhiYNMvVbdUzNmBIE4WJnPgamiGyaj7MKy64dCABYsTsNBZX13fZc6/Wd6a8e7Ie7x4chzNMBtWoNnlx/st2kD4M1hzIBAHNGBEEubR6ecHdQYP39Y/HevDjsXzoFX98dj/sm9sPvj05AfJg7atQa/N+PpzHy1S0Y9/o2PLrmuM1sX6TmGJiCbiKeqs+a2pJY2Oy+8lo1Fq48hG8OZBpvO5nVvDuAobhztG/3ZUwR2aLR4brA1L7UYguPxPYt/yUBj6w5jvu/PsqVbCIiAgBkltRCK+oa5Hg7mb5l3tiZj4sgRDZvxkAfDA9xQ32jFv/563y3PEdhVT22J+kSO56Y1h/PXxOD3x4Zj0A3O2SX1eHfm861+/gLJTXYk1IMQQDmjgxq9RgXezmujwuAj7PKeJuPswrf3hOPJ6f3R38fRwgCkFNeh19O5mLhykOoqGs034ukHsHAlJ4hMLXtXCE0Wl0nkoq6Rtz4v33Yl1piLMQGACeyyo2Pq1U3IaNEt7c/mhlTRM2MDneHIACpRTUo7MaVmt6uvFaNP07rmjPsPF+EJ9efhFbLjklERH1dqr4jXz9vRwiC6V2bDXWlWPycyPYJgoBnr9J1oP/uSBaSC8zfKfunYznQaEUMC3ZFhLcua9NBKcO/bxoCAPhq/wXjzomCynr8a2Mi/rUxEVX1usDR2sO6bKsJkV6dbvIlk0qw+MpI/PnEJJx+YQZW3xMPfxcV0opr8Pja48ZrerINDEzpjQh1g4udHKU1amMXsZd/O4u04hr4u6jww0NjsfjKCADA2dxKNDTpVpLOF1RDFHX1dDxZ3JmoGVd7BWL8dJmE+zu4z5xa+vlELtQaLXydVZBJBPxyMhcv/JrAdt5ERH1cWrG+vpSnafWlDC5mTDEwRdQbDA9xx4yBPtCKuGz20uW8vzUZE97YZrxWFkUR3+m38c0Z0TzbaVyEJ26NDwYAPP3DSbz061lMfGM7Pt2Vhk93pWHGf3Zha2IB1h/JBgDcOqr1bKmOclTKMDbCE5/eMQJKmQTbk4rw1p9JJp2TehYDU3pyqQSTo7wAAH8lFmDbuQJ8fzQbggD899ahiPZ1RrC7Pdzs5VBrtDin78SXpC98Hu3LbCmi1owJZ50pU63Xdyp5YFI43p4TC0HQrUB1dzFLIiKybqmFuowpc3WlMgSmmDFF1Hs8PTMaUomALYmFHS5I/neiKOLLfRnIKq3D3V8eQUZxDY5nlSO1qAYquQRXD/Fr8Zils6IR4GqHrNI6rNybjoYmLUaEuCHY3R65FfW4+8sjKK5ugKejElP0u5dMNSjABW/crMvW+mhHKn49mWuW81L3Y2DqElNjdP8g/jidj6U/ngYA3D0uDMNDdG3vBUFAbJArgIvb+RLzDPWlGJgias3YCH1gihlTXXI2txJnciqhkEpwfVwAro8LwD+vGgAA+PrABQuPjoiILMmYMWViRz4DBTOmiHqdfl6OmK/PSHpzc1KXMu5TCqtRUqMGAJTWqLHwi0NYoV8gvWqwH5xU8haPcVLJ8eYtQ2CvkGJosCu+vnsU1j8wBpsen4A7x4Yaj5szIrBF0XNTXB8XgAcm9QOgq9HKxkG2gYGpS0zs7wW5VEBmaS0KKhsQ7umAJ2dENTsmNtAVAHBSH5g6Z8iY8mPhc6LWjAx1h1Qi4EJJLXLK6yw9HJtjyJaaFuMDNwcFAOAWfbp0dlkdKmpZ3JGIqC8SRRFphhpTZs+Y4oUcUW/y6JWRUMokOHqhDDvOt+xCfzmGTKshgS4IdLPDhZJa/HFGV//079v4LjW2nydOvzADPz00DhMivSAIAuwVMrxw3UCsf2AM/jGtv7Fcjjk9Ob0/AlztUFqjxi/MmrIJDExdwlklN3YREwTgzVuGQCWXNjsmLtgVAHAiuxyiKF7SkY8ZU0StcVLJMTjABQC383WWukmLDcdzAAA3jwg03u5iJ0eQux0AICGvotXHEhFR71Zao0ZFXSMEAQgzU40pZkwR9U7ezios1Gcpvf1n57OmDqSVAgCmx/jgy7tGwdVelyEV4mGP+DD3dh8rlbTemGFkqDsemRIJe4WsU2PpCJlUgjvGhAAAVu3NYF1WG8DA1N8YIr6LJ0cYt/BdypAxlVZUg+TCapTXNkIqEYxdCIiopTH9dAHffanFFh6JbdmaWICy2kb4OqswMdKr2X0D/XTBvrO5lZYYWod8+OGHCA0NhUqlQnx8PA4dOtTmsQkJCbjpppsQGhoKQRDw7rvvmnxOIqLeLK1Yly3l72LXYiG1q2yxK9+uXbtw7bXXwt/fH4IgYMOGDc3uF0URy5Ytg5+fH+zs7DB16lQkJydbZrBEFnT/xHDYK6Q4k1OJzQkFHX6cKIrGjKnR4R7o5+WIzxeOxJBAFzw1I8osHUG7w9yRQVDJJTibV4nDGWWWHg5dhlkCU129UFi7di0EQcDs2bPNMQyzuDbWH8efn4Z/TI9q9X53BwVCPHStLL/Tt7cM83Qw2xcCot7IUAD9QGoJVyw6wdDp5MZhAS1Wmwb667YPJ1hpYGrdunVYsmQJli9fjmPHjiE2NhYzZsxAYWFhq8fX1tYiPDwcr7/+Onx9fc1yTiKi3iy10Lz1pQDb7MpXU1OD2NhYfPjhh63e/8Ybb+D999/Hxx9/jIMHD8LBwQEzZsxAfX19D4+UyLI8HJW4a1wYAOA/f52HVtux7+SG+lIquQRD9Ekaw0Pc8Mvi8bhmiH93DddkrvYK3DBUt+Ng1b50C4+GLsfkwFRXLxQyMjLw5JNPYsKECaYOwewMdVzaYsia+lG/xYbb+IjaNyLUDVKJgNyKeuRW8ItgRzRqtNidrMswu3FYYIv7Y4yBKevcyvfOO+/g3nvvxaJFixATE4OPP/4Y9vb2WLlyZavHjxw5Em+++SbmzZsHpVJplnMSEfVmhowpc9WXAi7ZytdkOzWmZs2ahVdeeQU33HBDi/tEUcS7776L5557Dtdffz2GDBmCr776Crm5uS0yq4j6gnsnhMNJJUNSQRV+O53XoccYsqVGhLgbPyNshaHI+uaEAta6tXIm/2Z15UJBo9FgwYIFePHFFxEeHm7qEHpcnL4zX6m+M8EAFj4nape9QmYM4J7ILLfsYGxEXnk9mrQiFDIJwlupHTLQX7eVL7Woxuq6jajVahw9ehRTp0413iaRSDB16lTs37/fas5JRGTL0op0GVP9uiNjqsl2Mqbak56ejvz8/GZzh4uLC+Lj49udOxoaGlBZWdnsh6g3cLGX474Juuvvd7d0LGvKUF9qdHj7taSsUZSvE8aEe0CjFfH1fnaztmYmBaa6eqHw0ksvwdvbG3fffbcpT28xsfrAlAEzpoguzxDQPZHFPd4dkVVWCwAIdLODpJWikT7OSng4KKDRikjSN2GwFsXFxdBoNPDx8Wl2u4+PD/Lz83v0nLy4IKLeytCRL7xbMqZ6R2DKMD90du547bXX4OLiYvwJCmq76xiRrVk0PgxOKhnSimqw7VzzXU57kosx/OW/8PUBXRDn7/WlbNGd40IBAGsPZ+JMTvOdBkcvlOHh1cewYleaBUZGlzIpMNWVC4U9e/bg888/x4oVKzr8PNZ2YTHQ3xmySy4UoxiYIrqsi4GpcouOw1Zk6wNTQW72rd4vCMIl2/kYbGkLLy6IqDdSN2lxoVQ3T5i3xpTUeP6+bOnSpaioqDD+ZGVlWXpIRGbjqJTh1vhgAMDney7WXmrSaLH8lzMoqVHjhV8ScCi9tNX6UrZm6gAfhHrYo7y2Edf8dw/u+fIINifk454vD+Omj/bh91N5eO2PRBRWsdyIJfXoJtGqqircfvvtWLFiBTw9PTv8OGu7sFDJpcbte05KGQJc7Sw6HiJbMDTYFQBwOqcCjWbo9iOKok3VwOisrFLdPvgg97Y/Xwzb+aytzpSnpyekUikKCpp3fCkoKGizsHl3nZMXF0TUG2WW1kKjFWGvkMLXWWW28/a2jCnD/NDZuUOpVMLZ2bnZD1FvsnBMKKQSAfvTSoxZRD8ey0GqPhNToxXxyJpj+O2Urg6VLdaXMpBKBHx9dzyui/WHIABbEgtw/9dHsSWxEFKJAFd7ObQi8NvJjtXcou5h0m9XZy8UUlNTkZGRgWuvvRYymQwymQxfffUVfvnlF8hkMqSmprb6PNZ4YREbpLsgjPZzstoWmUTWJNzTEU4qGeobtThfYPrWs1tXHMTEN7Yjr6J3FjK8uJWv9YwpwHo78ykUCgwfPhxbt2413qbVarF161aMGTOmR8/Jiwsi6o2OXdBti4/0Me/3UEONqd6SMRUWFgZfX99mc0dlZSUOHjzY5fmIqDfwd7XD1YP9AAAr96SjvlGDd7ecBwA8PjUSEd6OKKhswHtbkwHYZn2pSwW52+P9+UPx1xOTMDvOHwqZBFcP8cOfT0zE41MiAQA/n8hp9xxf78/Aj8eye2K4fZLMlAdfeqEwe/ZsABcvFBYvXtzi+OjoaJw+fbrZbc899xyqqqrw3nvvtZkJpVQq2+zSZCnXxQZg9cFMXKX/B01E7ZNIBMQGumJPSjFOZJUbs326oqahCfv1+91f+T0RH946zFzDtBrZZfqMqXYCU4atfOfyK6HRipC2UovKUpYsWYKFCxdixIgRGDVqFN59913U1NRg0aJFAIA77rgDAQEBeO211wDoahaePXvW+P85OTk4ceIEHB0dERER0aFzEhH1FZsSdCUzpkZ7m/W8ttiVr7q6GikpKcY/p6en48SJE3B3d0dwcDAef/xxvPLKK4iMjERYWBief/55+Pv7G69diPqqeyaE4ZeTufjlZC48nZTIraiHn4sKD0zqh6sH++G6D/aiTt9gx1brS/1dhLcj3p03FO9oRWMNVxc7OV7+PREnsyuQXlyDsFaaDp3JqcDzPycAACrrGnHnuLAeHXdfYFJgCujcxYdKpcKgQYOaPd7V1RUAWtxu7UaFuSPl1ataLUpMRK2LDXLRBaYyy7EgPqTL58koqTH+/++n8nDrqGKMi+j49mBbkKWvHdLeVr4wDwfYK6SoVWuQVlSNSB/rqXc3d+5cFBUVYdmyZcjPz0dcXBw2bdpkrEmYmZkJieRi0m5ubi6GDh1q/PNbb72Ft956C5MmTcKOHTs6dE4ior6gqr4Re5KLAQAzB3Vte3RbbLHG1JEjRzB58mTjn5csWQIAWLhwIVatWoWnn34aNTU1uO+++1BeXo7x48dj06ZNUKnMtwWSyBYNCXTFqFB3HMooxaf64t+PTYmESi5FpI8T/nXjIDyx7iSclDKbrS/Vlkuv4T0dlRgf4Ymd54vw84kcPD61f4vjfzmZa/z/F349CzcHBa6PC+iRsfYVJgemOnvx0ZswKEXUOXFBbgDaL4CeWlSNhkatMRuoNenFNc3+vPyXBGx8dILN7n3/u/pGDQqrGgC0nzElkQgY4OeMoxfKcDav0qoCUwCwePHiVrNnARiDTQahoaEQxcu3LG7vnEREfcH2pCKoNVqEezkgwtt8HfmAi1v5bKnG1BVXXNHu/CEIAl566SW89NJLPTgqIttw94QwHMooBQCEezrg5uGBxvtuGBoIB4UMHo6KXvMduy3Xx/nrA1O5eGxKZLMt0lqtiN/0gam4IFecyCrHP747CRc7Oa6IMm/Wal9mlt+wxYsX48KFC2hoaMDBgwcRHx9vvG/Hjh1YtWpVm49dtWoVNmzYYI5hEJGVM3TmSymqRlV9Y4v7i6sbcP0He3HTR/tQWqNu8zzp+sKM02J84OGgQEphNVbtS2/zeFtj2MbnoJDC1V7e7rHWWmeKiIi6x+Yzum18swb5mr3OqS1u5SOirps6wAfh+q1rT82IgkzaPDwwfaAvhofYdn2pjpg+0BcquQTpxTU4ndO8qdCxzDLkVtTDSSnDmntH47pYfzRpRTzwzVGkFFZbaMS9T+8OfRKRVfFyUiLA1Q6iCJzKbtlJ7rPd6ahuaEJdowbHM8vaPI8hYyouyBXPzIoGALy3JRn5Fb2jzWt2mWEbn/1lLzouBqasqzMfERGZX32jBtuTCgEAMweav85pbyt+TkTtk0oEfHX3KHxzdzxm9eHayY5KGabF6LZGbzie2+y+X/XZUtMH+sJOIcVbt8RidLg76hu1+HxPWo+PtbdiYIqIelRcsCuAltv5SmvU+Gp/hvHP7W33S9MHpsI9HXDzsEAMC3ZFjVqDbw5cMPNoLSNLnzHVXkc+A0MR+YTcyg5thSMiItu163wRatUaBLjaYVCA+buMKmxwKx8RmSbQzR7jI3tXrdaumB3nDwD49VQuNFrdd+omjRa/n84DAFwbqwvcKWQSPKGvQ/XT8RyU17a9y4M6joEpIupRQ/Xb+f4eeFq5Jx21ag0MpdvaCkyJooi0Il3abJiXAyQSAfNGBQMA9qUWd8eQe1x2BwqfG0T6OEImEVBe24i8XpIxRkRErTN045sx0Pzb+ADbLH5ORGQOEyK94GovR1FVA97bmgwAOJBWiuJqNdzs5c0aLY0Kc0e0rxPqG7VYfyTbUkPuVRiYIqIeFXdJYMqQ4VNR24gv92UAABZfGWm8X6ttmQFUVtuIyvomAECoh25P/Bh9C9tT2RWoaWjqzuH3iCz9Vr6OZEwpZVL4uug6CzEwRUTUuzy29jimvL0D3xy4gFp1E7acLQBg/m58BrZY/JyIyBwUMgn+MT0KAPD+1mR8uD3FuI1v1mA/yC+pvyUIAu4cGwoA+OpAhjHDirqOgSki6lGDAlwglQgoqmpATrluy9oX+9JR1dCEaF8nLJ4cAZVcgqr6JuOWvUulF+uypQJc7aCS61Z2g9ztEeRuhyatiMP6ziK2zFD8PMjt8hlTgK7NLaArHk9ERL1DSXUDfj6Ri9SiGjy34QzGvr4NlfVN8HRUYniIW7c8J2tMEVFfdvvoEDw9UxecenNzEn48rsuGui7Wv8Wx18cFwMVOjqzSOmw/V9ij4+yNGJgioh6lkksR7esEALjy7Z24+v3d+Gy3rqPeI1dGQiGTYHCArm5SawXQ0/Qd+cL0HUQMDFlT+1NLum3sPSWr9GLx847wdFQAAEqqucediKi3MHSGcrOXw9tJifJaXTfb6QN9IJWYfxsfwK58REQPXRGBx6fqdnA0akT4OCsxMrRlZ0I7hRTzRgYBAL68pE5ufaOGwf0uYGCKiHrcwrGhsFdIoW7SIiG3EtUNTYj0dsQs/daEocG6leDW6kwZOvK1CEz10wem0mw7MFXd0IQy/cVHIDOmiIj6rDP6wNSESC/senoynr8mBrMG+eKhK/p123MaakxxKx8R9WWPTYnE4skRAIB5I4PbXAy4bXQIJAKwO7kYH25PwZ1fHMKQF//ElHd2IK+irieHbPNklh4AEfU9c0YE4eZhgcgqq8W5/CpcKKnB1AE+kOg/9OPaKJAOtBOYCtcVJDyTU4HK+kY4q+Td9wK6kSFbytVeDqcOvgYGpoiIeh9DxtTgABeo5FLcPT4Md48P69bnVMq5lY+ISBAEPDkjCneMDYGng7LN44Lc7TFlgA/+OluANzcnGW/PKq3Doi8OY/0DYzr8fb6vY8YUEVmERCIgxMMBMwb64r6J/RDu5Wi8zxCYOpdfhTp18+0ExsCUV/PAlK+LCmGeDtCKwKG0i3Wm1E1aVNtQQfSL9aU6to0PuLiVj4EpIqLLa9JoUatuQkVdI0pr1MZGHJcSRRHJBVU4X1CFirrGVo/pbmdyKgHoajP2FIWUxc+JiAy8nVTGhfO2PDYlEr7OKowIccMzM6Ox+p54eDoqcS6/Cg99ewyNGn6edgQzpojI6vi5qODjrERBZQNO51RgVJhuX7dWKxoDU+F/y5gCgNHhHkgvrsH+tBJMjfFBQ5MGcz7ej9SiGqy7fzQG+vfcl/uuulhfqmPb+ADAw5AxVcUaU0RE7dl0Jh+PrjkO9SUXCrFBrvh84Qhj9qlWK2Lpj6ex7kiW8Rg7uRSzh/rj1dmDL3uRYg6lNWpjg5CBAc7d/nwGzJgiIuqcQQEuOPDslGa3rbxzBOZ+cgC7k4vx/IYzeO3GwRCE7p87bBkzpojI6giCcMl2vosF0HMr6tDQpIVcKiDAtWXgxlhnSl8A/e0/z+NkdgWqG5qwePVxm8icyirTB6Y6lTGlD0zVMGOKiKg9H25PaRaUAoCTWeWY+8l+5FfUQ6sV8exPuqCURACcVbo13LpGDdYcysLKvek9Mk7DNr4wT4ce3ZpuyJhSa7TQsv05EVGXDAl0xX/nD4VEANYezsLG0/mWHpLVY2CKiKxSXFDLAuiGbKlgd3vIpC0/vgyd+RLzK7HpTB5W7E4DoKvXlF5cg2d/PG2R7RidYdjKF9jBjnwA4OWk38pXxcAUEVFbTmdX4HROBRRSCfb935U4/8osbPvHJPi7qJBaVIM5n+zHP9afxNrDuqDUf+bG4dQLM5D40kwsvzYGAPDGpiScy6/s9rEaCp/35DY+AFDKpcb//3sAj4iIOm5qjA8emKRrVvHNgQsWHo31Y2CKiKySMWMqs9x428XC546tPALwclIi0tsRogg8suY4RBGYPyoIny8cAalEwC8nc7H2cFarj7UWhq18He3IB1zMmKqsb2KLbyKiNqw5nAkAmDHIF/6udlDIJAj3csR3D4xBiIc9Mktr8dPxHGNQ6vq4AAC6luB3jg3FlGhvqDVaPL72BOobu/ez9nS2ofB5z23jAy5mTAGsM0VEZKoF+q59+9NKkFZUbenhWDUGpojIKg0JdIFEAHIr6lFQWQ8ASCvS15fyallfysCwna9RIyLEwx7PXR2D4SHueHJ6FADghV8SkJRf1c2j7xpRFLtU/NzFTg6ZvuZJSTXrTBFR33MgrQRPrj+J8wWtf77XNDTh5+M5AIBbRwU3uy/QzR7f3T8G/X0cIZUIeHtOrDEoZSAIAl6/aQg8HBQ4l1+Ft/9MQnc6k2uZjCm5VIChDArrTBERmSbA1Q6T+nsBANZZ+eK4pTEwRURWyUEpQ38fJwDA3pRiAJdmTLUTmNJv55MIwDtz4uCg1NUHuX9iOCb190JDk9a4xc/alNc2GutgdSZjShAEeOg78zEwRUS9gSiKKK9V43xBFc7mVra5DVsURXy5LwMLPjuI749mY8FnB42Zp5f69WQuatQahHk6YHS4e4v7fZxV2PjoBBx8dgpuGBrY6nN5OSnx75uGAAA+25OOs7nds6WvrEZtXKTo6cCUIAhQygyd+ZiBS0Rkqvn6xZDvj2Yz4N8OduUjIqs1qb8XzuVX4bkNZ+DvatehwNTUGB/cPjoEw0JcMTzEzXi7RCLgvonh2Hm+CDuSiqDVij3SWakzDBci3k5KqC6p89ERno66LobF1awzRUS2q7xWjSfXn8Ku5KJmX+BHhrrh5dmDEO17cWtbQ5MGyzYkGLvnOSllKKpqwMKVh/D9g2Ph7qAwHrvmkG4b3/xRQW12RpJJJcat0W2ZGuODK6K8sCOpCPvTShDjb/6tdoZsqVAP+x4tfG6gkEpQ36jlVj4iIjO4Mtob3k5KFFY14K+zBbh6iJ+lh2SVmDFFRFbriWn9MSHSE7VqDRZ9cRjZ+o514e0EpuRSCV6ePajVFe+Roe5wUEhRXN2AhG5a6TZFRoku8NaZbCkDw8VUEQNTRGSjLpTU4MaP9mFLYoExKOViJ4dSJsHhjDJc/f4evPr7WXxz4AIeX3scV7y5w9g979mrovHXkkkIcLVDWnEN7lp1GLVqXQbqmZwKnMyugFwq4KZhrWdDdUZsoCsAIDGve+aR0xYqfG5gKIDOlX0iItPJpBLMGREE4OIiCbXEjCkisloquRQr7hiBB745ih1JRQAAB4UUXk7tr2i3RSGTYHykJzYnFGB7UiEGB1rmS39bDF2YurICbwhMMWOKiGxBalE1fjuZB39XFcK9HFCn1uLRtcdRWqOGv4sKHy4Yhhh/ZyhlUuSU1+GlXxOwOaEAK3anNzuPi50c782LwxVR3gCAL+8ahZs/3ocTWeWI/9dWBLrZo0FfqHzGQF94XCYjqiMG+Ok+o7srMGWYCwZbKDBlKIDOjCkiIvOYOzIIH+5IwZ6UYmSW1CLYo+O1ZPsKBqaIyKqp5FJ8cvtwPPjNMWw7V4j+vk5tbsPoiMlR3ticUIBt5wrx6JRIM47UdKf0XZiGBLh2+rGeTqwxRUS2IbmgCnM/PYDSmpafV4MCnLFy4Uh4O6uMtwW42uGT20dg+7lC/G9HChQyCUaEuGNkqDuGBrsaawkCQIS3I1beORKLvjiMirrGZsGjBfEhZhl/jD4wlVxQjUaNFnKpeTcgnLZwYEop170eZkwREZlHkLs9JkR6Ydf5Iqw9nImnZ0ZbekhWh4EpIrJ6SpkUH902DN8dzsKI0JZFazvDsKp+MrscJdUNZlk9NwetVry4St6FTC5PB2ZMEZH1Ka9Vw0klh1Rf0y+9uAa3fnYQpTVq9PNygK+LCulFNSioasDMgb544+YhzQJNl5oc7Y3J0d6Xfc5hwW44sHQKLpTWIK+iHnnl9XCzlxu7tpoq0M0OjkoZqhuakF5cY2zUYQ7ltWpklerqDQ60eMYUi58TEZnLTcMCsOt8kbGpEzXHwBQR2QSlTIrbx4SafB5fFxUG+DkjMa8Su5KL2uy+1NMySmpQ1dAEpUyCSG/HTj/ekDHFwBQRWQNRFPHRzlS8uTkJHg4KTIvxwdh+nvjXxkQUVTUg2tcJa+4dDTd9gXKNVjQGr8zBTiFFtK9zs2Lp5iKRCIj2dcKRC2VIzKs0a2DKkDkb4mEPF7ueL3wOsMYUEVF3GOivW2xILqy2yiZMlsbi50TU51wZ7QUA2H6uyMIjuciwdWOgvzNkXdgWYqwxVcWtfERkWU0aLZ7bcAZvbEqCKALF1WqsOZSFR9YcR15FPSK8HfHNPfHGoBQAswaleoKhztRZM9eZ2nauEAAwysTsYFMoWWOKiMjsQj3sIZcKqFVrkFNeZ+nhWB0Gpoioz5ms386383wRmjTW8cX7ZJa+vpS+21Nnsfg5EVmDmoYm3Pf1UXx7MBOCADx/TQy+vnsUFsQHw9tJiWhfJ3x7T7zxM8tWRfvpsqQS86rMdk5RFLE5IR+ArlC7pRhqTHErHxGR+cikEoR76nZFJBeab+7oLbiVj4j6nLggV7jYyVFR14gTWeUm160yh9M55QCAIV3sFOjhqMs8KK1Vm31LDBFRRz39/SlsO1cIpUyC9+YNxcxBugDLhEgvvHrDYAuPznza6sy3O7kICqkE8eGdr2d1KrsCeRX1sFdIMT7S0yzj7AqljMXPiYi6Q6SPI5IKqpBcUI0ro30sPRyrwowpIupzZFIJJvXXb+dLKrTwaHS1Vc7k6C5uuhqYcrdXQBAAUUSrna6IiLpbYl4lfj+dB0EAvrkn3hiU6o2ifZ0gCEBRVYMxU/VCSQ0WrjyEBZ8dRHZZbafPaciWmhzlDZW+zpMlKGTcykdE1B0MNQnPF1RbeCTWh4EpIuqTJuvrTO1IsnydqdSiatQ1auCgkCLMs/OFzwFdsM3dngXQichyPtiWAgC4erAfRlpBJmp3slfIEOrhAOBi1tR3R7KgFYEmrYjPdqd3+pyb9IGp6QMtu4qulLH4ORFRd+jvw618bWFgioj6JMNF0/mCKovXmTqZVQ5A1xrclC14rDNFRJaSXFCFjWfyAACLr4yw8Gh6xgBjnalKNGm0+P5otvG+tYczUdKJz+KUwiqkFdVALhUwOdrb7GPtDAWLnxMRdYsIb928kVyg68xHFzEwRUR9kr+LHZQyCRo1osU7Yxg68g0J6No2PgNPJ13GVEm1dWzl+/DDDxEaGgqVSoX4+HgcOnSo3ePXr1+P6OhoqFQqDB48GBs3bmx2/5133glBEJr9zJw5sztfAhF10AfbUyCKwIyBPoj2dbb0cHrEAF9Dnakq7DxfhILKBrg7KDDQ3xn1jVp8uS+jw+fanFAAABgX4Qlnlbw7htthF4uf957A1AsvvNBi/oiOjrb0sIiojwn1sIdCKkFdIzvz/Z1ZAlOdufhYsWIFJkyYADc3N7i5uWHq1KmXvVghIjI3iURAmKduG0ZacY1Fx3IqWx+YCnI16TweDtaTMbVu3TosWbIEy5cvx7FjxxAbG4sZM2agsLD1ml779u3D/Pnzcffdd+P48eOYPXs2Zs+ejTNnzjQ7bubMmcjLyzP+rFmzpideDhG1I724Br+ezAUAPHJlpIVH03MuLYC+7nAWAOCGoQFYPFmXMfbl/guobmjq0Lk2nbF8Nz6DixlTvasr38CBA5vNH3v27LH0kIioj5FJJQj30l1/cDtfcyYHpjp78bFjxw7Mnz8f27dvx/79+xEUFITp06cjJyfH1KEQEXWKYWJIL7JcYKpRo8VZfX0SkzOm9Fv5iqwgMPXOO+/g3nvvxaJFixATE4OPP/4Y9vb2WLlyZavHv/fee5g5cyaeeuopDBgwAC+//DKGDRuGDz74oNlxSqUSvr6+xh83N7eeeDlEdAl1kxabE/Lx47Fs/HQ8G6/8dhZaEbgy2huDTPwcsyUD/HWBqZTCamw7p/veO3dkEKYP9EW4pwMq6hqx9lDmZc+TU16H0zkVEARgWozluzQZMqZ6W40pmUzWbP7w9LRc50Mi6rsiWQC9VSYHpjp78fHtt9/ioYceQlxcHKKjo/HZZ59Bq9Vi69atpg6FiKhTDBlT6RbMmErKr4K6SQsnlQwhHvYmncuwla+4yrJb+dRqNY4ePYqpU6cab5NIJJg6dSr279/f6mP279/f7HgAmDFjRovjd+zYAW9vb0RFReHBBx9ESUmJ+V8AUR+WUVyDH49l46Vfz2L+pwfwj+9OIin/4qruscwyXPPf3bj/66NY8t1JPLHuJLbqgzKP9JHaUgb+Lio4q2Ro0opo0oqIC3JFfx8nSCUC7p8UDgBYsTsN+RX17Z5nsz5bamSIu3GBwZIUUl3x8960lQ8AkpOT4e/vj/DwcCxYsACZmZcPGhIRmVt/b10B9PMF1pcxVd+ogcZCta9kpjzYcPGxdOlS422Xu/j4u9raWjQ2NsLdvXd3byEi62PogGfJwJSxvlSgCwSh64XPAespfl5cXAyNRgMfn+Yr/z4+Pjh37lyrj8nPz2/1+Pz8fOOfZ86ciRtvvBFhYWFITU3Fs88+i1mzZmH//v2QSltvrd7Q0ICGhot/H5WVlV19WUS93rrDmfi/H09D/Nt30h+OZWN6jA98XVT4+sAFiCLg4aBAjD5jSCuKGBPugaHBfSuDURAEDPBzxsH0UgDAvJFBxvtmDw3AO3+dR0FlA0a/thXB7vYYFeaO+yaGG9uFG+w8r+sOa+lufAbGGlONvScwFR8fj1WrViEqKgp5eXl48cUXMWHCBJw5cwZOTk4tjufcQUTdJVLfmS+l0LoypvamFOPh1cfgbq/AR7cNR5Rvy8/G7mRSYKorFx9/98wzz8Df37/FSvmlODkQUXfoyYypWnUT7OTSFsGnwxm6C5rBAa4mP4eXPjBVUmP5rXzdYd68ecb/Hzx4MIYMGYJ+/fphx44dmDJlSquPee211/Diiy/21BCJAAB1ag3qGi/W53G1k0NiQsfNnlBYWY9XfkuEKAKxgS4YGuyGaF8n7Eouwh9n8vHn2QLjsTcOC8DzV8fAzUFhwRFbB0Ngyl4hxTWx/sbblTIp3p83FC//fhZncyuRWVqLzNJa5JbXYfW9o43HabUijmWWAQDiwzx6fPytUcr0W/ks3LHWnGbNmmX8/yFDhiA+Ph4hISH47rvvcPfdd7c4nnMHEXUXw1Y+Q2c+iURArboJRzLKMCHS0+SF6q748Vg2nvnhFBo1IsprG3HD//birVticdVgvx4bg0mBKVO9/vrrWLt2LXbs2AGVStXmcZwciKg7hOsDUznldahTa2CnaD3rxlRHL5Tilo/346ZhgXjj5iHGCedMTgV+PqErGHxFlJfJz+PhaB1b+Tw9PSGVSlFQUNDs9oKCAvj6tl7Y19fXt1PHA0B4eDg8PT2RkpLSZmBq6dKlWLJkifHPlZWVCAoKavVYInNYfTATL/6a0GwbVIS3I768axQCXO0sOLL2/WtjIqoamhAb6IIfHxoHqT6QNm9UMFIKq/DRjjSkFFZhyfQoTOpv+udVb3FFlBdW7cvA/FHBcFQ2/1odH+6B3x6ZgKr6Rmw7V4jH1p7A0QtlaGjSQCnTzTepRdWoqm+CSi5BtF/Prk63RSEzZEz1ruLnl3J1dUX//v2RkpLS6v2cO4iou4S4N+/MF+hmhwe/OYad54vw4nUDsXBsaI+NRRRF/G9HKt7cnAQAuHqIH8pr1dibUoKHvj2Gh67ohyenR/XI4ppJgamuXHwYvPXWW3j99dexZcsWDBkypN1jOTkQUXdwc1DA1V6O8tpGZJTUGDssmduPx3KgFYH1R7MRF+yKBfEh0GhF/POn09BoRVw9xA+jw01fKfe8JGNKFEWLrLgAgEKhwPDhw7F161bMnj0bAIy1BBcvXtzqY8aMGYOtW7fi8ccfN972119/YcyYMW0+T3Z2NkpKSuDn1/ZqjlKphFJp+ZotfVWTRouSGjVEEfB1aXsBqifVN2rw6u+J2J5UCAeFDM52Mjir5PB2VsHPRQVfZxUq6xtxvqAKyYXVkEslWHZNTIeKev9vRwre2JTU4vaUwmrcuuIAvrt/DHycrePv4VL7U0uw4UQuBAF4efYgY1DKIMLbCW/PibXQ6KzbFVHe2PPMZPi5tB10dFLJcV2sP1769SxKatQ4nV2BEaG6EhaGbKnYQFfIpWZplm0yQ9CsN2VM/V11dTVSU1Nx++23t3o/5w4i6i6Gznzn8qtwvqAKCbkVxi3dq/Zl4PbRIT2WZf3xzjRjUOr+ieF4ZmY0tKKIf286hxW70/G/HamQSyV4Ylr/bh+LSYGprlx8AMAbb7yBV199FZs3b8aIESMu+zycHIiou4R5OuB4ZjnSi7snMCWKonGyAYAXfz2LuCBXHMkow8nsCjgpZVh+TYxZnsuQMdWoEVFR1whXe8tts1myZAkWLlyIESNGYNSoUXj33XdRU1ODRYsWAQDuuOMOBAQE4LXXXgMAPPbYY5g0aRLefvttXH311Vi7di2OHDmCTz/9FIDuIuLFF1/ETTfdBF9fX6SmpuLpp59GREQEZsyYYbHXSc2Jooj9qSX4aGcqEnIrUVarNtYrujLaG0um9bdo17bCqnrc//VRHM8s79Tjbvl4P96bF4fpA1tfdBNFEa//cQ6f7EoDACyeHIEl+i9x+ZX1mPvpflwoqcWtKw5g3f1jLFrgWhRF/HIyFw1NWoyP8ISXkxLLfj4DALh1VDCGBLpabGy2KtDt8o0rBEHAqDB3/HEmHwfTS42BqaMXdIGpYSHWU5/rYsZU7wlMPfnkk7j22msREhKC3NxcLF++HFKpFPPnz7f00IioD4r0ccK5/CqczK7AD0ezjbenF9dgX2oJxkea1jW0sLIe3xzMxIL44DYXxE5mlePtP3VBqX9eNQD3TtQ17ZBAwD+vjkGYpyOe/ek03tuajP4+Trh6SPdu6zN5K19nLz7+/e9/Y9myZVi9ejVCQ0ONhW0dHR3h6Oho6nCIiDrl0sBUd0grrkF2WR0UUgniw92xO7kYD35zDKU1uu12T8+KhreZMiiUMimcVTJU1jehuFpt0cDU3LlzUVRUhGXLliE/Px9xcXHYtGmTsSZhZmYmJJKL2QFjx47F6tWr8dxzz+HZZ59FZGQkNmzYgEGDBgEApFIpTp06hS+//BLl5eXw9/fH9OnT8fLLL3PhohVarYikgiocvVCGyvpGY3DIWSXDiFB3RPk4dWk1rrqhCUn5Vcgpr0NOWR2q6hvh5aSEt5MKEgFYuTcdhzPKmj1GIgAigG3nCrHtXCFmDPTBc1fHIMjdtC6UAFBao8Yrv52FSiHF+AhPjAn3aLPuUUJuBe798ghyK+rhYifHK7MHwdVejqr6JpTXNqKgsh75FfXIq6yHo1KKSG8nRHg74rsjWdidXIz7vzmK/5sZjXERnkgvrkFGcQ0ulNYiu6wWmSW1yNV3Xrv0yx0A+LvaYfU9ozHnk/1ILarBnE/2Y3iwGzRaERpRhFbUBYsMx86OCzAWFe8OO5KK8NjaE8Y/ezkpUVTVAHcHBZ6aEdVtz0swBqYOpZfi4cm6247pg6TDrahwfG+sMZWdnY358+ejpKQEXl5eGD9+PA4cOAAvL25LJaKeZ+jM98nOVDQ0aRHgaodxER747kg2vj6QYXJg6tmfzmBLYgG2JhbghwfHQiVvXq6kpqEJj609jiatiKsH++GeCWEtznFrfDDSiqrx2Z50/GP9CYR42Hfr4qLJganOXnx89NFHUKvVuPnmm5udZ/ny5XjhhRdMHQ4RUacY6kylFXVPYGpnki5bamSYG96fNxRXv78bmaW1AIC4IFcsGBVs1ufzdFTqA1MNiPC2bLB/8eLFbWbP7tixo8Vtt9xyC2655ZZWj7ezs8PmzZvNOTyrUN+oQW55HewVMjipZLCTS1FY1YC04mqkF9egtkFj3GqmlEuQU16P7NJaZJXVoqRajYq6RlTWNUIjinCzV8DNXgGZVMDJrHJU1je1+byu9nLEh7njpmGBmDLAp8XWrdZsTsjHk+tPoqqd8wKAQirBvFFBmDMiCL4uKrjZK5BZWov3tpzHzydzsTmhAMmF1dj46IQWX5Q6o7i6Abd9dhDn8nXtllcfzIQgAEODXHHX+DDMGuQHqURARV0jPt6ZipV70tHQpEW4pwM+v3OksfnB5cwa5IsXfk3ANwcy8dofbTd2kUsFvDp7MOaMbFlqIMjdHt/eE4+5nx5AWlFNu583n+5KwwA/Z9w0LAATIr0Q6e1otpR+URTx323JAABfZxUKq+pRVKVrlvB/s6ItGszuC0ZekiWl0Yqorm8ydmUaGuxqwZE1Z8yYauo9NabWrl1r6SEQERkZCqAb6lE+f00M+nk54Lsj2fjrbAHyKura3SLenjM5FdiSqCu1lJBbiRd+ScDrNzUvnfTirwnIKKmFn4sK/7phcJvlP/5vVjTOF1Zj1/ki3PfVEfy8eDy8nLpnQdgsxc87c/GRkZFhjqckIjKLcC9d8Ca9uHtatu5K1gWmJvX3gpuDAh8sGIY5H+8HALx242Cz7yH3dFQirbgGxdW9szOftaioa0R2WS3yyutR3dCEWrUGteomVNU3oaxWjdIaXdCoRn9fXaMGLnZy+OrrGFU3aJCQW4HkwmpotKJZxlRQ2fw9d1BIMSzEDX762k4CBORW1OHohTKU1zZic0IBNicUIMTDHovGhiLYwx4JOZU4m1eJ+kYNZg7yxVWD/WAnl+LNP5PwyU7dNjUvJyXCPBwQ4GYHZ5UMxdVqFFbVo6y2EeMjPPHApH4t6kmFeTrg3XlD8dDkCNz22UGkFdXg7T+T8M+ru7aNtbCqHgtWHERyYTW8nZS4arAf9qUW43xBNY5lluPY6uMIdk/CtBgffH80GxV1jQCAif298N95Q+FiL+/wc8mkErx8/SCEezriP1vOQyGVIMzTAaGeDghxt0eQuz2C3O3Qz8ux3cBOuJcjNjw8Dr+fykWTVoRMIkAi6H4M3wePZJThr7MFSMyrxCu/VwJIhIudHCNC3HDDsABcNcjPpM+MA2mlOJZZDoVMgl8Wj4NSLsWBtBI0aURcNbj92qBkugF+znBSylDV0ITEvErj53Sohz08LLi98++MGVNNvSdjiojImvT3ubh4PKm/F2YM9IEgCBgd7o4DaaVYczATS6Z3LYv53S26BaghgS44nVOBtYezMCzYDXNGBqFJo8V3R7Lx3ZFsCALwn7lx7X4nkkkl+O/8objhw71IK67BcxtO45PbL1+KqSss2pWPiMjSDFkT3bGVr75RgwNpJQCASf29AQDDgt3ww4NjIQLdUtPK08nQmY+BqfZotSJOZZdDIgjo7+NkzBBo0mhxLr8Kp3MqUFBZj+LqBpRUq1Fe24iqhkZU1TehtFqNqob2s4bacgoVLW6zV0jR0KQ1BqikEgFBbnYI83SAi50clfVNqKhrRH2jBn4udghyt0OQmz28nJRwsZPDxU4OiSCgrFaNslo16tQaxPg7I8bPGbJWiik3arQ4nVOBzQn5WHMwExdKavHCr2dbHLc9qQjLf0lAgKsdUvUZPvdOCMPTM6O7XKS5v48TXrtxMO7+8gg+25OOmYN8MTzEvVPnKKysx/wVB5BaVANfZxXW3Dfa+O+4oLIeqw9m4qv9GcgsrcXne9IBAJHejnh6ZjSmDvDuUlMAQRBw1/gwLBoXalJTgQBXO9w3sV+b9y8aF4byWjV+PZWHTWfycOxCOSrqGrH1XCG2nitEbGAa/m/WAIzp17VmCR9u13UgmzsiyLiFeEYbdbPI/KQSASNC3bA9qQgH00tRUavb0m1N9aWAi8XPGxiYIiLqFsHu9vBxVqKirhEvXDfQ+N3i9tGhusDU4SwsvjLS+P20o05n67KlJPqg08ZTeXj7r/N4/uczOJ1TgU0J+cZM6Qcn9etQ8yUXOzn+d9swXPXebmxOKMDRC6Wd/u7WEQxMEVGfFuqhu6Atq21EWY0abg4KVNQ2YtW+DMwZGdjlNFoAOJReivpGLXydVc1WRmKDXE0ddpu89KvuRcyYateVb+9AaaNuCpRLdcEpJ5UMp7IrUKvu2PYVDwcF/F3t4GInh51CCju5FE4qGdwdFHC1V8DVTg4HpQwOSilUcinKatQoqKxHbkU9FFIJBgW4YFCAM3z1AYK6Rg2qG5rgaqfo9BeRzpBLJRgW7IZhwW54bEokfjiajdWHsqDRahHj54yB/i5Qa7T48Vg2UotqkFpUAweFFG/eEourBpte+HLKAB/cOCwAPx7LwVPrT2HjYx3f0pddVosFnx3EhZJa+LvoglIhHhe35Pk4q/DEtP64f1I41h/JxsH0EkyO8saNwwI7tF3xcnqi06WrvQK3jw7B7aND0KjRIiG3ElsTC7ByTzpOZldg/ooDmBLtjeeviUFoB7cjAsCJrHLsSSmGTCLg/knhl38AdYtRYR7YnlSEQ+klqGnQfdYMs6L6UsDFjKneVPyciMiayKQSbHh4HJo0YrOam9MH+hhrP/55Nh/XDPHv1Hnf23oeAHB9XAD6eTni4ckROJZZhu1JRfj6wAUAgJu9HHNHBneq0160rzPmjAjC2sNZ+NfGc/j+gTFm/07EwBQR9Wl2Cin8XVTIrahHWnENhjso8PLvZ/H90WwczyrDqkWjunxuQze+Sf29euSCFgB89YG0vPL6Hnk+W1VcrYaLiwoSQVeDKCG30nifk1KGuGBXBLrZw9NRAU9HJVzt5XBWyeGkksHVXg5/VzvYK8w7hdorZGY/Z0ee8/Yxobh9TGiL+x66oh9OZldgT3IRrhrsZ9z2ag7LrxmIvSnFSCuuwet/nMPya2Mu+28ko7gGt644gNyKegS66QqKB3u0XkDdXiHDwrGhWDg21GxjtgS5VIK4IFfEBbnijjGheH9rMlYfysTWc4XYnVyM+yaG46HJ/Vr9vfn6wAWczi7HjIG+mBDphQ+26bKlZg8N6FAXOeoeo8J0q8yH0kvRqNFlSQ63uoyp3lf8nIjI2rS2+C2XSjB/ZBDe35aCV39PhL+rXYcXL3TZUoWQCMDiKyMAABKJgP/MjcOS705CKZPghqEBuCLKu0sLoE9M648NJ3Jw9EIZNicUYOYg82ZcMzBFRH1emJcDcivqkV5cAx9nJTYczwGg616VWlSNfl28IDcGpqJ6ruuPv6su+ya3oq7HntMWfXz7cEwdEgq5VEB2WR0ScitRWd+IuCBXRHiZr9i0LRMEwRgUMTcXezlev3EIFq06jFX7MnD0QhmemRndZhea5IIqLPjsIAqrGhDu6YBv7403KZvRFnk5KfHy7EG4c1woXvglAbuTi/HB9hT8eCwbr980BBP7X/yceX9rMt75S7dq+t2RbLjYyVFR1whBAB68ou2thNT9Bge4QCWXoKxWV/fMUSlDf30RXGthLH7e2HuKnxMR2YqFY0Px66k8pBfXYM7H+/HMzGjcMyGs3QU8URTx5p9JAC5mSxm42iuw8s6RJo/Lx1mFe8aH44PtKXhj0zlMGeDd5dIOrem+vQJERDbiYp2panyyMw1NlxSjXrU3o0vnzC6rRUphNaQSAeMiTGv52hmGi/W8CmZMtWd8hCcUMgkEQUCQuz1mDvLFnBFB6O/jxKBUD5ms347moJDidE4Fbvv8IBZ8dgBJ+i57BjuSCnHTR/tQWNWAaF8nrLt/TJ8LSl2qn5cjvrprFD65fTgCXO2QW1GPO1YewmsbE6Fu0jYLSs0Y6ANvJ6Wx+PtVg/y6HGgn81DIJBgadHH1OzbIxSzbTM3JUGOKGVNERD3Pw1GJXxaPw9VD/NCkFfHqxkQsXn0c2naa5Xy6Kw27zhdBJhGM2VLd4f5J4XB3UCCtuAbrDmeZ9dwMTBFRnxfmqbtQO5ReinVHdB+yj+o/1L8/mo0K/cp2Z+w6XwxA17rexa7jHcBMZciYyiuvb3cCI7IGd48Pw86nJ2PROF322t6UElz9/m78e9M51Kqb8MG2ZCxadRiV9U0YFuyKNfeO7rY2xbZEEATMGOiLLUsm4fbRIQCAT3alYfJbO4xBqf+bFY1Pbh+B/UunYPU98XhqRhRenj3IksMmPcN2PgAYbmX1pYCLGVONGpHzCBGRBTip5Phg/lC8PHsQFFIJfj+dhyMXylo9dm9KMf696RwAYPm1Md26AOWkkhuvkd7fmmy2ztIAA1NERAjXZ0wdziiDukmLYcGueGJaf0T7OqGuUYO1hzM7fc5NCfkAdPWlepKPswqCoFvpLqlR9+hzE3WFp6MSy68diG3/uALTY3zQpBXx0Y5UjHxlC9768zxEEbg1Phhr7hsNNweFpYdrVewUUrw8exA+uX04XOzkyCnXbeF9ZmY0Hpik27InlQgYG+GJhydHwJ1/f1Yh/pLA1FArqy8FXKwxBTBriojIUgRBwO2jQ3DVYF0tp23nClsck11Wi8Wrj0ErAjcPD8Rt+sWq7nRrfAiclDIUVjUgIbdlt+muYmCKiPq8sL91tlp8ZYSxPTwAfLX/Apo68eX8cEYpdp0vglQi4Oohpncx6wy5VAJvfUZJHutMkQ0JcrfHp3eMwIo7RsDfRYUatQYKqQSv3zgY/7phsHF7EbU0Y6Av/nhsAuaMCMTrNw5mHSkrNzTYDU4qGewVUgwLsr7A1KVFcdmZj4jIsq4c4AMA2HauoNntDU0aPPjNMZTVNmJQgDNemT2oR5otKWQSjO7nAQDYnVxstvMyMEVEfV6gmx3kUt0H+QA/Z0yO8gYAXBfrDw8HBXLK6/Dn2YL2TmEkiiJe/0OXTjtnRJBZO5l1lL+rrv5ObjkDU2R7psX44K8lk/Dy7EHY8PA4zBsVbOkh2QR/Vzu8cXMs/75sgJ1Ciu8fGIv1D4yBi33PbfXuKJlEgKHsVUMTC6ATEVnSpEgvSCUCzhdUI6u01nj7zydycTqnAm72cnx823Co5D23gDdeXz93bwoDU0REZiOTShDlq+uKtHhyhHG1QSWXYkG87iLvrc1J2J9aAlFsfy/1X2cLcPRCGVRyCR6fGtm9A2+Dv4shMMUC6GSbHJQy3D46BDH+zpYeClG3iPJ1wkB/F0sPo1WCIBgzFBuamDFFRGRJLvZyjNBv+96aeHGh/NsDFwAA904MR6CbfY+OydBF+UhGGerU5lnAYGCKiAjAu3Pj8PFtw4z7uA1uGxMCV3s50oprMH/FAcz5ZH+bqwNNGi3e2Kxr1Xr3+DD4OKu6fdyt8XPRF0DnVj4iIuoCw3Y+BqaIiCxvygDdbo6t+jpTp7MrcDK7AgqpBHNGBPX4eMI9HeDvooJao8XhjFKznJOBKSIiABHeTpg5yK/F3mxvJxU2PjoBt48OgUIqweGMMtz2+UEcvdDyQ/iHY9lIKayGq70c90+yXI2Xi1v5mDFFRESdZyiArmZgiojI4q6M1tWZOphWiuqGJnyjz5aaNdgXno49361YEASM02/n22Om7XwMTBERXYa/qx1enj0Iu5+ZjAmRnhBFYP2R7GbHNDRp8J+/kgHotgM6qyxXN8TfVZcxlcuMKSIi6oKLGVOsMUVEZGn9vBwQ6mEPtUaLjafz8PPJHADokS58bTFs5zNXAXQGpoiIOsjHWYUH9ZlQf5zJb7aS/GdCAfIr6+HtpLToJAEAfvoaU3nMmCIioi5gxhQRkfUQBMGYNfXKb2dR36hFlI+TsfaUJRgyphLzKlFc3WDy+RiYIiLqhPhwD3g6KlFR19is1tS6w1kAgLkjg3q0K0Zr/PQZU4VV9WjU8KKCiIg6x14hAwBU1DVaeCRERARcrDNVWd8EALhtdHCLEiQ9ydNRiQF+uiY15ujOx8AUEVEnSCUCrhniBwD49WQuACCzpBZ7UoohCLBIAcK/83RQQiGVQCsCBZXMmiIios6J8HYEACTlV1l4JEREBAAjQ93hqNQtGtgrpJg9NMDCIwIm6LfzMTBFRGQBhsDUn2cLUN+owbojmQCA8RGeCHLv2XatrZFIBPgaO/MxMEVERJ0To18FP5tXaeGREBERoKv9N6m/FwBg9tAAOFmwnq2BsQB6cjFEUTTpXDJzDIiIqC8ZFuwGfxcVcivqsTWx0FgIfd7IYAuP7CI/FxUyS2uRW84C6ERE1Dkx/gxMERFZm2evHoB+3o64e1yYpYcCABgV6g6FVILcinqkFdegn5djl8/FjCkiok6SSARcrc+aevm3syisaoCHgwLTYnwsPLKLAlx1BdBzWQCdiIg6yVA35EJJLarqWWeKiMgaBLjaYcm0/nCxt3y2FADYKaQYri/Avs/E7XwMTBERdcG1sf4AgHx9Daebhgca22tbA0MB9LwKZkwREVHnuDso4KffEn6OdaaIiKgNY/t5AAD2p5WYdB7ruYoiIrIhgwNcEHxJPam5Iy1f9PxSfi7MmCIioq4z1JlK5HY+IiJqw9gIfWAqtQRabdfrTDEwRUTUBYIg4NpY3Xa+UWHuJu2p7g4Xt/IxY4qIiDrPWGcql4EpIiJq3ZBAV9grpCirbURSQdczbFn8nIioix68IgJSQcCNwwItPZQWuJWPiIhMMYCd+YiI6DLkUglGhrpj5/ki7EstMc4dncWMKSKiLnJUyrBkehRCPR0sPZQWDFv5ymobUafWWHg0RERkawxb+c7lV6FJo7XwaIiIyFqN6XdxO19XMTBFRNQLOatkcFBIAQC5zJoiIqJOCna3h4NCCnWTFhklNZYeDhERWSlDAfSD6SXQdLHOFANTRES9kCAI8NfXmcpjAXQiIuokiUQwbsk4l8fOfERE1LqB/i5wUslQVd+EhNyKLp2DgSkiol7Kz1AAnRlTRETUBYYC6OdMKGhLRES9m1QiID5MlzW1r4vb+RiYIiLqpfxd9AXQmTFFRERdYKgzlcSMKSIiaoepdabMEpj68MMPERoaCpVKhfj4eBw6dKjd49evX4/o6GioVCoMHjwYGzduNMcwiIjoEoatfLnllsmYMvfcIIoili1bBj8/P9jZ2WHq1KlITk7uzpdARNSnGTOm8m2/M19n5yQiIuo4Q52pwxmlaOxCwwyTA1Pr1q3DkiVLsHz5chw7dgyxsbGYMWMGCgsLWz1+3759mD9/Pu6++24cP34cs2fPxuzZs3HmzBlTh0JERJfw02dMWWIrX3fMDW+88Qbef/99fPzxxzh48CAcHBwwY8YM1NczI4yIqDv093GCRNB1eLVlnZ2TiIioc6J8nOBmL0etWoNT2eWdfrwgimLXyqbrxcfHY+TIkfjggw8AAFqtFkFBQXjkkUfwf//3fy2Onzt3LmpqavDbb78Zbxs9ejTi4uLw8ccfd+g5Kysr4eLigoqKCjg7O5syfCKiXmtfSjFu/ewgZBIBNw0LxB0jvDEozK9HPjvNPTeIogh/f3/84x//wJNPPgkAqKiogI+PD1atWoV58+Z1aFycP4iIOmfaOzuRlFWIrHfn2OxnZ2fnpL/j3EFEdHkPfXsUG0/n48ZhAXhian+4yJo6/NlpUsaUWq3G0aNHMXXq1IsnlEgwdepU7N+/v9XH7N+/v9nxADBjxow2jweAhoYGVFZWNvshIqL2DQtxw+QoLzRpRaw7koVr/runR563O+aG9PR05OfnNzvGxcUF8fHxnD+IiLqRYTufrerKnMS5g4io88ZHeAEAfjyWgwlvbMc1/93d4ceaFJgqLi6GRqOBj49Ps9t9fHyQn5/f6mPy8/M7dTwAvPbaa3BxcTH+BAUFmTJsIqI+QSWX4otFo/DDg2Mxqb8XNFqTEmQ7rDvmBsN/OX8QEfUsQwF0W9WVOYlzBxFR5900PABLZ0VjVKg7pBIBGcW1HX6sTXTlW7p0KSoqKow/WVlZlh4SEZHNGB7ihi/vGoVv7xll6aH0OM4fRESmmdjfC/+YHmnpYfQozh1ERJ2nlElx/6R++O6BMTi+bBr+Mze2w4+VmfLEnp6ekEqlKCgoaHZ7QUEBfH19W32Mr69vp44HAKVSCaVSacpQiYj6vNggtx55nu6YGwz/LSgogJ+fX7Nj4uLi2hwL5w8iItMM8HNGgEM4Hrf0QLqoK3MS5w4iItM4q+SYFtN2jOfvTMqYUigUGD58OLZu3Wq8TavVYuvWrRgzZkyrjxkzZkyz4wHgr7/+avN4IiKyLd0xN4SFhcHX17fZMZWVlTh48CDnDyIialNX5iQiIupZJmVMAcCSJUuwcOFCjBgxAqNGjcK7776LmpoaLFq0CABwxx13ICAgAK+99hoA4LHHHsOkSZPw9ttv4+qrr8batWtx5MgRfPrpp6YOhYiIrIS55wZBEPD444/jlVdeQWRkJMLCwvD888/D398fs2fPttTLJCIiG3C5OYmIiCzL5MDU3LlzUVRUhGXLliE/Px9xcXHYtGmTscBgZmYmJJKLiVljx47F6tWr8dxzz+HZZ59FZGQkNmzYgEGDBpk6FCIishLdMTc8/fTTqKmpwX333Yfy8nKMHz8emzZtgkql6vHXR0REtuNycxIREVmWIIpiz7RpMqPKykq4uLigoqICzs623SmEiKin8LOTfwdERF3R1z87+/rrJyLqis58dtpEVz4iIiIiIiIiIup9TN7KZwmGJK/KykoLj4SIyHYYPjNtMFHWbDh/EBF1Xl+fPzh3EBF1XmfmDpsMTJWUlAAAgoKCLDwSIiLbU1JSAhcXF0sPwyI4fxARdV1fnT84dxARdV1H5g6bDEy5u7sD0BXP7ezkOHLkSBw+fLhLz1tZWYmgoCBkZWW1ukfSlHNfTneeu7vP31Njv9z7Y8q5u0tv+HtvT1ffE2sYe288d0VFBYKDg42foX1RV+cPU//u2/u3wN93y5z/0nPb2vzRW/7e28K5w/rO39fnD2ucO8xx/vZY+++kpc596fltbe7o7vNb+tymvB+WHru1nr8n5w6bDEwZOjm5uLh0+pdOKpWa/MHh7Ozc6jnMce62dOe5u/v8PT32tt4fc5zb3HrT33t7OvueWNPYe+O5L+2G19d0df4w1999a/8W+PtumfO3dm5bmT962997Wzh3WN/5++r8YY1zhznP3xpb+Z3s6XO3dn5bmTu6+/zWcu6uvB/WMnZrO39Pzh19bnZ5+OGHee4ePj/Hbpnzc+yWOb+tnpvaZ8vvK8fe8+fu7vNz7D1/7u4+vy2Pndpmy+8rx26Z83PsPX/u7j4/x94xgmiDVQwt1bKVrWKtG98f68P3xLrw/eD8Qa3j+2Nd+H5Yn77+nnDuoNbw/bEufD+sT2feE5vMmFIqlVi+fDmUSmWfeF7qGL4/1ofviXXh+8H5g1rH98e68P2wPn39PeHcQa3h+2Nd+H5Yn868JzaZMUVERERERERERLbPJjOmiIiIiIiIiIjI9jEwRUREREREREREFsHAFBERERERERERWQQDU5fIysrCXXfdBX9/fygUCoSEhOCxxx5DSUlJhx6/Y8cOCIKA8vLy7h1oH3LnnXdCEAS8/vrrzW7fsGEDBEGw0Kj6NsN7IggC5HI5fHx8MG3aNKxcuRJardbSwyPqcZw7rA/nDuvDuYOoJc4f1ofzh3Xh3NF3MDCll5aWhhEjRiA5ORlr1qxBSkoKPv74Y2zduhVjxoxBaWmppYfYZ6lUKvz73/9GWVmZpYdCejNnzkReXh4yMjLwxx9/YPLkyXjsscdwzTXXoKmpydLDI+oxnDusF+cO68O5g+gizh/Wi/OHdeHc0TcwMKX38MMPQ6FQ4M8//8SkSZMQHByMWbNmYcuWLcjJycE///lPAEBDQwOeeeYZBAUFQalUIiIiAp9//jkyMjIwefJkAICbmxsEQcCdd95pwVfUe0ydOhW+vr547bXX2jzmhx9+wMCBA6FUKhEaGoq3337beN+zzz6L+Pj4Fo+JjY3FSy+91C1j7u2USiV8fX0REBCAYcOG4dlnn8XPP/+MP/74A6tWrQIAlJeX45577oGXlxecnZ1x5ZVX4uTJk83O8+uvv2LkyJFQqVTw9PTEDTfcYIFXQ9R1nDusF+cO68O5g+gizh/Wi/OHdeHc0TcwMAWgtLQUmzdvxkMPPQQ7O7tm9/n6+mLBggVYt24dRFHEHXfcgTVr1uD9999HYmIiPvnkEzg6OiIoKAg//PADACApKQl5eXl47733LPFyeh2pVIp//etf+O9//4vs7OwW9x89ehRz5szBvHnzcPr0abzwwgt4/vnnjR9UCxYswKFDh5Cammp8TEJCAk6dOoVbb721p15Gr3fllVciNjYWP/74IwDglltuQWFhIf744w8cPXoUw4YNw5QpU4wrgL///jtuuOEGXHXVVTh+/Di2bt2KUaNGWfIlEHUK5w7rxrnDNnDuoL6I84d14/xh/Th39EIiiQcOHBABiD/99FOr97/zzjsiAPHgwYMiAPGvv/5q9bjt27eLAMSysrLuG2wfs3DhQvH6668XRVEUR48eLd51112iKIriTz/9JBp+fW+99VZx2rRpzR731FNPiTExMcY/x8bGii+99JLxz0uXLhXj4+O7efS906Xvyd/NnTtXHDBggLh7927R2dlZrK+vb3Z/v379xE8++UQURVEcM2aMuGDBgu4eLlG34dxhvTh3WB/OHUQXcf6wXpw/rAvnjr6DGVOXEEWx3fszMjIglUoxadKkHhoRXerf//43vvzySyQmJja7PTExEePGjWt227hx45CcnAyNRgNAt3KxevVqALr3ec2aNViwYEHPDLwPEUURgiDg5MmTqK6uhoeHBxwdHY0/6enpxtWjEydOYMqUKRYeMZHpOHdYN84d1o9zB/VVnD+sG+cP68a5o3eRWXoA1iAiIgKCICAxMbHVvaaJiYlwc3NrkWpLPWvixImYMWMGli5d2uk99PPnz8czzzyDY8eOoa6uDllZWZg7d273DLQPS0xMRFhYGKqrq+Hn54cdO3a0OMbV1RUA+O+JbB7nDtvAucP6ce6gvobzh23g/GHdOHf0LsyYAuDh4YFp06bhf//7H+rq6prdl5+fj2+//RZz587F4MGDodVqsXPnzlbPo1AoAMAYKSfze/311/Hrr79i//79xtsGDBiAvXv3Njtu79696N+/P6RSKQAgMDAQkyZNwrfffotvv/0W06ZNg7e3d4+Ovbfbtm0bTp8+jZtuugnDhg1Dfn4+ZDIZIiIimv14enoCAIYMGYKtW7daeNREXce5w3Zw7rBenDuoL+L8YTs4f1gnzh29kMU2EVqZ8+fPi56enuKECRPEnTt3ipmZmeIff/whDho0SIyMjBRLSkpEURTFO++8UwwKChJ/+uknMS0tTdy+fbu4bt06URRFMTs7WxQEQVy1apVYWFgoVlVVWfIl9Qqt7Su+/fbbRZVKZdznffToUVEikYgvvfSSmJSUJK5atUq0s7MTv/jii2aPW7Fihejv7y96enqKX3/9dQ+9gt5n4cKF4syZM8W8vDwxOztbPHr0qPjqq6+Kjo6O4jXXXCM2NTWJWq1WHD9+vBgbGytu3rxZTE9PF/fu3Ss+++yz4uHDh0VR1NVFkEgk4rJly8SzZ8+Kp06dEl9//XULvzqizuHcYZ04d1gfzh1EzXH+sE6cP6wL546+g4GpS2RkZIgLFy4UfXx8RLlcLgYFBYmPPPKIWFxcbDymrq5OfOKJJ0Q/Pz9RoVCIERER4sqVK433v/TSS6Kvr68oCIK4cOFCC7yK3qW1ySE9PV1UKBTipXHV77//XoyJiRHlcrkYHBwsvvnmmy3OVVZWJiqVStHe3p4TtwkWLlwoAhABiDKZTPTy8hKnTp0qrly5UtRoNMbjKisrxUceeUT09/c3/ntasGCBmJmZaTzmhx9+EOPi4kSFQiF6enqKN954oyVeEpFJOHdYH84d1odzB1FLnD+sD+cP68K5o+8QRPEyVfeIiIiIiIiIiIi6AWtMERERERERERGRRTAwRUREREREREREFsHAFBERERERERERWQQDU0REREREREREZBEMTBERERERERERkUX0ucDUa6+9hpEjR8LJyQne3t6YPXs2kpKSmh1TX1+Phx9+GB4eHnB0dMRNN92EgoIC4/0nT57E/PnzERQUBDs7OwwYMADvvfdes3P8+OOPmDZtGry8vODs7IwxY8Zg8+bNPfIaiYjIvDh3EBFRV3D+ICK6vD4XmNq5cycefvhhHDhwAH/99RcaGxsxffp01NTUGI954okn8Ouvv2L9+vXYuXMncnNzceONNxrvP3r0KLy9vfHNN98gISEB//znP7F06VJ88MEHxmN27dqFadOmYePGjTh69CgmT56Ma6+9FsePH+/R10tERKbj3EFERF3B+YOI6PIEURRFSw/CkoqKiuDt7Y2dO3di4sSJqKiogJeXF1avXo2bb74ZAHDu3DkMGDAA+/fvx+jRo1s9z8MPP4zExERs27atzecaOHAg5s6di2XLlnXLayEiop7BuYOIiLqC8wcRUUt9LmPq7yoqKgAA7u7uAHQrEo2NjZg6darxmOjoaAQHB2P//v3tnsdwjtZotVpUVVW1ewwREdkGzh1ERNQVnD+IiFqSWXoAlqTVavH4449j3LhxGDRoEAAgPz8fCoUCrq6uzY718fFBfn5+q+fZt28f1q1bh99//73N53rrrbdQXV2NOXPmmG38RETU8zh3EBFRV3D+ICJqXZ8OTD388MM4c+YM9uzZ0+VznDlzBtdffz2WL1+O6dOnt3rM6tWr8eKLL+Lnn3+Gt7d3l5+LiIgsj3MHERF1BecPIqLW9dmtfIsXL8Zvv/2G7du3IzAw0Hi7r68v1Go1ysvLmx1fUFAAX1/fZredPXsWU6ZMwX333Yfnnnuu1edZu3Yt7rnnHnz33XfNUnSJiMj2cO4gIqKu4PxBRNS2PheYEkURixcvxk8//YRt27YhLCys2f3Dhw+HXC7H1q1bjbclJSUhMzMTY8aMMd6WkJCAyZMnY+HChXj11Vdbfa41a9Zg0aJFWLNmDa6++urueUFERNTtOHcQEVFXcP4gIrq8PteV76GHHsLq1avx888/Iyoqyni7i4sL7OzsAAAPPvggNm7ciFWrVsHZ2RmPPPIIAN1+bkCXQnvllVdixowZePPNN43nkEql8PLyAqBLoV24cCHee++9Zu1e7ezs4OLi0u2vk4iIzIdzBxERdQXnDyKiDhD7GACt/nzxxRfGY+rq6sSHHnpIdHNzE+3t7cUbbrhBzMvLM96/fPnyVs8REhJiPGbSpEmtHrNw4cKee7FERGQWnDuIiKgrOH8QEV1en8uYIiIiIiIiIiIi69DnakwREREREREREZF1YGCKiIiIiIiIiIgsgoEpIiIiIiIiIiKyCAamiIiIiIiIiIjIIhiYIiIiIiIiIiIii2BgioiIiIiIiIiILIKBKSIiIiIiIiIisggGpoiIiIiIiIiIyCIYmCIiIiIiIiIiIotgYIrIRFdccQUef/xxSw+DiIhsCOcOIiLqCs4f1BsxMEVERERERERERBbBwBSRCe68807s3LkT7733HgRBgCAIOH78OBYsWAAvLy/Y2dkhMjISX3zxhaWHSkREVoJzBxERdQXnD+qtZJYeAJEte++993D+/HkMGjQIL730EgDgxRdfxNmzZ/HHH3/A09MTKSkpqKurs/BIiYjIWnDuICKiruD8Qb0VA1NEJnBxcYFCoYC9vT18fX0BADk5ORg6dChGjBgBAAgNDbXgCImIyNpw7iAioq7g/EG9FbfyEZnZgw8+iLVr1yIuLg5PP/009u3bZ+khERGRlePcQUREXcH5g3oDBqaIzGzWrFm4cOECnnjiCeTm5mLKlCl48sknLT0sIiKyYpw7iIioKzh/UG/AwBSRiRQKBTQaTbPbvLy8sHDhQnzzzTd499138emnn1podEREZI04dxARUVdw/qDeiDWmiEwUGhqKgwcPIiMjA46Ojnj//fcxfPhwDBw4EA0NDfjtt98wYMAASw+TiIisCOcOIiLqCs4f1BsxY4rIRE8++SSkUiliYmLg5eUFhUKBpUuXYsiQIZg4cSKkUinWrl1r6WESEZEV4dxBRERdwfmDeiNBFEXR0oMgIiIiIiIiIqK+hxlTRERERERERERkEQxMERERERERERGRRTAwRUREREREREREFsHAFBERERERERERWQQDU0REREREREREZBEMTBERERERERERkUUwMEVERERERERERBbBwBQREREREREREVkEA1NERERERERERGQRDEwREREREREREZFFMDBFREREREREREQWwcAUERERERERERFZxP8DSpLnod2R1VUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(2, 3, figsize=(3 * 4, 2 * 3))\n", + "fig.suptitle(\"Constant Volatility\")\n", + "thc = srr.transaction_history[1:].total.sum()\n", + "srr.book_history.Main.plot(ax=axs[0][0], title=f\"Total Hedge Cost: {thc:.2f}\")\n", + "metrics.price.plot(title=\"price\", ax=axs[0][1])\n", + "metrics.vol.plot(title=\"vol\", ax=axs[0][2])\n", + "metrics.delta.plot(title=\"delta\", ax=axs[1][0])\n", + "metrics.gamma.plot(title=\"gamma\", ax=axs[1][1])\n", + "metrics.vega.plot(title=\"vega\", ax=axs[1][2])\n", + "fig.tight_layout()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Stochastic Volatility" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# gbm params\n", + "r = 0.05\n", + "vol = 0.2\n", + "s0 = 100\n", + "N = 101\n", + "T = N / 365\n", + "\n", + "\n", + "kappa = 4\n", + "theta = 0.02\n", + "v0 = 0.02\n", + "sigma = 0.9\n", + "R = 0.9\n", + "\n", + "\n", + "# simulate data\n", + "rng = np.random.default_rng(12345) # for reproducibility\n", + "ix = pd.date_range(end=\"20221231\", periods=N, freq=\"D\")\n", + "p, vol = heston_simulate_paths(\n", + " S0=s0,\n", + " v0=v0,\n", + " mu=r,\n", + " kappa=kappa,\n", + " theta=theta,\n", + " xi=sigma,\n", + " R=np.array([[1, R], [R, 1]]),\n", + " T=T,\n", + " n_steps=N,\n", + " n_sims=1,\n", + " rng=rng,\n", + ")\n", + "\n", + "df = pd.DataFrame(np.c_[p[:, 0], p[:, 0]], index=ix)\n", + "df.columns = pd.MultiIndex.from_tuples(((\"ACME\", \"Open\"), (\"ACME\", \"Close\")))\n", + "\n", + "# add constant vol to data\n", + "df.loc[:, (\"ACME\", \"IVol\")] = vol\n", + "\n", + "# assets\n", + "assets = [\n", + " OHLCAsset(name=\"ACME\", denom=\"USD\", quantity_round_dp=6),\n", + " BSMOption(name=\"CO_ACME\", data_label=\"ACME\", K=s0, exp=ix[-1], r=r),\n", + "]\n", + "\n", + "# run simulation\n", + "book = Book(name=\"Main\", cash=\"0\", rate=0.05 / 100)\n", + "sr = StrategyRunner(\n", + " data=df,\n", + " assets=assets,\n", + " strategies=[DeltaHedgingStrat()],\n", + " books=[book],\n", + ")\n", + "srr = sr.run(\n", + " {\n", + " \"r\": r,\n", + " \"vol\": vol,\n", + " \"exp\": ix[-1],\n", + " \"K\": s0,\n", + " }\n", + ")\n", + "metrics = pd.DataFrame.from_dict(srr.strategies[0].metrics, orient=\"index\").reindex(\n", + " srr.book_history.index\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJRCAYAAACUbgR+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3hU5daA4Wd6eu+QRugdaSIIqChgRQVEUYoKHhUUsPIpICpiPygqKCpFQbBybHQBCx2kd0iBkIQkpLdp+/sxmYEhhQTSWbfXXGR2fWcSp6y91npViqIoCCGEEEIIIYQQQghRg9S1PQAhhBBCCCGEEEIIcfWRoJQQQgghhBBCCCGEqHESlBJCCCGEEEIIIYQQNU6CUkIIIYQQQgghhBCixklQSgghhBBCCCGEEELUOAlKCSGEEEIIIYQQQogaJ0EpIYQQQgghhBBCCFHjJCglhBBCCCGEEEIIIWqcBKWEEEIIIYQQQgghRI2ToJQQQggh6pQNGzagUqn4/vvva3sowPnxbNiwobaHUiqVSsUrr7xSpcfs27cvffv2ddyPi4tDpVKxYMECx7JXXnkFlUpVpecVQgghxNVFglJCCCGEYN++fQwePJjIyEhcXFxo1KgRN998M7Nnz3ba7o033mD58uW1M8hq9sknnzgFXaraU089hUql4vjx42Vu89JLL6FSqdi7d2+1jcPu4MGDvPLKK8TFxVXZMRvy34cQQgghqp4EpYQQQoir3KZNm+jSpQt79uxhzJgxfPTRRzz66KOo1Wo++OADp20bctChrKBU7969KSgooHfv3ld0/OHDhwOwZMmSMrf55ptvaNeuHe3bt7+ic1XEwYMHmT59eqlBqdWrV7N69epy93/55ZcpKChwWtaQ/z6EEEIIUfW0tT0AIYQQQtSuGTNm4O3tzfbt2/Hx8XFad/bs2doZVB2iVqtxcXG54uN0796dpk2b8s033zB16tQS6zdv3kxsbCxvvvnmFZ/rSun1+ktuo9Vq0Wrlo6QQQgghLp9kSgkhhBBXuRMnTtCmTZsSASmAoKAgx88qlYq8vDwWLlyISqVCpVIxatQox/p///2XgQMH4uXlhYeHBzfddBNbtmwpcczMzEwmTpxIVFQUBoOBxo0bM2LECNLS0py2s1qtzJgxg8aNG+Pi4sJNN91UovTtr7/+YsiQIURERGAwGAgPD2fixIklMniSk5MZPXo0jRs3xmAwEBoayl133eXIEoqKiuLAgQNs3LjR8djsPZXK6im1detWbr31Vnx9fXF3d6d9+/YlMssuNnz4cA4fPsyuXbtKrFuyZAkqlYr7778fsAUEH3nkEYKDg3FxcaFDhw4sXLiw3OMDxMfH88QTT9CiRQtcXV3x9/dnyJAhThlRCxYsYMiQIQDccMMNjsdsf4wX95QqzcU9pcr6+1i/fj0qlYqffvqpzMe8efPmSz4uIYQQQjQ8cnlLCCGEuMpFRkayefNm9u/fT9u2bcvc7quvvuLRRx+lW7dujB07FoCYmBgADhw4wPXXX4+XlxfPP/88Op2OTz/9lL59+7Jx40a6d+8OQG5uLtdffz2HDh3i4Ycf5pprriEtLY2ff/6Z06dPExAQ4Djfm2++iVqt5tlnnyUrK4u3336b4cOHs3XrVsc23333Hfn5+Tz++OP4+/uzbds2Zs+ezenTp/nuu+8c2917770cOHCA8ePHExUVxdmzZ1mzZg0JCQlERUUxa9Ysxo8fj4eHBy+99BIAwcHBZT4Xa9as4fbbbyc0NJSnn36akJAQDh06xK+//srTTz9d5n7Dhw9n+vTpLFmyhGuuucax3GKx8O2333L99dcTERFBQUEBffv25fjx44wbN47o6Gi+++47Ro0aRWZmZrnn2L59O5s2bWLYsGE0btyYuLg45syZQ9++fTl48CBubm707t2bp556ig8//JD/+7//o1WrVgCOfy9HWX8f1157LeHh4SxevJi7777baZ/FixcTExNDjx49Lvu8QgghhKjHFCGEEEJc1VavXq1oNBpFo9EoPXr0UJ5//nll1apVitFoLLGtu7u7MnLkyBLLBw0apOj1euXEiROOZWfOnFE8PT2V3r17O5ZNnTpVAZQff/yxxDGsVquiKIqyfv16BVBatWqlFBUVOdZ/8MEHCqDs27fPsSw/P7/EcWbOnKmoVColPj5eURRFycjIUADlnXfeKfd5aNOmjdKnT58Sy+3jWb9+vaIoimI2m5Xo6GglMjJSycjIKPUxlKdr165K48aNFYvF4li2cuVKBVA+/fRTRVEUZdasWQqgfP31145tjEaj0qNHD8XDw0PJzs52LAeUadOmOe6X9pxs3rxZAZRFixY5ln333XdOj+tCffr0cXouYmNjFUCZP3++Y9m0adOUiz9KlvX3MXnyZMVgMCiZmZmOZWfPnlW0Wq3T2IUQQghxdZHyPSGEEOIqd/PNN7N582buvPNO9uzZw9tvv03//v1p1KgRP//88yX3t1gsrF69mkGDBtGkSRPH8tDQUB544AH+/vtvsrOzAfjhhx/o0KFDiYwZwKkUDGD06NFOvY2uv/56AE6ePOlY5urq6vg5Ly+PtLQ0rrvuOhRF4d9//3Vso9fr2bBhAxkZGRV5Ssr177//Ehsby4QJE0qUPF78GErz4IMPcvr0af7880/HsiVLlqDX6x0ldb///jshISGOUj4AnU7HU089RW5uLhs3bizz+Bc+JyaTifT0dJo2bYqPj0+pZYM1YcSIERQVFfH99987li1btgyz2cyDDz5YK2MSQgghRO2ToJQQQggh6Nq1Kz/++CMZGRls27aNyZMnk5OTw+DBgzl48GC5+6amppKfn0+LFi1KrGvVqhVWq5VTp04Btv5V5ZUIXigiIsLpvq+vL4BTYCkhIYFRo0bh5+eHh4cHgYGB9OnTB4CsrCwADAYDb731FitWrCA4OJjevXvz9ttvk5ycXKFxXOzEiRMAFX4cFxs2bBgajcYxC19hYSE//fQTAwcOdDzG+Ph4mjVrhlrt/FHNXl4XHx9f5vELCgqYOnUq4eHhGAwGAgICCAwMJDMz0/Gc1LSWLVvStWtXFi9e7Fi2ePFirr32Wpo2bVorYxJCCCFE7ZOglBBCCCEc9Ho9Xbt25Y033mDOnDmYTCan3kw1SaPRlLpcURTAlqF1880389tvv/HCCy+wfPly1qxZw4IFCwBbo3S7CRMmcPToUWbOnImLiwtTpkyhVatWjmyqmhQUFMTNN9/MDz/8gMlk4pdffiEnJ4fhw4dXyfHHjx/PjBkzGDp0KN9++y2rV69mzZo1+Pv7Oz0nNW3EiBFs3LiR06dPc+LECbZs2SJZUkIIIcRVThqdCyGEEKJUXbp0ASApKcmxrLTytMDAQNzc3Dhy5EiJdYcPH0atVhMeHg7YGl/v37+/Ssa3b98+jh49ysKFCxkxYoRj+Zo1a0rdPiYmhmeeeYZnnnmGY8eO0bFjR9577z2+/vproGKld/bjAOzfv59+/fpd1tiHDx/OypUrWbFiBUuWLMHLy4s77rjDsT4yMpK9e/ditVqdsqUOHz7sWF+W77//npEjR/Lee+85lhUWFpKZmem0XUUfb2WUd8xhw4YxadIkvvnmGwoKCtDpdNx3331VPgYhhBBC1B+SKSWEEEJc5davX+/IPrrQ77//DuBUlufu7l4iuKHRaLjlllv43//+R1xcnGN5SkoKS5YsoVevXnh5eQG2WfD27NnDTz/9VOJ8pY2hPPZMqgv3UxSFDz74wGm7/Px8CgsLnZbFxMTg6elJUVFRuY+tNNdccw3R0dHMmjWrxPYVfQyDBg3Czc2NTz75hBUrVnDPPffg4uLiWH/rrbeSnJzMsmXLHMvMZjOzZ8/Gw8PDUaJYGo1GU2Ics2fPxmKxOC1zd3cHqNBjrqjynsOAgAAGDhzI119/zeLFixkwYIDTbItCCCGEuPpIppQQQghxlRs/fjz5+fncfffdtGzZEqPRyKZNm1i2bBlRUVGMHj3asW3nzp1Zu3Yt77//PmFhYURHR9O9e3def/111qxZQ69evXjiiSfQarV8+umnFBUV8fbbbzv2f+655/j+++8ZMmQIDz/8MJ07d+bcuXP8/PPPzJ07lw4dOlR43C1btiQmJoZnn32WxMREvLy8+OGHH0o0Mz969Cg33XQTQ4cOpXXr1mi1Wn766SdSUlIYNmyY02ObM2cOr7/+Ok2bNiUoKIgbb7yxxHnVajVz5szhjjvuoGPHjowePZrQ0FAOHz7MgQMHWLVq1SXH7uHhwaBBgxx9pS4u3Rs7diyffvopo0aNYufOnURFRfH999/zzz//MGvWLDw9Pcs89u23385XX32Ft7c3rVu3ZvPmzaxduxZ/f3+n7Tp27IhGo+Gtt94iKysLg8HAjTfeSFBQ0CXHX5ay/j7sRowYweDBgwF47bXXLvs8QgghhGggam/iPyGEEELUBStWrFAefvhhpWXLloqHh4ei1+uVpk2bKuPHj1dSUlKctj18+LDSu3dvxdXVVQGUkSNHOtbt2rVL6d+/v+Lh4aG4ubkpN9xwg7Jp06YS50tPT1fGjRunNGrUSNHr9Urjxo2VkSNHKmlpaYqiKMr69esVQPnuu++c9ouNjVUAZf78+Y5lBw8eVPr166d4eHgoAQEBypgxY5Q9e/Y4bZeWlqY8+eSTSsuWLRV3d3fF29tb6d69u/Ltt986HT85OVm57bbbFE9PTwVQ+vTp4zSe9evXO23/999/KzfffLPi6empuLu7K+3bt1dmz55d4ef9t99+UwAlNDRUsVgsJdanpKQoo0ePVgICAhS9Xq+0a9fO6bHbAcq0adMc9zMyMhz7eXh4KP3791cOHz6sREZGOv2+FEVR5s2bpzRp0kTRaDROj7FPnz6Ox68opT/306ZNUy7+KFne34eiKEpRUZHi6+ureHt7KwUFBRV5moQQQgjRgKkUpZK58kIIIYQQQlwGs9lMWFgYd9xxB1988UVtD0cIIYQQtUx6SgkhhBBCiBqxfPlyUlNTnRrTCyGEEOLqJZlSQgghhBCiWm3dupW9e/fy2muvERAQwK5du2p7SEIIIYSoAyRTSgghhBBCVKs5c+bw+OOPExQUxKJFi2p7OEIIIYSoIyRTSgghhBBCCCGEEELUOMmUEkIIIYQQQgghhBA1ToJSQgghhBBCCCGEEKLGSVBKCCGEEEIIIYQQQtQ4CUoJIYQQQgghhBBCiBonQSkhhBBCCCGEEEIIUeMkKCWEEEIIIYQQQgghapwEpYQQQgghhBBCCCFEjZOglBBCCCGEEEIIIYSocRKUEkIIIYQQQgghhBA1ToJSQgghhBBCCCGEEKLGSVBKCCGEEEIIIYQQQtQ4CUoJIYQQQgghhBBCiBonQSkhhBBCCCGEEEIIUeMkKCWEEEIIIYQQQgghapwEpYQQQgghhBBCCCFEjZOglBBCCCGEEEIIIYSocRKUEkIIIYQQQgghhBA1ToJSosZt2LABlUrFhg0bansoJfTt25e+ffvW9jCEEEJcRVQqFa+88kptD0MIIUQDsmDBAlQqFXFxcbU9FCHKJUGpq4RKparQrSKBojfeeIPly5dX+5jtL6Q7duwodX3fvn1p27ZttY+jJmVnZzN9+nQ6dOiAh4cHrq6utG3blhdeeIEzZ85Uyzk/+eQTFixYcEXHOHPmDA8++CAtWrTA09MTHx8funXrxsKFC1EU5ZL75+bmMm3aNAYMGICfnx8qlarMMc2bN48+ffoQHByMwWAgOjqa0aNHyxuuEEIIIYQQQtQz2toegKgZX331ldP9RYsWsWbNmhLLW7VqdcljvfHGGwwePJhBgwZV5RCveidPnqRfv34kJCQwZMgQxo4di16vZ+/evXzxxRf89NNPHD16tMrP+8knnxAQEMCoUaMu+xhpaWmcPn2awYMHExERgclkYs2aNYwaNYojR47wxhtvXHL/V199lYiICDp06FBucPTff/8lOjqaO++8E19fX2JjY5k3bx6//vore/bsISws7LIfhxBC1IaCggK0WvlIJoQQQoirj3wCuko8+OCDTve3bNnCmjVrSiwXtcNsNnPPPfeQkpLChg0b6NWrl9P6GTNm8NZbb9XS6C6tffv2JQJJ48aN44477uDDDz/ktddeQ6PRlLl/aGgoSUlJhISEsGPHDrp27Vrmtp988kmJZYMGDaJLly4sWrSIF1988bIfhxBC1BSr1YrRaMTFxQUXF5faHo4QQgghRK2Q8j3hkJeXxzPPPEN4eDgGg4EWLVrw7rvvOpVfqVQq8vLyWLhwoaPkz55hEx8fzxNPPEGLFi1wdXXF39+fIUOG1HhZ1ddff03nzp1xdXXFz8+PYcOGcerUqRLbffbZZ8TExODq6kq3bt3466+/Sj1efHw8d955J+7u7gQFBTFx4kRWrVpVarnj1q1bGTBgAN7e3ri5udGnTx/++eefS475hx9+YM+ePbz00kslAlIAXl5ezJgxw2nZd99953icAQEBPPjggyQmJjptk5yczOjRo2ncuDEGg4HQ0FDuuusux+8kKiqKAwcOsHHjRsfv88KeWidOnODEiROXHH9ZoqKiyM/Px2g0lrudwWAgJCTkis4DkJmZednHEEKIy/HKK6+gUqk4fPgwQ4cOxcvLC39/f55++mkKCwsd26lUKsaNG8fixYtp06YNBoOBlStXOtZd3FMqMTGRRx55hLCwMEep8uOPP+70epqZmcmECRMc79tNmzblrbfewmq11shjF0IIUXW+//57VCoVGzduLLHu008/RaVSsX//fgD++OMPrr/+etzd3fHx8eGuu+7i0KFDNT1kIaqEZEoJABRF4c4772T9+vU88sgjdOzYkVWrVvHcc8+RmJjIf//7X8BWBvjoo4/SrVs3xo4dC0BMTAwA27dvZ9OmTQwbNozGjRsTFxfHnDlz6Nu3LwcPHsTNze2yxpaVlUVaWlqJ5SaTqcSyGTNmMGXKFIYOHcqjjz5Kamoqs2fPpnfv3vz777/4+PgA8MUXX/DYY49x3XXXMWHCBE6ePMmdd96Jn58f4eHhjuPl5eVx4403kpSUxNNPP01ISAhLlixh/fr1Jc79xx9/MHDgQDp37sy0adNQq9XMnz+fG2+8kb/++otu3bqV+Rh//vlnAB566KEKPScLFixg9OjRdO3alZkzZ5KSksIHH3zAP//84/Q47733Xg4cOMD48eOJiori7NmzrFmzhoSEBKKiopg1axbjx4/Hw8ODl156CYDg4GDHeW666SaACgcWCwoKyMvLIzc3l40bNzJ//nx69OiBq6trhfavjPT0dCwWCwkJCbz66qtO4xVCiJo2dOhQoqKimDlzJlu2bOHDDz8kIyODRYsWObb5448/+Pbbbxk3bhwBAQGOgPrFzpw5Q7du3cjMzGTs2LG0bNmSxMREvv/+e/Lz89Hr9eTn59OnTx8SExN57LHHiIiIYNOmTUyePJmkpCRmzZpVMw9cCCFElbjtttvw8PDg22+/pU+fPk7rli1bRps2bWjbti1r165l4MCBNGnShFdeeYWCggJmz55Nz5492bVrV5nvLULUWYq4Kj355JPKhb/+5cuXK4Dy+uuvO203ePBgRaVSKcePH3csc3d3V0aOHFnimPn5+SWWbd68WQGURYsWOZatX79eAZT169eXO8b58+crQLm3Nm3aOLaPi4tTNBqNMmPGDKfj7Nu3T9FqtY7lRqNRCQoKUjp27KgUFRU5tvvss88UQOnTp49j2XvvvacAyvLlyx3LCgoKlJYtWzo9BqvVqjRr1kzp37+/YrVanZ6T6Oho5eabby73sXbq1Enx9vYudxs7+/jbtm2rFBQUOJb/+uuvCqBMnTpVURRFycjIUADlnXfeKfd4bdq0cXrMF4qMjFQiIyMrNC5FUZSZM2c6/X5uuukmJSEhocL7K4qibN++XQGU+fPnl7udwWBwnMff31/58MMPK3UeIYSoCtOmTVMA5c4773Ra/sQTTyiAsmfPHkVRFAVQ1Gq1cuDAgRLHAJRp06Y57o8YMUJRq9XK9u3bS2xrf4957bXXFHd3d+Xo0aNO61988UVFo9FU+rVXCCFE7bv//vuVoKAgxWw2O5YlJSUparVaefXVVxVFUZSOHTsqQUFBSnp6umObPXv2KGq1WhkxYoRjmf27VGxsbI2NX4jLIeV7AoDff/8djUbDU0895bT8mWeeQVEUVqxYccljXJgNYzKZSE9Pp2nTpvj4+LBr167LHtvHH3/MmjVrStzat2/vtN2PP/6I1Wpl6NChpKWlOW4hISE0a9bMkd20Y8cOzp49y3/+8x/0er1j/1GjRuHt7e10zJUrV9KoUSPuvPNOxzIXFxfGjBnjtN3u3bs5duwYDzzwAOnp6Y5z5+XlcdNNN/Hnn3+WW06RnZ2Np6dnhZ4P+/ifeOIJpz4kt912Gy1btuS3334DbL8PvV7Phg0byMjIqNCxLxYXF1ep8sv777+fNWvWsGTJEh544AHAlj1VHVasWMHvv//Oe++9R0REBHl5edVyHiGEqIgnn3zS6f748eMB2/urXZ8+fWjdunW5x7FarSxfvpw77riDLl26lFivUqkAWwn39ddfj6+vr9N7Xr9+/bBYLPz5559X+pCEEELUsPvuu4+zZ886tQj5/vvvsVqt3HfffSQlJbF7925GjRqFn5+fY5v27dtz8803O73nCFFfSPmeAGx9k8LCwkoERuyz8cXHx1/yGAUFBcycOZP58+eTmJjo1IsqKyvrssfWrVu3Uj+Y2z+I2x07dgxFUWjWrFmpx9HpdMD5x3LxdjqdjiZNmjgti4+PJyYmxvElwK5p06ZO948dOwbAyJEjy3wcWVlZ+Pr6lrrOy8uLkydPlrnvxWMCaNGiRYl1LVu25O+//wZsfZreeustnnnmGYKDg7n22mu5/fbbGTFixBX1bypPZGQkkZGRgC1ANXbsWPr168eRI0eqvITvhhtuAGDgwIHcddddtG3bFg8PD8aNG1el5xFCiIq4+D0lJiYGtVrtFNiPjo6+5HFSU1PJzs6mbdu25W537Ngx9u7dS2BgYKnrz549e+lBCyGEqFPsvWmXLVvmaEuxbNkyOnbsSPPmzdmyZQtQ+veAVq1asWrVKvLy8nB3d6/RcQtxJSQoJarM+PHjmT9/PhMmTKBHjx54e3ujUqkYNmxYjTRdtVqtqFQqVqxYUepMbx4eHtV6boB33nmHjh07lrpNeedv2bIl//77L6dOnXLqaXWlJkyYwB133MHy5ctZtWoVU6ZMYebMmfzxxx906tSpys5TlsGDBzNv3jz+/PNP+vfvX23niYmJoVOnTixevFiCUkKIOuHiixlAlQbnrVYrN998M88//3yp65s3b15l5xJCCFEzDAYDgwYN4qeffuKTTz4hJSWFf/75hzfeeKO2hyZEtZGglABsGS5r164lJyfHKVvq8OHDjvV2pX3QBltq6ciRI3nvvfccywoLC2tsRrSYmBgURSE6OrrcD+P2x3Ls2DFuvPFGx3KTyURsbCwdOnRw2vbgwYMoiuL0uI8fP17i3GDLeOrXr1+lx37HHXfwzTff8PXXXzN58uRyt7WP/8iRI07jty+78HdlH9szzzzDM888w7Fjx+jYsSPvvfceX3/9NVD277Mq2Ev3riRTrjLnKioqqvbzCCFEaY4dO+aUCXX8+HGsVmulG84GBgbi5eXlmGGpLDExMeTm5l7We44QQoi667777mPhwoWsW7eOQ4cOoSgK9913H+D8PeBihw8fJiAgQLKkRL0jPaUEALfeeisWi4WPPvrIafl///tfVCoVAwcOdCxzd3cvNdCk0WicSvYAZs+ejcViqZYxX+yee+5Bo9Ewffr0EuNQFIX09HQAunTpQmBgIHPnznWaWnvBggUlHlf//v1JTEx0zI4HtkDbvHnznLbr3LkzMTExvPvuu+Tm5pYYW2pqarljHzx4MO3atWPGjBls3ry5xPqcnBzH7HhdunQhKCiIuXPnOgVhVqxYwaFDh7jtttsAyM/Pd5qOHGxfYjw9PZ32K+v3CXDixAlOnDhR7tjLe3xffPEFKpWKa665xrEsLS2Nw4cPk5+ff8njXsxsNpfaH2vbtm3s27ev1DJPIYSoCR9//LHT/dmzZwM4vX9WhFqtZtCgQfzyyy/s2LGjxHr7+9vQoUPZvHkzq1atKrFNZmYmZrO5UucVQghRN/Tr1w8/Pz+WLVvGsmXL6Natm+OiR2hoKB07dmThwoVOn9/379/P6tWrufXWW2tp1EJcPsmUEoAtU+eGG27gpZdeIi4ujg4dOrB69Wr+97//MWHCBEcmENgCMGvXruX9998nLCyM6Ohounfvzu23385XX32Ft7c3rVu3ZvPmzaxduxZ/f/8aeQwxMTG8/vrrTJ48mbi4OAYNGoSnpyexsbH89NNPjB07lmeffRadTsfrr7/OY489xo033sh9991HbGws8+fPL9FT6rHHHuOjjz7i/vvv5+mnnyY0NJTFixc7Gozbs4zUajWff/45AwcOpE2bNowePZpGjRqRmJjI+vXr8fLy4pdffilz7Dqdjh9//JF+/frRu3dvhg4dSs+ePdHpdBw4cIAlS5bg6+vLjBkz0Ol0vPXWW4wePZo+ffpw//33k5KSwgcffEBUVBQTJ04E4OjRo9x0000MHTqU1q1bo9Vq+emnn0hJSWHYsGGOc3fu3Jk5c+bw+uuv07RpU4KCghwZWPZa9ks1O58xYwb//PMPAwYMICIignPnzvHDDz+wfft2xo8f79SD66OPPmL69OmsX7+evn37Oi3PzMzkzJkzAPzyyy+cPn0asJWGent7k5ubS3h4OPfddx9t2rTB3d2dffv2MX/+fLy9vZkyZUq54xRCiOoSGxvLnXfeyYABA9i8eTNff/01DzzwgFP2bUW98cYbrF69mj59+jB27FhatWpFUlIS3333HX///Tc+Pj4899xz/Pzzz9x+++2MGjWKzp07k5eXx759+/j++++Ji4sjICCgGh6pEEKI6qTT6bjnnntYunQpeXl5vPvuu07r33nnHQYOHEiPHj145JFHKCgoYPbs2Xh7e/PKK6/UzqCFuBK1Ne2fqF1PPvmkcvGvPycnR5k4caISFham6HQ6pVmzZso777zjmH7a7vDhw0rv3r0VV1dXBVBGjhypKIqiZGRkKKNHj1YCAgIUDw8PpX///srhw4eVyMhIxzaKoijr169XAGX9+vXljtE+jWlpU2IriqL06dNHadOmTYnlP/zwg9KrVy/F3d1dcXd3V1q2bKk8+eSTypEjR5y2++STT5To6GjFYDAoXbp0Uf7880+lT58+Sp8+fZy2O3nypHLbbbcprq6uSmBgoPLMM88oP/zwgwIoW7Zscdr233//Ve655x7F399fMRgMSmRkpDJ06FBl3bp15T5Wu4yMDGXq1KlKu3btFDc3N8XFxUVp27atMnnyZCUpKclp22XLlimdOnVSDAaD4ufnpwwfPlw5ffq0Y31aWpry5JNPKi1btlTc3d0Vb29vpXv37sq3337rdJzk5GTltttuUzw9PRXA6fFHRkYqkZGRlxz36tWrldtvv93xt+Pp6an07NlTmT9/fom/H/v06Rf//iMjIxWg1Jt9KtuioiLl6aefVtq3b694eXkpOp1OiYyMVB555BGZ7lYIUSvsr2kHDx5UBg8erHh6eiq+vr7KuHHjlIKCAsd2gPLkk0+WegxAmTZtmtOy+Ph4ZcSIEUpgYKBiMBiUJk2aKE8++aRSVFTk2CYnJ0eZPHmy0rRpU0Wv1ysBAQHKddddp7z77ruK0WislscrhBCi+q1Zs0YBFJVKpZw6darE+rVr1yo9e/ZUXF1dFS8vL+WOO+5QDh486LSN/buUfEYWdZ1KUS6qcxJCXNKsWbOYOHEip0+fplGjRrU9HCGEELXklVdeYfr06aSmpkpmkhBCCCFEJUlPKSEuwd6s266wsJBPP/2UZs2aSUBKCCGEEEIIIYS4TNJTSohLuOeee4iIiKBjx45kZWXx9ddfc/jwYRYvXlzbQxNCCCGEEEIIIeotCUoJcQn9+/fn888/Z/HixVgsFlq3bs3SpUsdU7MKIYQQQgghhBCi8qSnlBBCCCGEEEIIIYSocdJTSgghhBBCCCGEEELUOAlKCSGEEEIIIYQQQogaVy97SlmtVs6cOYOnpycqlaq2hyOEEPWaoijk5OQQFhaGWt3wrlXIe4YQQlSdhvyeIe8XQghRdSr6flEvg1JnzpwhPDy8tochhBANyqlTp2jcuHFtD6PKyXuGEEJUvYb4niHvF0IIUfUu9X5RL4NSnp6egO3BeXl51fJohBCifsvOziY8PNzx2trQyHuGEEJUnYb8niHvF0IIUXUq+n5RL4NS9nRaLy8vecMQQogq0lBLFeQ9Qwghql5VvGd8/PHHvPPOOyQnJ9OhQwdmz55Nt27dSt123rx5LFq0iP379wPQuXNn3njjDaftR40axcKFC53269+/PytXrqzQeOT9Qgghqt6l3i8aViG4EEIIIYQQos5btmwZkyZNYtq0aezatYsOHTrQv39/zp49W+r2GzZs4P7772f9+vVs3ryZ8PBwbrnlFhITE522GzBgAElJSY7bN998UxMPRwghxGWSoJQQQgghhBCiRr3//vuMGTOG0aNH07p1a+bOnYubmxtffvllqdsvXryYJ554go4dO9KyZUs+//xzrFYr69atc9rOYDAQEhLiuPn6+tbEwxFCCHGZJCglhBBCCCGEqDFGo5GdO3fSr18/xzK1Wk2/fv3YvHlzhY6Rn5+PyWTCz8/PafmGDRsICgqiRYsWPP7446Snp5d5jKKiIrKzs51uQgghapYEpYQQQgghhBA1Ji0tDYvFQnBwsNPy4OBgkpOTK3SMF154gbCwMKfA1oABA1i0aBHr1q3jrbfeYuPGjQwcOBCLxVLqMWbOnIm3t7fjJjPvCSFEzauXjc6FEKKhs1qtGC1mCkxG8kxGisxG8kyFFBhNFJiLKDQbz99MRoosRorMJtu/FhNFZtsyo9WE0WzEZDVjshoxWU2YLCasmGkW5IGPm57C3MLafrh1Wk6hia+3JHB7+1DC/dxqezhCCHHVe/PNN1m6dCkbNmzAxcXFsXzYsGGOn9u1a0f79u2JiYlhw4YN3HTTTSWOM3nyZCZNmuS4b58pqqYpisKK/ckkZRWSV2Qmr8hMTKAHQ7tKkEwI0fBJUEoIcdWxWC0UWYowWU0YLUaMViMmi8kWsCleZv/ZZDFhtBqdlpmtZkwWE2bF7LSf2Wp2+te+f3ZhIbnGIvKMReQXB5jsx7MqZqwqC2BBwYyiMgMWUFlQqZRqfR6OxBc/HwWlX0EWNj/9m8hbKw8Tl5bHW4Pb1/ZwhBCi3gsICECj0ZCSkuK0PCUlhZCQkHL3fffdd3nzzTdZu3Yt7duX/5rcpEkTAgICOH78eKlBKYPBgMFgqPwDqGJfbYln6v8OlFjeJcqXJoEetTAiIYSoOZUOSv3555+888477Ny5k6SkJH766ScGDRrkWK8oCtOmTWPevHlkZmbSs2dP5syZQ7NmzRzbnDt3jvHjx/PLL7+gVqu59957+eCDD/DwkBddIeqrizN7CkxFFJiLKDCayDcXUmCyZfUU2bN7LCZMFiNmqy24Y7aaKTQXUWAyUmC2Zf04MnusJixWMxbFjFmxBXIUzFixoFFbCPLSolJbzgeCigNDRsv5YNOFgSeF6g32VIgK0JS+uCyKogFFg0rRAFpUihYVWlRoUKNFrdKiRoNapUOjst3XoEWr1qFV6dCotejUenILrSSkFxHu685dHRtRmFvIC7xQTQ+0/kvMKAAgI99YyyMRQoiGQa/X07lzZ9atW+f4HmFvWj5u3Lgy93v77beZMWMGq1atokuXLpc8z+nTp0lPTyc0NLSqhl7lMvKMvLf6KAC9mwfSyMeVPw6nkJJdxNGUHAlKCSEavEoHpfLy8ujQoQMPP/ww99xzT4n1b7/9Nh9++CELFy4kOjqaKVOm0L9/fw4ePOhIrx0+fDhJSUmsWbMGk8nE6NGjGTt2LEuWLLnyRyREPaUoinOGTXFgxWw1o1KpsP+noJTIyiktQ8dsNZNbVERiZg4pOXmo1FZc9AouOgWTxURaXj7p+QVkFxZitBixKGYsVlvQx6KYsSgmLNiCPwqW4ps9GGS2ZfhcsL4mMnvKcir18vdVq9To1Xp0Gh06tQ6tWut03/6zxaIht1DBatWgKGoUqwaTWUWhSUWBEQqNYDKrsSpqUDSgaIuDSGo0Kh1+rq74ubvh7+6Kv5sbvm6u+Lu74mlwwVWnx1VnwKDR4aYz4Koz4Kor/llrKF6mQ62umjaAv+1N4sklu/B39+Opa3qQ/f61EpIqR2pOEQAFJskoE0KIqjJp0iRGjhxJly5d6NatG7NmzSIvL4/Ro0cDMGLECBo1asTMmTMBeOutt5g6dSpLliwhKirK0XvKw8MDDw8PcnNzmT59Ovfeey8hISGcOHGC559/nqZNm9K/f/9ae5yX8t6aI2QVmGgV6sX8UV3RqFVMWGpm+e4znEjNq+3hCSFEtat0UGrgwIEMHDiw1HWKojBr1ixefvll7rrrLgAWLVpEcHAwy5cvZ9iwYRw6dIiVK1eyfft2xxWO2bNnc+utt/Luu+8SFhZ2BQ9HCGdmi4UCs9EpS0dRmTHoKLX8qswgT/G2FqsFBVvwyKJYnLa9sOzLaDE6ysLsP1+43mw1O62zl5LVKeWl7Fy0vqxNFasG0KBStMX/alChQ43GluGj0qBWtFCc7aNV6dCqzweHbD/r0ag0jmwfrUqLWq1DU5wZFJdWyMmzRaBoUKs0XN80hHuviSTQw80WVNLoHf/aA0xalRadWkdqtoVtcVkkpOcT4KEnxNuFIC8XLFaF3EIz2YUm9idmsWZ/CnHp+ZV6+poGeXBjyyBuaBFElyhfdJq6M6+ETmP7jZmsVtuC9OPVcp6qyKy988472b17N2fPnsXX15d+/frx1ltv1eh7RWquLShVZLLW2DmFEKKhu++++0hNTWXq1KkkJyfTsWNHVq5c6Wh+npCQ4HQxZs6cORiNRgYPHux0nGnTpvHKK6+g0WjYu3cvCxcuJDMzk7CwMG655RZee+21OlGiV5qDZ7JZsjUBgFfuaI1GbXt/tmdHnZSglBDiKlClPaViY2NJTk52mgXD29ub7t27s3nzZoYNG8bmzZvx8fFxSrnt168farWarVu3cvfdd5c4blFREUVFRY77VTFda44xBwUFL71XududKzxHan4qnnpPfAw+uGpdUaku9W29YTNbLOSZiigw2frjFBSXahVZTI6fCxxlWsWNl81GjBZzcQDGiNFiwmgvq7LYg0H2ZswmzFZbto4t+GPP3LFl51guyNKxl3EpWFBUxRk7mFFU9syd+v0lUqvSolXb/jdVUFAUBZVKhc4pcHP+plPrQNFwJCkfi9WWsaPX6HDT61GsWoxmFYVGFSgavFxc8HZxwcfVBYPWgF6tQ6vRYlDr0Wv1tvtqLRqVDo1Khwo1OrUencZWAmbQ6PBxdcXXzRVvFxc8DS7FGT16XLVVm9lzKdtizzH7j2P8dSyNdbvgn335jO4ZzOieUQS4G1CrVSiKwsm0PLbHnmNb7Dm2xp4jMbOgwufQa9R0b+JHiJcLrnoNrjoN3m46wrxdCfF2IdDTgLte61in19adINTF7AEyk6X4/49qCohWRWbtDTfcwP/93/8RGhpKYmIizz77LIMHD2bTpk3VMubSSKaUEEJUj3HjxpVZrrdhwwan+3FxceUey9XVlVWrVlXRyKqfoii88ssBrArc1j6U7k38HeuaBLoDcDItt7aGJ4QQNaZKg1L2NNrypndNTk4mKCjIeRBaLX5+fmVOATtz5kymT59e6fFYFStpBWkcOXeEIxlHOHLuCAk5CZzOOU22MRsVKlr5t6JnWE+6hnQl15RLQnYCp3JOEZsVy8msk2QWZTodU6/WE+EVQQu/FrTwbUFr/9Z0COyAi9al9EFcxGw1k5ibiF6tJ8gtCI26lKYyQL4pn8yiTHKMORRZihw3e4aOxWpx9MixZ9lcmL1jVayOmz0byJ65c2H2z4UZQrlFRWQXFpFnLKTAbCvnspdrobIU/2utvUCPiktn71ywaWkURQ3F5VWKogVFjYvWQKi3e6mBHvsy+3KVSoVGpUGtUjtt69jugpIvveaCW/H9CzN3tGotBo0Bg8bgWHZhCZlWpb2sAOiM3w6yMy6W9o29+erh7ni76S56Dmwldg0puNot2o+vHunO9rhzvLXiMDviM5iz4QRzNpxApQIPvRaVCrILzU77adUqOob70CLEk4x8I8lZhZzNKUKnUeNh0OJh0BLq40K/VsH0bh6Ih6FhzA1hD0qZLQpYLVBNPbauNLMWYOLEiY59IiMjefHFFxk0aBAmkwmdTlfqsataWq6tl5QEpYQQQlSV3/YlsS32HC46Nf93ayundU0CzmdK2S9ICiFEQ1UvvmGVNV3rtE3TULmoMFqMFJgLyDflk2/OJ9eUS54pjzxT+SmvCgoH0w9yMP0g8/bNK3M7Pxc/cow5jmbJxzOPczzzOL/xGwA6tY6OQR3pGtIVfxd/R4DBaDGSUZRBRmEGKfkpnMw8SWxWLEar7QuOVqUlxD0Ef1d/x2MoMBeQVZRFoaWWp2gvJcmj7ECPChRtcfPl4rIsxVaOpXI0X9aiVmnQoLPdV9mCLhqVPRtHe75sS6VF5wjSaIsDOjrHzRbE0aLXaHHRuuCi1WHQ6h39eAxaPS5aPW46A256PS5aHe56FwwaHXqNlox8I1tjz7HlZDpLt58iz2zlrRFd6Nc6uIxHWH+k5hTx1RbblGoT+zUvEZCChhWMuljXKD+++08P1h06y3trjnIoKRtFgZwiWzBKr1XTMdyHblF+dIv2o0uUL276evEyWKW0xeV7RosVLLXTvLsimbUXO3fuHIsXL+a6666rsYCUxapwLs+WKVUoQSkhhBBVZNFm2+e1x3rH0MjH1WlddIAtUyqrwMS5PCP+HnWz/FAIIapClX4bs0/hmpKS4jTLRUpKCh07dnRsc/bsWaf9zGYz586dK3MK2LKma10VtwqNa+mZRnZqlZooryha+LWgpV9Lor2iaezZmEYejcg357PpzCb+Tvybval78XfxJ9wrnAjPCCK9Imni3YQo7yhcta4oikKBuYD0wnRis2I5fO4wh88dZs/ZPZwtOMv25O1sT95eoefJRePimG3sdO5pTueeLnU7nVqHp94TF42tvMqgMaBT6xyZOvYsHIPG4MjW0ag0aNQaxzZqlRqNSuPUT8ee1XMu18LqA2kcPJMHigatWkuUnzfNgrxpFuRDkKc7bjo9rvYgj95QHPSxBXns67Sa8n8HdY2/h4Fb24Vya7tQ3A1a5mw4wRu/H6JPi8A61ffncny68QSFJisdw33o2yKwtodTK1QqFf1aB9OvdTBFZgs5hWayC0wUma00CXTHoK1ff6/VwSlTylI7vcwqkllr98ILL/DRRx+Rn5/Ptddey6+//lrusauy5Ds9rwhrcSKZBKWEEEJUleNnbaV5N5dyUdRVr6GRjyuJmQWcTMuToJQQokGr0qBUdHQ0ISEhrFu3zhGEys7OZuvWrTz++OMA9OjRg8zMTHbu3Ennzp0B+OOPP7BarXTv3r1S53uq01N4e3ujV+tx07nhpnXDVeuKu94dD50HHjoPPPWe6DX6Uvd307lxZ8yd3Blz5yXPpVKpbOfQuRHuGU7vxr0BWwlKfHY8W5O2sid1D3mmPEdZnVajxc/gh6+LL/6u/jTxbkKMTwyNPBqhKAqpBamczjlNVlEWBq0BF40LrlpXvAxe+Ln44aZ1q7asln2nsxi8eBNFZj80ahX3dwvnqZuaEeRZsTLEhuKJvjF8u/0UJ9PyWLwlnlE9o2t7SJftbE4hX2+1XXWb0K9Zg86IqiiDVoPBQ0OAfJhz4mh0brGC1XyJrWvfc889xyOPPEJ8fDzTp09nxIgR/Prrr2X+jV9uyXdp0nLOZ5IVGCUoJYSomN/2JqFRqxjQtvQLruLqlplv5Fye7f3FnhV1sSaB7ragVGouXaP8anJ4QghRoyodlMrNzeX48fMzNcXGxrJ79278/PyIiIhgwoQJvP766zRr1szRuDYsLMwx41KrVq0YMGAAY8aMYe7cuZhMJsaNG8ewYcMqPZvSA60ewMur/Ebl1U2lUhHlHUWUdxT3tbyvEjtCiHsIIe41/2ElI8/If77eSZHZSvdoP2be084xy8fVxtNFx6RbmvPST/uZte4Yd3dqXGrJW30wd8NJCk1WOkX40Kf51ZklJSrmfKNzpdbK9yqSWWsXEBBAQEAAzZs3p1WrVoSHh7NlyxZ69OhR6rHLKvm+HPaZ9wAKzVbp7SGEuKRzeUbGf7MLjVrFnmm3XJVl4qJ8J9NsLUaCvQy4l9GvskmAO38dS3NsK4QQDVWla5V27NhBp06d6NSpEwCTJk2iU6dOTJ06FYDnn3+e8ePHM3bsWLp27Upubi4rV650zKQEsHjxYlq2bMlNN93ErbfeSq9evfjss8+q6CGJ8lisCk8v201iZgGR/m58NqLLVRuQsruvSzgtgj3JzDfx4R/Hans4laYoCv/bnejIkprYr7l8aRblcsqUqqXyvQsza+3smbVlBZsArFbbRAsXluddzGAw4OXl5XS7XGk5589jsSq2QJ4QQpTj4JlsrIot8J9wLr+2hyPqoNhUW6DJ3tC8NPbP5ydTJSglhGjYKn3ppm/fvo7Zu0qjUql49dVXefXVV8vcxs/PjyVLllT21KIKfLD2KH8eTcVFp2bug53xdq2fWUFVSatR89JtrRjx5TYWbopjePeIehOoy8w38tLy/fy2NwmAG1sGcX2zgFoelajrtGp7T6nqbXR+pZm1W7duZfv27fTq1QtfX19OnDjBlClTiImJKTdwVZUuzJQC2wx8em397j0nhKheB5OyHD/Hp+fTMqR2s/pF3XMyzdZPqklg6aV7F647mZpbI2MSQojaIp+sryKbjqfx4R+2L4gz72lHq1D5kGTXu3kgN7YMwmxVeOWXg+UGXuuKXQkZ9J/1p6NvxcR+zfnsoc6SJSUuSVccVDFZlWrtKXWlmbVubm78+OOP3HTTTbRo0YJHHnmE9u3bs3HjxlInv6gOqTnOQakiaXYuhLiEg2fOT64Qny5ZLqKk2OKSvLL6ScH5TKmEc/m2i0hCCNFASZH7VeT7XbZZ/oZ0bszdnRrX8mjqnqm3t+bvY2n8eTSV1QdT6N+m7jYnPZmay8MLtpOZbyIm0J3/3teR9o19antYop7QqS8s36u+TKkrzaxt164df/zxR3UNr0LSSsmUEkKI8hxKynH8HJ8u5XuiJHtJXkw5mfmhXi646NQUmqycyigoN4AlhBD1mWRKXUV2xGUAcHuHyjWUv1pEBbgztncTAF795WClp38vNFl45ts93DH7b8cVsOqQnlvE6OKAVIdwH34Z30sCUqJS7I3OFQUs5trpKVVfXJwpVWiSq9VCiLIVmiwcv6DcSoJS4mJWq1KhTCm1WkV0gL2vlJTwCSEaLglKXSVSsgtJOJePWgXXRPjU9nDqrCduiCHM24XEzAI+2XCiwvtl5Bl5YN4Wfth1mn2JWQyft4XTGVX/QbTQZOHRRTuIT88n3M+Vz0d0kVl9RKVpNedLPM2mwlocSd0nmVJCiMo4fjYXi/V8hmj8OSnfE87OZBVQZLai06ho7Ota7rbn+0rJ35EQouGSoNRVwp4l1SrUC08XaW5eFje9lpdvbw3A3I0nSKjAFc5T5/K5d+4mdiVk4uWiJcrfjTNZhTz4+VbOZp//wp+eW0RO4eVnpeQUmhi3ZBf/Fp9n/qhuBHrWTF8d0bDYM6UALKbqK99rCOyZUsUVjxQYJSglhCibvZ9U0yBbhktiRgFGs2RYivPsWVIRfm5oNeV/FWtSnEllb4wuhBANkaRYXCW2x50DoGuUXy2PpO4b2DaEnk39+ed4Oo8u2s6SMdcS4FF68CcuLY8hn24mNaeIMG8XFjzcDU8XLUPmbiYuPZ/hn2/lmghftsed42RaHr5uOhaM7kaHcB+n4+yMzyDQw0CEv1up59kRd44Jy3ZzOqMAnUbFZyO6OD7wClFZFwalzBKUKpPJYiUj3xZIDvV2JTGzgEKzBKWEEGU7mGQLSvVpHsjpjHwKTVYSM6UfkDjPnvVUkZme7ZlSJyRTSgjRgEmm1FViR7wtKNUlyreWR1L3qVQq3rynPcFeBo6m5PLAvC0lSngAcovMjFm0g9ScIlqGePLjEz1pHuxJqLcrSx69lmAvA8fO5rJsxylOFl8Vy8g38cC8LWw6kWa7n2dk3JJd3DtnE33fXc+TS3axP9E2lbTJYuVwcjbvrjrC0E83czqjgMa+riwdey3XNvGvuSdENDgatcqR+WOVoFSZ0nNtz41GrSLE2zYjYKFkSgkhymEPSrUJ8yLSzxZQkBn4xIXs/aGaVCBQ2cTRU0r+hoQQDZdkSl0FcgpNjnTyLpGSKVUR4X5uLB3bg2GfbeZoSi7D521l8Zjujowpq1Vh0rLdHDubS5CngYUPdyPYy8Wxf4S/G0vGXMv7a47S2MeVbtF+tAr14rnv9/DP8XRGzd/Ok32bsnhrPGdzilCrwKrAb3uT+G1vElH+biRmFmCynO9LcU+nRky/q42UX4oqodWoMZqtmM1G9LU9mDrKXroX4KHHTa8BpKeUEKJsiqJwqPjzVqtQLyL93TiSkiPNzoUT+4VKexZUeezbpOUWkV1owks+AwohGiAJSl0F/k3IxKpAuJ+r42q/uLToAHdHYOpISg63ffgX93WNYEjnxny/8zSrD6ag16j59KHOTgEpu5hADz5+4BqnZV+O6spT3/zLqgMp/Hft0eLt3Hl/aEf0WjWfbjzBL3uTiCv+AOtp0NIy1JOR10Vxe3uZNVFUHX1xUMpqlkypstgzJAM8DLjobEEpmX1PCFGW0xkF5BSZ0WvUxAR6EFlcki9BKXEhe9aTfWa98ni66Aj0NJCaU8TJ1Dw6XtT+QQghGoJ6HZS6cHYTUbYd9n5SkiVVadEB7nwz5loe+mIbiZkFfLjuGB+uO+ZYP+PutnSKqHhJpEGr4eMHrmHK//bz3Y7TPNQjkhcGtHR84Z01rBPPDWjJsZQcYgI9aOzrikqlusRRhag8+wx8EpQqmz1TKtDTgKtOMqWEEOWzl+41C/ZAr1UT6S/le8JZocnCmawCoGKZUmAr87MFpXIlKCWEaJDqdVBqX2ImvX28a3sYdd724pn3ukiT88vSJNCDdc/0YfXBFL7bcYq/j6ehKDDquiiGdAmv9PG0GjUz72nP9DvboteWbOvWyMeVRj7lTxEsxJXSqm1/ezL7XtlSL8iU0hQHhwslKCWEKMPBC0r3gPOZUuckU0rYxKXnoSjg5aLF371ixfNNAj3YGntO+koJIRqseh2U+vNIGr3bRNb2MOo0k8XKv6dsQamu0uT8srnoNNzZIYw7O4Rx6lw+J1Jz6d0s8IqOWVpASoiaoi/OlFIsploeSd11YaZUfpEZkKCUEKJsh4ozpVoXB6WiijOlEs7lY7UqqNWS+Xy1i7WX7gV6VDgTvrGv7UJlcnZhtY1LCCFqU73+VrzxWGptD6HO25+YRaHJio+bjpgKTD0rLi3cz42+LYLkw6Wo17Qa28u/1VxyZklhY8+UCvQw4GJvdC6z7wkhymAv37NnSoV6u6BVqzCarRJQEMD5JucxFZh5zy7Aw5ZRlV7KTNBCCNEQ1Oug1JHkHM5kFtT2MOq0HfbSvUhfCaIIIRx0jp5SkilVljT77HuV6Cl1ODlbvjgIcRXKKjBxOsP2mdSeKaXVqAn3s5XwxUlfKcGFTc4rE5Syzfyclivl9kKIhqleB6UA1h85W9tDqNO2Fzc5l35SQogL6YozpRRpdF4mp0ypCsy+d+pcPgM/+IuHF+6okfEJIeqOw8VZUo18XPF20zmWRxQHpRJkBj4BnEzLBWx9oirK3xGUkgseQoiGqd4Hpf44JEGpshSZLWyNLZ55T/pJCSEu4AhKSU+pMqU5ekrpHZlS5fWUOnY2B0WxlU2bLGUHr4QQDUu+0cy8v2KB86V7dlHS7LxcH3/8MVFRUbi4uNC9e3e2bdtW5rbz5s3j+uuvx9fXF19fX/r161die0VRmDp1KqGhobi6utKvXz+OHTtWxhFrlqIol5kpZS/fM6IoMvO4EKLhqfdBqb+Pp111PT4sVoWP1x/n2+2nyn1zWrk/mawCEyFeLnRo7FNzAxRC1Hlae/meBKVKVWiykF1oa24e6OFSofK9s9m2IJbFqjjKeIQQDdupc/nc88km1h5KQadR8eC1EU7rI4qbncdL+V4Jy5YtY9KkSUybNo1du3bRoUMH+vfvz9mzpV9w3rBhA/fffz/r169n8+bNhIeHc8stt5CYmOjY5u233+bDDz9k7ty5bN26FXd3d/r3709hYe339MrIN5FVYHvPvZzyPaPF6nhfEkKIhqReB6VCvAwUma1sPplW20OpUQs2xfHOqiM8/8NeXl6+H4u19MDU11viARjWLdzR1FgIIeB8phRSvlcqe5mEXqPGy1WLQWd7vsrLlDqbc760Ira4REMI0XBtPpHOHR/9zeHkHAI8DCwZcy19WwQ5bePIlJLyvRLef/99xowZw+jRo2ndujVz587Fzc2NL7/8stTtFy9ezBNPPEHHjh1p2bIln3/+OVarlXXr1gG2TKRZs2bx8ssvc9ddd9G+fXsWLVrEmTNnWL58eQ0+stIdTraVeDb2dcW1ePKMinDRafAw2CZMl56FQoiGqF5HKvq0CARg3VVUwnc6I5/3Vh9x3F+8NYH/fL2zRLbYkeQctsdloFGrGNY14uLDCCGucvZG54pVMqVKY28oG+ChR6VSVSxTKuf8lXh7iYYQomFKyS5k7Fc7yMw30aGxN7+M70nXUvp3Rl4QlJLSq/OMRiM7d+6kX79+jmVqtZp+/fqxefPmCh0jPz8fk8mEn5/teY+NjSU5OdnpmN7e3nTv3r3MYxYVFZGdne10qy77E7MAaBvmXel97SV80uxcCNEQ1e+gVHPb1ag/Dp+9Kt7oFUXh5eX7yTda6BblxyfDr0GvVbPmYAoPfL6FrPzzXy4Xb7VlSd3cKpgQb5faGrIQoo7SqiVTqjypjn5StrIJ+1Xt8srFU50ypSQoJURDNvV/+8kpNNOhsTfLHutBqLdrqds19nVDpYLcIjPn8uT11i4tLQ2LxUJwcLDT8uDgYJKTkyt0jBdeeIGwsDBHEMq+X2WOOXPmTLy9vR238PDwyj6UCtufaAt4tW3kdYktS7I3O5dMKSFEQ1TlQSmLxcKUKVOIjo7G1dWVmJgYXnvtNaegUVU1IewW7YeLTk1SViGHk3Oq8mHUST/vOcOGI6noNWreuKcdt7YLZfGj3fF21fFvQiajF2wjr8hMXpGZH3fZ6uuHXytZUkKIkhzle1bpT1Eae/mevZeHffa9InPZDczPSlBKiKvCyv1JrDqQglat4q3B7R2vD6Vx0WkI9bJdHIyTEr4q8+abb7J06VJ++uknXFwu/+Lr5MmTycrKctxOnTpVhaN0tv9McaZUoyvJlJKglBCi4anyoNRbb73FnDlz+Oijjzh06BBvvfUWb7/9NrNnz3ZsU1VNCF10Gno1DQBg7cGUKn0cdU1GnpFXfzkIwJM3NKVpkG0q2a5Rfiwdey3erjp2JWQy9qsdfLfjFLlFZqL83egZE1CbwxZC1FH28j0scuW+NCUypXSXzpSyNzoHCUoJ0VBl5ZuY8r8DADzeN4aWIZfOeoksbnb+zbYEyXQpFhAQgEajISXF+fN7SkoKISEh5e777rvv8uabb7J69Wrat2/vWG7frzLHNBgMeHl5Od2qQ26R2fG+cDlBKXumVKqU7wkhGqAqD0pt2rSJu+66i9tuu42oqCgGDx7MLbfc4piytaqbEPZrZUvRXbG/Yqm+9dG22HPcM2cT6XlGmgV58HjfGKf1rUK9WDC6K256Df8cT2f6r7bg1fDukajVqtoYshCijjufKSU9pUpjD0pdnClVVk8pRVGcyveSsgqvuplhhbgazFxxiNScImIC3Rl3Y9MK7dO9ia3n0fc7T9PrrfW8/uvBqz7jRa/X07lzZ0eTcsDRtLxHjx5l7vf222/z2muvsXLlSrp06eK0Ljo6mpCQEKdjZmdns3Xr1nKPWRMOnslGUSDU28XxvlIZAVK+J4RowKo8KHXdddexbt06jh49CsCePXv4+++/GThwIHB5TQjLc0ubEDRqFQeTsolrYFemc4vMTP3ffoZ+upnYtDyCvQz8976O6LUlf22dInz5fGQX9Fo1igJ6rZrBnRvXwqiFEPWB1pEpJUGp0ti/MNozpVwuMfteVoEJo8VW2mefJSlOpoAXokE5lJTN0u228q43722PQVuxGdSeurEZnz3UmfaNvSkwWfj871j+89XO6hxqvTBp0iTmzZvHwoULOXToEI8//jh5eXmMHj0agBEjRjB58mTH9m+99RZTpkzhyy+/JCoqiuTkZJKTk8nNtc12qlKpmDBhAq+//jo///wz+/btY8SIEYSFhTFo0KDaeIgO+4qbnLe5jCbnIOV7QoiGTVvVB3zxxRfJzs6mZcuWaDQaLBYLM2bMYPjw4cDlNSEsKiqiqOj8i/CFM2P4ueu5Lsafv46l8du+JJ68oWJXreqD0fO3sT0uA4BhXcOZfGsrvF11ZW5/XUwAc4Zfw9NLd/NA9wh83fU1NVQhRD2jL86UUkmmVKnKKt8rMluxWpUSWaj2flLerjqaBLrzb0ImsWl5tAqtnlIQIUTN25Vg+0x2fbOAUmfaK4tareKWNiHc3DqY3/cl8+SSXew/k1Xqa8nV5L777iM1NZWpU6eSnJxMx44dWblypeM7QkJCAmr1+Quxc+bMwWg0MnjwYKfjTJs2jVdeeQWA559/nry8PMaOHUtmZia9evVi5cqVV9R3qiocKA5KtbuM0j24MFNKyveEEA1PlQelvv32WxYvXsySJUto06YNu3fvZsKECYSFhTFy5MjLOubMmTOZPn16metvaxfKX8fS+L0BBaUy842OgNRXj3Tj+maBFdrvplbB7Jl2C5qr+EOOEOLS7JlSKsmUKlV68SxZ/sXBffvsewCFZgtueue3T3s/qSBPA9EB54NSQoiG42Sq7f/pZkGel7W/SqWif5tgdBoVhSYrSdmFNPIpfda+q8W4ceMYN25cqes2bNjgdD8uLu6Sx1OpVLz66qu8+uqrVTC6qmPPlLqcmffgfFBKMqWEEA1RlZfvPffcc7z44osMGzaMdu3a8dBDDzFx4kRmzpwJXF4TwkvNjGEv4TtwJpv4BlIuEV88Q0uQp6HCASk7CUgJIS5F58iUktn3SpNdYAvWebvZslNdLijTKTSVnIHvbI5too4gLwNNAmxNje1fYIUQDcPJVFuZWJNA98s+hlajJsLPzel4omHLN5o5Ufy7vtxMKX9H+Z5kSgkhGp4qD0rl5+c7pdoCaDQarFbbh/jLaUJ4qZkx7CV8AL/tS6rKh1Nr7L1IIv3dankkQoiGyBGUUiRT6mKKopBdaHtevFxsQSm1WuXo51das3N7+V6QpwvRAbbZUWPT5AunEA3JyeLsxysJStn2t71GSOD66nAoKQerYisHD/K6vDJCe6ZUbpG5zN6GQghRX1V5UOqOO+5gxowZ/Pbbb8TFxfHTTz/x/vvvc/fddwPV14Tw1nahAPzeQIJSCcWZUvZphIUQoirpisv31NJTqoRCkxWTRQHA64I+fi72oFQps+pdWL4XFWC7mCDle0I0HEVmC6fO2T6bxRQHlS6XPaglrxFXh/1X2E8KwMtF6+gFKSV8QoiGpsqDUrNnz2bw4ME88cQTtGrVimeffZbHHnuM1157zbHN888/z/jx4xk7dixdu3YlNzf3ipsQ9i8u4duf2DBK+OKKg1JRkiklhKgGWrWU75UlpzhLSq0C9wt6Sdn7SpV2ldpevhfoaSCq+GJCRr6JzHwptRCiIUhIz8eq2F4TgoonQLhc9hLfE1K+d1WwB6Xahl3+xBcqlcpRwifNzoUQDU2VB6U8PT2ZNWsW8fHxFBQUcOLECV5//XX0+vMzwdmbECYnJ1NYWMjatWtp3rz5FZ3Xz11PjyYNp4Qv3lG+J5lSQoiqJ5lSZbOX7nm66FCpzvfos8/AV3pQqjhTyssFd4OWkOISDcmEEKJhOJFqL93zcHpduBz28j15fbg6nG9yfvmZUnBhXynJlBJCNCxVHpSqTbe1t5Xw/bonCUVRank0Vyb+nL18TzKlhBBVz95TSq1IptTFsgpsz4mXq/MMey7FQanSekql5pwv3wOIDpDyHCEakpNpV97k3M7++pCYWSD9gRq4QpOFY2dtfztXGpSy95WSTCkhREPToIJS/duEoNeqOZiUzT/H02t7OJctr8js+IIT6SeZUkKIqqctDkppqrHR+Z9//skdd9xBWFgYKpWK5cuXO61XFIWpU6cSGhqKq6sr/fr149ixY471cXFxPPLII0RHR+Pq6kpMTAzTpk3DaKzeD+QXNzm3c3FkSpUy+1528ex7xUGpKAlKCdGg2JuSNwm4sn5SAP7uerxctCjK+YltRMN0ODkHi1XB311PqPfltymB80GpVMmUEkI0MA0qKOXnrmd49wgA3l9zpN5mS8UX95PyddM5piMXQoiqpHeU71VfplReXh4dOnTg448/LnX922+/zYcffsjcuXPZunUr7u7u9O/fn8JCW4Dn8OHDWK1WPv30Uw4cOMB///tf5s6dy//93/9V25gBcgqLM6UuCkq5lpEplVdkJq+4+bl9ZiV7z5iTEpQSokE4mVp1mVIqlep8CZ/MwNeg2ftJtWnkfcVln1K+J4RoqLSX3qR+ebxvDN9sS2BXQiYbjqZyQ4ug2h5Spdn7SUVIPykhRDU5nylVfUGpgQMHMnDgwFLXKYrCrFmzePnll7nrrrsAWLRoEcHBwSxfvpxhw4YxYMAABgwY4NinSZMmHDlyhDlz5vDuu+9W27izC+w9pS4u37M9Z4UXzb5nz2x102vwMNj2cZTvyRdOIRoEe4D5Smfes2sS4M7uU5kSuG7AFEXh591nAOjQ+MpK9wACpXxPCNFANbigVJCnCw9dG8m8v2L575qj9G0eeMVXJmqavZ+UzLwnxHlWq7Xay7YaKp1Oh0ajcV5Wyz2lYmNjSU5Opl+/fo5l3t7edO/enc2bNzNs2LBS98vKysLPz69ax+Yo33O9KFPKPvue2TkodfaiflIA0cXZFHHpeSiKUu/eh4QQ553LM5KZb3tdsAecr5Q940pm4Gu41hxMYVvcOQxaNQ8UV3JcCcmUEkI0VA0uKAXwWJ8Yvt6SwN7TWaw7dJZ+rYNre0iVIjPvCeHMaDQSGxuL1Vqyl4+oGB8fH0JCQhzBEfvsexrFTG0UOicnJwMQHOz8+hwcHOxYd7Hjx48ze/bsS2ZJFRUVUVR0/kN7dnZ2pcaWXVB6+Z6j0bnx4qCUvZ/U+X4h4b5uaNQq8o0WzuYUEex1Zb1EhBC1x16618jH1RGcvlLRATIDX0Nmslh5c8VhAMZc34RQb9crPqY0OhdCNFQNMigV4GFg5HVRzN14gvfXHCWkuLGgRq0iJtADvbZut9KKSyueec9PMqWEUBSFpKQkNBoN4eHhqNV1+//fukZRFPLz8zl79iwAoaG2WUrtmVJazFRfq/Oqk5iYyIABAxgyZAhjxowpd9uZM2cyffr0yz5XjiNTqmKz753NtgXAAr3OZ0rptWoa+7oSn57PydQ8CUoJUY85mpxXQT8pO/uxTqZKNmVD9M22BE6m5eHvruexPk2q5Jj+7rb3GMmUEkI0NA0yKAXwWO8mfLU5joNJ2dw++2/H8sa+rrx8W2v6twmusx8AEuzlewESlBLCbDaTn59PWFgYbm7y/8TlcHW1XaE9e/YsQUFBaDQatOrzmVK1EZQKCQkBICUlxREos9/v2LGj07Znzpzhhhtu4LrrruOzzz675LEnT57MpEmTHPezs7MJDw+v8Niyixude5bR6Pzi2ffs5Xv2fh92wV4uxKfnyxcIIeq5E2nFTc6rqHQPzpcBZhWYyMg34eeur7Jji9qVXWhi1lrbTLITbm5e4r3kcgV42v5GzuUbsVgVNOq6+T1GCCEqq8GmHPi663npttY08nEl2MtAsJcBD4OW0xkF/OfrnTz0xTaOpeTU9jBLKDRZOJNVAEj5nhAAFostK0Wvlw/sV8Ie0DOZbCGoCzOlakN0dDQhISGsW7fOsSw7O5utW7fSo0cPx7LExET69u1L586dmT9/foUy5QwGA15eXk63yrA3Ove6qNH5+aBUGeV7Xs5BKZ/inlSZBfUhF00IUZbzmVJV0+QcbJmXjXxci48vfaUakrkbTnAuz0iTQHeGda34BZFL8XPTo1KBotj6nAkhREPRYDOlAB7oHuHUWDDfaGbOhhN8+udJ/j6exj2fbGLdM30cU3jXBacz8lEU8DBo8ZerZkI41NXMxvri4udPp1Gjxoq6GjtK5ebmcvz4ccf92NhYdu/ejZ+fHxEREUyYMIHXX3+dZs2aER0dzZQpUwgLC2PQoEHA+YBUZGQk7777LqmpqY5j2TOtqkNZjc4ds++ZSp9978KeUgC+brbX8Ez58iBEvWYPGlVl+Z79eImZBZxMzaNLVPVO4CBqhtWqsHBTHAAvDmjpuABUFbQaNb5ues7lGUnLLSLQ03DpnYQQoh5o0EGpi7nptTxzSwuGdA5n5PxtxKbl8c+JNO7u1Li2h+Zg7ycV4ecmX8KFENVGq1Ghq+YsqR07dnDDDTc47ttL6kaOHMmCBQt4/vnnycvLY+zYsWRmZtKrVy9WrlyJi4stuLNmzRqOHz/O8ePHadzY+XVaUaovmJZTeIlG52X0lAq66AuCj5tkSglR35ktVkdbharMlAJbOeBfx9I4Kc3OG4y0vCLyjBZUKrihZVCVHz/AwxaUkmbnQoiGpMGW75Unwt+NG4vfKHbFZ9buYC4SL/2khBCXsGDBAnx8fK7oGDqNutqDUn379kVRlBK3BQsWALbsrVdffZXk5GQKCwtZu3YtzZs3d+w/atSoUvevzoAUnC/f87y4fE9/idn3Li7fK86UysiXLw9C1FenMgowWRRcdGpCqziz3t5XSsr3Go6kTNv7QbCnS5VmSdlJs3MhREN0VQalAK6J8AVgZ3xGLY/EWXy67WqZ9JMSQlQnXQ1kStVX9vI974vL97TFPaXM5xudG81WMvJt219cvmfPlMrKl0wpIeore8AoOsADdRU3lrZnXsVKplSDcSbT1hc21Kd6WoMEeEpQSgjR8Fy9QalIHwAOJ2eTV1R3vpjFpdsypSL9JFNKCFF9dBo1WuwZP1IqbGc0Wx2z611cvmfPlCq8IFMqtfiLgU6jwtfNeXv7fcmUEqL+OlFN/aTgfKZUfHo+Fmv1ZoCKmnEmy5YpFVbcxL6q2fvNpkn5nhCiAblqg1Kh3q6EebtgVWDPqczaHo5DgmRKCdFgWK1W3n77bZo2bYrBYCAiIoIZM2YA8MILL9C8eXPc3Nxo0qQJU6ZMccyMB7Bnzx5uuOEGPD098fLyonPnzuzYscPp+KtWraJVq1Z4eHgwYMAAkpKSKjw2W6ZUcXBFXTXTVTcEOYXnfwceZcy+d2FPqbPZti8ggR6GEn0AvV2LG51LTykh6iWLVWFbrC2jPiag6j+XNfJxxaBVY7RYOZ2RX+XHFzXPnikV5l09mVKBkiklhGiArqpG5xe7JtKXM3uT2JWQwXVNA2p7OJgsVk5n2N7MpKeUEKVTFKVEo+ma4qrTVGoCgsmTJzNv3jz++9//0qtXL5KSkjh8+DAAnp6eLFiwgLCwMPbt28eYMWPw9PTk+eefB2D48OF06tSJOXPmoNFo2L17Nzrd+eBRfn4+7777Ll999RVqtZoHH3yQZ599lsWLF1dobDqNGp2qOEtUIzN92mUXNzn3MGjRXFSqYyhl9r2zxTPvBZbSa8bXvbjRuZTvCVHvxKfnMenbPY42D92b+Ff5OdRqFc2DPdmXmMXPu88w/qZmVX4OUbOSsoqDUtWUKRXgYXu/TpeglBCiAbm6g1IRvvy6N4ldCZm1PRTAdnXFbFUwaNUEe1bPFRYh6rsCk4XWU1fVyrkPvtofN33FXjZzcnL44IMP+Oijjxg5ciQAMTEx9OrVC4CXX37ZsW1UVBTPPvssS5cudQSlEhISeO6552jZsiUAzZo5f1kxmUzMnTuXmJgYAMaNG8err75a4ceivbB8T3NVvxU4sTc593Ip+ZyUlimVmlP6zHsAPvZMqXwjVqtS5f1ohBDV48ddp3l5+X7yjRY8DFpeubMNPavp4uWj10fz9NLdzNl4gvu6hZfoTSfql8TiRueh3tVVvmfPlJLyPSFEw3HVlu+BLVMKYFdCRrXP5lQR9n5SEX5u8uVFiHru0KFDFBUVcdNNN5W6ftmyZfTs2ZOQkBA8PDx4+eWXSUhIcKyfNGkSjz76KP369ePNN9/kxIkTTvu7ubk5AlIAoaGhnD17tsLj02lU6O2NzqV8z8He5NzLteRz4ugpVUqmVKlBqeKeUlYFcupQ70IhRNlOZ+Tz7Hd7yDda6B7tx8oJ1zO4c+NqO9+dHcLoGO5DvtHCf9ccrbbz1EUff/wxUVFRuLi40L17d7Zt21bmtgcOHODee+8lKioKlUrFrFmzSmzzyiuvoFKpnG72Czs1Jam4fK9RdWVKFb/XSKaUEKIhuaovj7cO9cKgVZOZb+JkWh4xxbOg1JYDZ7KA6mmmKURD4arTcPDV/rV27gpv61r2B9LNmzczfPhwpk+fTv/+/fH29mbp0qW89957jm1eeeUVHnjgAX777TdWrFjBtGnTWLp0KXfffTeAUykfgEqlqlRwXac+nymlaCQoZZdTXL53cZNzuGD2PdP52fdSc2xXxUvLbnDRaXDRqSk0WcnKN5WYzU8IUfdsOJKKVYFOET58M+baar9IqFKpmHJ7K+6ds5ll208x8rooWoZ4Ves564Jly5YxadIk5s6dS/fu3Zk1axb9+/fnyJEjBAUFldg+Pz+fJk2aMGTIECZOnFjmcdu0acPatWsd97XamvuqYzRbHZNfVNvsex7nG51LBq4QoqG4qjOl9Fo17Rt7Azh6BlzIZLEye90x7vnkH7bFnqv28aw/bMty6FUH+lsJUVepVCrc9NpauVWmn1SzZs1wdXVl3bp1JdZt2rSJyMhIXnrpJbp06UKzZs2Ij48vsV3z5s2ZOHEiq1ev5p577mH+/PlX9NxdSKtRoSvOlFLUV/X1CSf28j3P0sr39OfL9+wBwDP2Uo0yvoD4utm+QMgMfELUD38eTQXgppZBNfaFv3OkH7e2C8GqwIzfDtXIOWvb+++/z5gxYxg9ejStW7dm7ty5uLm58eWXX5a6fdeuXXnnnXcYNmwYBkPJzFQ7rVZLSEiI4xYQUHOfqVOyC1EU2/cL+yx5VS3YywW1CowWK2l5ki0lhGgYruqgFNj6SgH8m+AclDqUlM2gj//hvTVH2ZWQyUNfbHUEjapDZr7RERi7oWXJK0RCiPrFxcWFF154geeff55FixZx4sQJtmzZwhdffEGzZs1ISEhg6dKlnDhxgg8//JCffvrJsW9BQQHjxo1jw4YNxMfH888//7B9+3ZatWpVZePTadSO2fcUKd9zKK98z6U4U85iVTBZ7EEp+0xLpWfG2bOjZAY+Ieo+k8XKphPpAPRuHlij535hQEv0GjV/HUur1s+bdYHRaGTnzp3069fPsUytVtOvXz82b958Rcc+duwYYWFhNGnShOHDhzuVxZemqKiI7Oxsp9vlSrxg5r3KXMSqDJ1GTXDxxBqJxZMjCSFEfVctQanExEQefPBB/P39cXV1pV27dk5TmSuKwtSpUwkNDcXV1ZV+/fpx7Nix6hjKJdn7StkDQharwsfrj3PnR39z4Ew2Pm46ukb5UmS2MmbRDn7ec+aKzldgtPD41zuZs8G5P8zGo7Z08RbBnjT2lZn3hGgIpkyZwjPPPMPUqVNp1aoV9913H2fPnuXOO+9k4sSJjBs3jo4dO7Jp0yamTJni2E+j0ZCens6IESNo3rw5Q4cOZeDAgUyfPr3Kxnbh7HuKSjKl7M6X75V8Tlx0598yC822bClHUOoSmVKZkiklRJ23Kz6D3CIzfu562oZ51+i5I/3dGXldJABPLf2Xvacza/T8NSktLQ2LxUJwcLDT8uDgYJKTky/7uN27d2fBggWsXLmSOXPmEBsby/XXX09OTk6Z+8ycORNvb2/HLTw8/LLPb595r7qanNvZ+1XZg2BCCFHfVXlQKiMjg549e6LT6VixYgUHDx7kvffew9fX17HN22+/zYcffsjcuXPZunUr7u7u9O/fn8LCwqoeziXZM6WOnc0lLi2PUfO38c6qI5gsCje3Dmb1xN4sGXMtd3UMw2xVeHrpv3y749Rln2/lgSRW7E/mnVWHOXUu37F83SHbVbEbW0mWlBANhVqt5qWXXiIuLg6j0Uh8fDyTJ08GbK+DaWlp5OTksHTpUiZMmEBmZiYAer2eb775hoSEBIqKikhMTGT27Nm4uNgCH6NGjXJsazdo0KBK9ZTSqFXo7UEp6Snl4Jh9r5RMKb1Gjb2ap9BoIbvATJ7Rlm1W1vTf9mbnmfmSKSVEXffnMVvp3vXNAmqlV8/Em5vTNcqXnEIzD36+lX2ns2p8DPXZwIEDGTJkCO3bt6d///78/vvvZGZm8u2335a5z+TJk8nKynLcTp26/M/49nLust4Pqkoj3+KglGRKCSEaiCoPSr311luEh4czf/58unXrRnR0NLfccotjlihFUZg1axYvv/wyd911F+3bt2fRokWcOXOG5cuXV/VwLinQ00CEnxuKAgM/+Iu/jqXhqtPwzuD2fPZQZ4I8XdBp1Px3aEcevDYCRYEpy/c7BZQqY/WBFMA2G9OizXEAmC1WNhb3MLhRSveEEDXERW1r2G2VTCmH7OJMqdJ6SqlUKkcJX4HJ4rhK7e+udyy/mI8jU0qCUkLUdX8eTQOgd7OaLd2zc9NrmT+6G50jfckuNPPgF1vZn9jwAlMBAQFoNBpSUlKclqekpBASElJl5/Hx8aF58+YcP368zG0MBgNeXl5Ot8t1qczZqiKZUkKIhqbKg1I///wzXbp0YciQIQQFBdGpUyfmzZvnWB8bG0tycrJTHbm3tzfdu3e/4jryy3VNhA9g+5LRJNCd/43ryZAu4U714Gq1itfuakuPJv4Uma1M/+VApc9TaLI4gk8AS7edIrfIzK6ETLIKTPi46egU7nOlD0cIISrEHpSSnlLnOTKlSpl9D87PwFhosl7wBaTsq+L2TClpdC5E3ZaeW8T+4lmQr29eexPOeBi0LBjdlWsifMgqMDHyy23kG821Np7qoNfr6dy5s9NEIFarlXXr1tGjR48qO09ubi4nTpwgNDS0yo5ZnqQsyZQSQojLUeVBqZMnTzJnzhyaNWvGqlWrePzxx3nqqadYuHAhgKNWvDJ15FXZhLA0t7YLRa2CuzqG8fO4XjQP9ix1O5VKxWuD2qDTqFh76CxrDqaUul1Z/j6WRr7RQqi3C00C3ckpMvP9jlP8UdzQsk/zQLSaq773vBCihhjUttIzq6r0LJ+rkaOnVCnle4BTptSZrEtfFfctDkplSaNzUQ2yC00s3ZbAukMpmCzW2h5OvTJh6b/c9N4GEtJtme9/H09DUaBVqBdBntWb6XIpni46Fj7cjUY+rqTnGVl/OPXSO9UzkyZNYt68eSxcuJBDhw7x+OOPk5eXx+jRowEYMWKEo9wdbM3Rd+/eze7duzEajSQmJrJ7926nLKhnn32WjRs3EhcXx6ZNm7j77rvRaDTcf//9NfKY7BcqQr0lU0oIISqjyms2rFYrXbp04Y033gCgU6dO7N+/n7lz5zJy5MjLOubMmTOrtMHvxW5pE8LBVweUWX5xoaZBnjx6fRPmbDjBKz8foFfTAMc04Zey+qAt6HZL62CaBnsyZfl+5m+KQ1cciJLSPSFETXJRW8ACVrWU79k5Zt8rI1PK3uy8wHi+fK/cTClXW/meZEqJqrbxaCov/rDXkZ3h66bjtvahDOsaQdtGNduku77JLjSxfLdt4pqR87fx/X96ODLZe9diltSFPF103N4hlE83nuT3/Unc1r5msn1qyn333UdqaipTp04lOTmZjh07snLlSsdF64SEBNTq8xdqz5w5Q6dOnRz33333Xd5991369OnDhg0bADh9+jT3338/6enpBAYG0qtXL7Zs2UJgYM2UY9qDUo2qOVOqsWRKCSEamCr/JhIaGkrr1q2dlrVq1YoffvgBwFErnpKS4pROm5KSQseOHUs95uTJk5k0aZLjfnZ29hXNjlGaigSk7Mbf2JSfd58hMbOAj9Yf47n+LS+5j8WqsLa4mXn/NiF0jPDh3VVHiC++QqdW2TKlhBCiphhUtswKi0rK9+zs5Xul9ZQCHBchCs0WR1Pb8r6ASKNzUdWyC03M+PUQy4onXWnk40qR2UpabhFfb0lg6bZTbPm/mwjwMNTySOuuCxuIx6bl8fDCHY4v+HXps9itbW1BqfWHz1JgtFT4Imh9MW7cOMaNG1fqOnugyS4qKuqSk3ksXbq0qoZWablFZkdPwtBqDkrZL4TkFJnJKjDhXUZmrxBC1BdVXivWs2dPjhw54rTs6NGjREbaprmNjo4mJCTEqY48OzubrVu3lllHXpVNCKuCm17L1DtsgbfP/jxJfHreJffZEXeOc3lGvF11dI32w02v5f5uEY71XSL9HA1xhRCiJhhUUr53sexLlO85ekoZLRXsKWVvdC6ZUqJqTFi6m2U7TqFSweieUayZ1Jstk2/kq0e6EehpwGxVOJKcU9vDrNP2nM4EoFOEDz5uOvacyiQttwg3vYYukX61O7gLtG/sTSMfV/KNzj1JRd2TVPx+4OWixcNQvdnHbnotfu629xbJlhJCNARVHpSaOHEiW7Zs4Y033uD48eMsWbKEzz77jCeffBKw9WWaMGECr7/+Oj///DP79u1jxIgRhIWFMWjQoKoeTrW5pXUw1zcLwGRR+PTPk5fcfnVx/6mbWgU5yvVGXheJtnjK4RtbSemeEKJm6R09peQqK9gyWnOLioNSZWRKOfWUqkBQyt5TKlN6SokqcCQ5hz8On0WtgiWPXsu0O9rgptei1ai5vlkg7YrL9uIqcLHsarbnVCZgy0T6YmRXR1lujyb+6LV1p7enSqXi1na2CoPf9yXV8mhEeSpSzl2VpK+UEKIhqfJ33q5du/LTTz/xzTff0LZtW1577TVmzZrF8OHDHds8//zzjB8/nrFjx9K1a1dyc3NZuXIlLi6121iyMlQqFeNuaArA9ztPczansMxtFUW5oJ/U+aluQ71d+U+fGJoEujOoY6PqHbAQQlzEnillkUwpAHILz89w5VlmTynbc5VbZCYl2z7TUtnvXd4XNDq3WMsvPRHiUub/EwvAgLYh9IjxL7E+0t8NgLg0CUqVZ88pW/le+8bedI70Zc6DnWnf2JtHro+u5ZGVNLCdrdXFukMpFJostTwaUZaamnnPzhGUysivkfMJIUR1qpb80ttvv53bb7+9zPUqlYpXX32VV199tTpOX2O6RftxTYQPuxIymf9PHC8MKL231KGkHE6dK8BFpy7Rq+DZ/i14tn+LmhiuEEI4OR+UkkwpON/k3EWnLjNbwl6+F5eWj1UBnUZFgHvZvXvsjc4VBXIKTVKmLS5bem4RP/6bCMDDPUsPnkQHuAMQmyZfVMuSkl1IcnYhahWOhvA3tAjihhZ1M2O9Y2MfQr1dSMoq5K9jadzcOvjSO4kal1RDM+/ZNfKVTCkhRMNRd3KU6yGVSsXjfW3ZUl9vjnd8obnYT/+eBuD6ZoENrkmlEKL+0hcHpcySKQXYspmg7Jn34PzseydScwFbxqu6uAy7NHqtGvfi1/0MaXYursA32xIwmq2O7J7SRPnbglIV6XV5tbKX7jUP9sS9mnv/VAW1WsWAtrYs+xVVWMJnsSp8/tdJxn/zL6Pmb+PeOZsYPGcT/11zlP2JWWU2FTdZrHz+16XbVlxtEjNrKVNKglJCiAag7r8b13E3tQyiWZAHx87msnhLAo/3jXFav/7wWT7/25Zuf+81jWtjiEKIemDDhg3ccMMNZGRk4OPjUyPntAelLEimFEDOJZqcw/lMqZNptqBUeaV7dj5uevKMBcXNzt2vfKDiqmM0W1m0OR6wZUmpVKUHQh1BqXP5WK1KuQHTq9Xe0+dL9+qL29qFMv+fONYcTKHIbMGgvbILCRarwrPf7eGn4sy7C+2Iz+CDdcdo5OPK8GsjeKRXtON8SVkFjF/yL9uOltzvapeUZe8pVcOZUtLoXAjRAEim1BVSq1X8p48tEPXlP7FO9f4nU3N5aum/KAoM7x7huNIlhBB1gc5RvidvBXC+fM+zjCbnAC7FWU+nMyre1NbH3uxcMqXEZfp9XxJnc4oI8jRwa3GPodKE+big06gwmq2cyZIvq6Wxz7zXIdynVsdRGddE+BLkaSCnyMxXm+PLzGKqiAsDUlq1iqdvasbbg9sz98HOvH1ve25pHYyLTk1iZgFvrzzCgFl/sfFoKuuPnOXWD/5iR3wG7gbJrr3YGUf5nmRKCSFEZck3kSpwZ8cwwrxdSM0p4vnv9/L3sTTO5RkZs2gHOYVmukT6Mu2ONrU9TCFEDerbty/jx49nwoQJ+Pr6EhwczLx588jLy2P06NF4enrStGlTVqxYQVxcHDfccAMAvr6+qFQqRo0aVenjVJZeZcsMMkvSLADZFSnfK84YsH8nbFSZoFSB8QpHKK5GiqLwZXGD84eujSx3djitRk24n63ZeXy69JW6mKIojvK9Do19anUslaFWq7inONv+9d8OMXjuZsfjqAyzxcoz3+52BKRm39+JiTc3Z2iXcAa0DWFo13A+G9GF3VNv4Z3B7Qn0NBCblsfIL7cxev52MvJNtAnz4tvHelTxI6zfFEXhTHGj84q8J1SFxsWZUmm5RmmAL4So9yQoVQV0GjVP3mjrLfXznjM8+MVWury+hhOpeYR4ufDJg9fUqSmGhajXFAWMebVzq+TV6YULFxIQEMC2bdsYP348jz/+OEOGDOG6665j165d3HLLLTz00EMEBgbyww8/AHDkyBGSkpL44IMPKn2c/PzKfQnVYQUkKGWXXZHyvYv6AlYsU8rW3DwjTzKlROWkZBcycv529p7OQq9V80D3iEvuYy/hi5UZ+EqIS88nu9CMXqumRYhnbQ+nUibd3Jxnb2mOm17DzvgM7vr4HwbM+pNBH//DsM828/TSf9mfmFXqvgfPZPP6rwe5duYfLN99Bq1axUcPdHLM7HcxF52GIV3C+eOZPjzaKxpNcRnog9dG8MPj1xHpL2XIF0rPM2I0W1GpINirZsr3vF11jn6Fki0lhKjv5JtIFRnePZIwb1dW7E/ij8OppOUWodeq+fShzgR51swblBBXBVM+vBFWO+f+vzOgr/iH8Q4dOvDyyy8DMHnyZN58800CAgIYM2YMAFOnTmXOnDns27cPPz8/AIKCgkr0lKrocfbu3cu1115b4fGdz5SSUgywzY4H4FVO+Z69p5RdhYJSrvZMKQlKiYpbsS+JyT/tIzPfhEGrZsbd7fD3KHumRzt7UCpOglIl2LOL2oZ5odPUr4uFeq2acTc2Y0iXcN5aeZgfdyVyODnHaZuf95zhnk6Nea5/C3KLzPy2N4nf9p3haEquYxs/dz1v3tOOW9pcuqWEp4uOl29vzYPXRnIu38g1EbYG+0aJgThJKm5yHuhhqLGL0CqVika+rhxNySUxo4CYQI8aOa8QQlQHCUpVoRtaBnFDyyCsVoUDZ7LxcNE6pmcWQlx92rdv7/hZo9Hg7+9Pu3btHMuCg21Te589exYvL68qOU5laLGl/JvkrQCA7AJbkM6zArPv2TWqQFNb3+JMKVujcyEu7ast8UxZvh+ANmFefDCsI02DKpbZEx1gK9+Lk/K9EnYXB6Xa16PSvYsFe7nw/tCOjL+xGacz8ik0WSkwWVh7MIWf95zhh12nWb47EYv1fGavXqOmX+sg7unUmD4tAisdkIsKcCdKJmkokz1TKbSGSvfsGvkUB6UkU0oIUc/JN5FqoFaraFePZnURol7Rudkylmrr3JXZXOcc3FCpVE7L7DNoWa3WGjlOieNiy9wxSyU3cL7RuZdrOY3OL8qUqkhTW2l0Liqj0GThg7VHARh1XRT/d2urSmVfRBVfDItLl0wpRVGwKjjKz/YWNznvWI+anJclOsDd6cLnnR3CGN0zijd+P8T2uAy0ahXXNwvgtvZh3Nw6GO9yypLFlUm2z7znXbOVETIDnxCioZCglBCiflGpKlVCV1/o9bZsGoul5hqW6iRTyklFGp1fWL7n46bD3XDp587RU0oypUQFfLvjFGm5Rhr5uPLSba0qn9VSXL6XkJ6Pxao4AjJXo2k/H2Dx1gRuahnEfV3DOXAmG6hfM+9VRqcIX759rAcnUvMI8NA7XntE9UrKtpXv1dTMe3aNfGwXyiRTSghR38nlcSGEqAMiIyNRqVT8+uuvpKamkpube+mdrpAWW7maSZGeUgA5FWh0fmGmVFgFv4DYe0plSU8pcQkmi5VPN54E4D99mlxW36MwH1f0GjVGi9UxTf3VaPepTBZtjsdiVVh9MIVHFu6gyGzFy0VLlH/lsl7rE5VKRdMgDwlI1aDk4pn3Qrwv3fOtKkmmlBCioZCglBBC1AGNGjVi+vTpvPjiiwQHBzNu3LhqP6f0lHJmL9/zLK/R+QWz74VVoJ8UgK+7LSglmVLiUn7efYbEzAICPAwM6RJ+WcfQqFWE+9m+rMY3wL5SiqIw6dvdPPj51jIDvYqi8NqvBwG4pXUwD/eMdpTR9moW4Ch5FqIqJDmCUjXfUwokU0oIUf/JNxEhhKgGGzZsKLEsLi6uxDJFOd+MdsqUKUyZMuWKj1NROkemVPVcn/jzzz9555132LlzJ0lJSfz0008MGjTIsV5RFKZNm8a8efPIzMykZ8+ezJkzh2bNmjm2mTFjBr/99hu7d+9Gr9eTmZlZLWOFC3pKVbB8ryIz7wF4u9obnUumlCib1arwyYbjADzSK7pE/7LKiPJ350RqHrHpefRqFlBVQ6wTtsae48ddiQCMW7KL+aO6or0oo+z3fcnsjM/AVafh1bvaEuLtwvMDWrDnVCYtQ8qeVEKIy2HPlAqt4Z5SjYszpZKzCzFbrCX+PxBCiPpCXr2EEOIqpVFsQSljNZXv5eXl0aFDBz7++ONS17/99tt8+OGHzJ07l61bt+Lu7k7//v0pLCx0bGM0GhkyZAiPP/54tYzxQvbZ97zLbXR+/m2zokEp3+IMjZxCM2ZL5ZrRi6vH6oPJnEjNw9NFy4PXRlzRsRzNztMaXrPzz/866fj5r2NpvP7bIaf1hSYLb660LXusTxNCigMFLjoN3Zv44+0mDb9F1VEU5Xz5nlfNBqUCPQzoNWosVoXk7MJL7yCEEHWUZEoJIcRVSmMv36umoNTAgQMZOHBgqesURWHWrFm8/PLL3HXXXQAsWrSI4OBgli9fzrBhwwCYPn06AAsWLKiWMV44npwKZEq5XFam1PnjZRWY8Peo2b4jou5TFIVPNpwAbDPueZbzN1gR9qBUfAObge9Eai5rD50F4IUBLXlr5WEWbIqjWbAHw7tHArBwUxynzhUQ7GVgbO8mtTlccRU4l2fEWHyxIbiGg1JqtYpQHxfi0/NJzCigsW/D7ZUmhGjYJFOqumTEQ+7Z2h6FEEKUSavYgjDVlSlVntjYWJKTk+nXr59jmbe3N927d2fz5s1XdOyioiKys7OdbpeSZ7RgLa6ALC8gcGFQqlEFe0ppNWpHn6oMKeFrEHYlZNBj5jo++uNYqaWzFmvlyml3n8pk7+ks9Fo1o66LuuLx2Rt5xzawTKkv/44FoF+rIB7vG8OztzQHYOr/DnDtG+toPXUlM1ccBuC5/i1x08u1V1G97BlKAR4G9Nqa/1pl7yt1soH9vy6EuLpIUKoqHVsDv06EDzrAB+1hdmdI3lfboxJCiFLZy/eKaiEolZycDEBwcLDT8uDgYMe6yzVz5ky8vb0dt/DwSzeMzi5umKzTqJxK9C52OT2lAEeT5awCaXbeEHz+10mSsgp5d/VRXv31INbiINTZnELGLNpB66kr+etYaoWPt2RrAgC3twutkky6KH9bptSpcwWVDpDVVefyjHy/8zQAj/SyZUA9eUNTBnUMc5Qv5Rtt2Z/XNvHjnk6Nam2s4upRW/2k7Ho08Qfglz1nauX8QghRFeQSUlXZ+imseN55WVE2LB4KY9aBV1jtjEsIIcpgD0pVV/lebZk8eTKTJk1y3M/Ozr5kYOrCJuflzczlbtBye/tQTBZrpfqH+LrpOXWugIw8yZSq73IKTaw7dD4Tev4/ceQUmundPJCp/9vvaGg/e91xrm8WeMnjZRWY+GWv7QvlA92vrJeUXZiPK3qNGqPFypnMAsL96n9Zz+It8RSZrbRt5MW1TfwAUKlUvDe0Iw/1iESv0eDposXTRYufu15m2BM14vzMe7UTlLqnc2PeX3uUTSfSOZ2RLyV8Qoh6SYJSVaEwCzbMtP3cbii0vRdC2sJXd0PaUVgyFEavBINH7Y5TCCEu4MiUstZ8UCokJASAlJQUQkNDHctTUlLo2LHjFR3bYDBgMFQu28Te5NxeZleejx64ptJjsveVyixjCntRf6w+kEKR2UpMoDtP3tCU577fy/c7TzuyeFqGeHLsbC7b4s5xJDmHFiGe5R5v+b+JFJqsNA/2oHOkb5WMUaNWEe7nyonUPOLS82o1KHXqXD4LN8XRJcqPm1sHo1E7B4sKTRZ2JWSw5UQ62+MyKDJb8HTR4emixdtVR4CHgQBPAws3xwMw5vomTgEnjVpF50i/Gn1MQtjVdqZUIx9Xrovx55/j6fywM5Gn+zW79E5CCFHHSPleVfjnQyjIgMCWcPdcaDEAvBvD8O/APdBWwvf9w2Ax1/ZIhRDCQV3cU6pIqfm3gujoaEJCQli3bp1jWXZ2Nlu3bqVHjx41Pp7Dyba+U9X15d3XTQ9AZr6U79V3PxeXydzZoRH3XNOYOcOvQa9Ro1GreOqmZvw8rhc3t7KVpS7eGl/usRRFcZTuPdAtokqze6KLm53/tjeJrSfTOZtdWGr/q+q0cn8yt334F5//Hct/vt7Jze9v5JttCexKyODj9ce5/7MttJ++mgfmbeXDP46z+WQ6uxIy2Xg0lV/3JrF4awIfrDvGlOX7ScstItTbhVvbhV76xKJe+Pjjj4mKisLFxYXu3buzbdu2Mrc9cOAA9957L1FRUahUKmbNmnXFx6wKtZ0pBTC4c2MAvt91ylFKLIQQ9YlkSl2pnBTY8ont5xungPqCjAPfKLh/KSy4DY6tgp3zoduYWhmmEEJczJ4pZaymTKnc3FyOHz/uuB8bG8vu3bvx8/MjIiKCCRMm8Prrr9OsWTOio6OZMmUKYWFhDBo0yLFPQkIC586dIyEhAYvFwu7duwFo2rQpHh5Vl326Mz4DgC7VlHFh7ymVKY3O67X03CL+Pp4GwJ0dbWX5t7QJYd0zfVAUiChuMP7gtZGsPJDMj7sSeWFAS9wNpX/c2pWQwZGUHFx0au6+pnGVjrVpkCdrD51l6fZTLN1+CoAO4T58/ECnai/xKTJbmPm7bWY8gBbBniRlFXAyLY/JP5bstRnkaaBHjD/do/3xc9eTU2gip9BMZoGJtNwi0nKKyC408WivJug0cj21IVi2bBmTJk1i7ty5dO/enVmzZtG/f3+OHDlCUFBQie3z8/Np0qQJQ4YMYeLEiVVyzKqQnF0AUKly7qrWv00IHoYDnDpXwPa4c3Qv7jMlhBD1hQSlrtSfb4MpHxp3hZa3lVzfuAvc+DKsfhn2fSdBKSFEnaG22gIkhdbq+ZK3Y8cObrjhBsd9e5+nkSNHsmDBAp5//nny8vIYO3YsmZmZ9OrVi5UrV+Licv7D/dSpU1m4cKHjfqdOnQBYv349ffv2rbqxxtmCUlVVPnUxn+JMqQzJlKrXft+XhMWq0L6xtyMTCUpm2F0X4090gDuxaXn8b/eZMntFLbY3OG8f5ijxrCoP94rCaLZy7GwOsWl5JGYWsOdUJnd99A9zH+pM16jqCcDmG82M+nI72+LOAfBY7yY8278FRWYry7afYsGmWLILzPRo4k/Ppv5c1zSAJgHu0gPqKvP+++8zZswYRo8eDcDcuXP57bff+PLLL3nxxRdLbN+1a1e6du0KUOr6yzlmVagLmVJuei23tQtl2Y5TfL/ztASlhBD1TrVfbnrzzTdRqVRMmDDBsaywsJAnn3wSf39/PDw8uPfee0lJSanuoVS9cydh5wLbz/1egbI+ULW91/bvqa2Qlei8riADkvZW1wiFEFeBUaNGOWUXVZS6mjOl+vbti6IoJW4LFiwAbE2KX331VZKTkyksLGTt2rU0b97c6RgLFiwo9RhVGZBKziokMbMAtQo6RvhU2XEv5OMqmVINwf9220v3yp+8RK1WMbw4EPX1lvhSy+ay8k38tjcJqLoG5xcK8nRh6h2t+eqR7vz9wo38/cKNtA71Ij3PyAPztvDNtoQqP2ehycKYRTvYFncOTxctX47qwuRbW6HTqPEwaHmkVzR/PX8je6bdwtyHOvNQjyhiAj0kIHWVMRqN7Ny5k379+jmWqdVq+vXrx+bNm2v0mEVFRWRnZzvdKkpRlAt6SlV8NtbqMLiLLdPyt31J5BVJuxAhRP1SrUGp7du38+mnn9K+fXun5RMnTuSXX37hu+++Y+PGjZw5c4Z77rmnOodSPda9ClYzNO0HUb3K3s4rDMKvtf186OfzyxUFvh4Mn14PCVurd6xCiBrVt29fp2B8de1zJVRW2wfXglroKVWX7EqwZUm1DPHCo4wyqytlz4Kxz/In6p/TGfnsiM9ApbJlNl3K4M6NMWjVHEzK5t9TmU7rzBYrL/64lyKzlZYhnnQK96meQV+gkY8r3z/eg9vahWKyKEz+cd8le15l5hv5Zc8ZjiTnXPL4RrOVJxbv4p/j6bjrNSx8uBs3tgyuquGLBiQtLQ2LxUJwsPPfR3BwMMnJyTV6zJkzZ+Lt7e24XWqm1gvlFJnJN1qA2i3fA+gS6UuUvxv5Rgsr9l/ecyiEELWl2sr3cnNzGT58OPPmzeP11193LM/KyuKLL75gyZIl3HjjjQDMnz+fVq1asWXLFq699trqGlLVOvQLHPgJVGq4adqlt28zCE5tgQPL4drHbctO/AGJO2w/H/gJIrpX12iFEKIEe/lekVLzs+/VJdVdugfnZ/XLLpQr2PXVL3tsWU3do/0qVKrj46bn9vZh/LDrNLPWHmP2sE54u+mwWBWe+W4PK/Yno9eomXp76xrLFHLTa/nogU5ErXbj4/UnmP7zQdqGedPhoqCY0Wzl6y3xfLDuGFnFM0a2CPbkjg6htAjxIjPfSFaBiexCc3H2Iuw5nclfx9IwaNV8Maor10RU3/9PQlSVyZMnO0rLwTbhRkUDU/YsKR83Ha762n0fValUDO7cmHdXH+V/uxMdzc+FEKI+qLbL408++SS33XabUxotwM6dOzGZTE7LW7ZsSURERJnptVeSWlstclPhlwm2n3s+DaHty90cgFZ32v49tQWyben//DPr/PqjK2yZU0KIem/UqFFs3LiRDz74AJVKhUqlIi4ujo0bN9KtWzcMBgOhoaG8+OKLmM3mcvexWCw88sgjREdH4+rqSosWLfjggw+ufJBWCypsrzmF5qs7U2pncaZUl6jqDErZMqVyJVOqXsouNLFkmy2r6M4OjSq836jrolCr4M+jqfR+Zz1f/B3Liz/s5X+7z6BVq/hk+DVc1zSguoZdKpVKxbO3tKB/m2CMFiuPf72Tc3m2XmdWq8KKfUn0n/Unr/56kKwCE418XNFpVBxJyeHd1UcZs2gHz32/l9d/O8SH644x+4/jfLT+OH8dS0OnUfHpQ525VnraiHIEBASg0WhKtO5ISUkhJCSkRo9pMBjw8vJyulWUo59ULWdJ2d3Q0tbMfc+pzBqfaVMIIa5EtWRKLV26lF27drF9+/YS65KTk9Hr9fj4+DgtLy+9dubMmUyfPr06hlp5igK/PA35aRDcFvpOrth+3o0gvLutr9TBnyG8G8T+CWqtLdsqIw7SjkJgi2odvhD1naIoFJgLauXcrlrXCmU0fPDBBxw9epS2bdvy6quvAmCxWLj11lsZNWoUixYt4vDhw4wZMwYXFxdeeeWVUvcJDAzEarXSuHFjvvvuO/z9/dm0aRNjx44lNDSUoUOHXv6DsZxvuF14FZfvFZosHEjMAqjWzA57plSOZErVO1arwqRluzl1roBQbxdu7xBa4X3bNfZm4cPdeO3XgxxNyeW1Xw8CoFGrmH1/J/q1rp3yNpVKxTtDOnA05R9i0/J4eum/3Nc1nNnrjnMkxVaqF+Ch55lbWjCkc2PyiiysOpjM7/uSOJdnxMdNj6+bDk8XLZriILpapeK29qHVmnEoGga9Xk/nzp1Zt26dox+i1Wpl3bp1jBs3rs4c81KSs2yfRUJrscn5hZoGeaBVq8guNJOUVUiYT+32uRJCiIqq8qDUqVOnePrpp1mzZo3TDEpX4kpSayvkzG74bZItm6nHk6ApZwacPd/Akd9ArYO7PwWtoeLnaT2oOCi1HBI22Za1HWwLcB1fC0dWSFBKiEsoMBfQfUntlLpufWArbrpLT6Xu7e2NXq/Hzc3NcYX2pZdeIjw8nI8++giVSkXLli05c+YML7zwAlOnTi11HwCNRuMUlI+Ojmbz5s18++23VxiUOp+xU2S5eoNSe05lYrYqBHkaaOxbfR/gJShVf334xzHWHjqLXqtm7oOd8XKp3Cx51zcL5Penruf7nad5f81R0vOMvD+0AwPbVTy4VR28XHTMefAaBn38D38dS+OvY2kAeBq0jOoZxdjeTRwZft5uaoZ2CWdolyr87CWuapMmTWLkyJF06dKFbt26MWvWLPLy8hwz540YMYJGjRoxc+ZMwNbI/ODBg46fExMT2b17Nx4eHjRt2rRCx6xq52feqxvBH4NWQ0ygB0dScjicnC1BKSFEvVHlQamdO3dy9uxZrrnmGscyi8XCn3/+yUcffcSqVaswGo1kZmY6ZUuVl15rMBgwGCoR/Kn0oOdD4k7bbe+3cMcsWybTxc78CytesP18w2QIaVu587S+C1ZNhoQt55f1fBri/7EFpY6ugl4TLvdRCCHqsEOHDtGjRw+nTKuePXuSm5vL6dOniYgoe/atjz/+mC+//JKEhAQKCgowGo107NjxygZ0QVCqwHL1znx1Yeledfb1sX+5LzBZMFms6DRXbyCwPllzMIVZa48BMGNQ2xK9lypKq1EzrFsEgzo1IrvQRJBn3cisaBnixZv3tGfit7vxNGh5uFc0o6+LxtutcoE3ISrrvvvuIzU1lalTp5KcnEzHjh1ZuXKlo1F5QkICavX518kzZ87QqVMnx/13332Xd999lz59+rBhw4YKHbOqnZ95r278/wzQMtSTIyk5HErKkYkGhBD1RpUHpW666Sb27dvntGz06NG0bNmSF154gfDwcHQ6HevWrePee+8F4MiRIyQkJNCjR4+qHk7FxBf3stLo4ewB+OJm6PQg9HkRfIqvCh7+DX54FEz5tpn0rnu68ufxbgSNu8Hpbbb7zQdAcGsweMDvz9r6TeWfAze/qnlcQjRArlpXtj5QO7NVumpr/qrj0qVLefbZZ3nvvffo0aMHnp6evPPOO2zdeoXPQXGTc4uiwmi9egMku+JtQanqbsp84ax+eUVmfNz01Xo+ceWOn81h4rLdAIzsEcmQKsgSctFpcNHVrYkFBnVqxDURvvh56Ktt9kkhSjNu3LgyS+vsgSa7qKioCvVJKu+YVe18plQdCkqFePE/znC4AjNmCiFEXVHlnz48PT1p29Y5g8jd3R1/f3/H8kceeYRJkybh5+eHl5cX48ePp0ePHrUz815eOqQdsf38+Gb457/w79e2295v4ZqR4BkMf8wAFIi5EYYsAM1lPnVtBp0PSvWcYPvXJwKC2tgCYsfXQvsrKMkRooFTqVQVKqGrbXq9HovF4rjfqlUrfvjhBxRFcWTk/PPPP3h6etK4ceNS97Fvc9111/HEE084lp04ceLKB1jcU8qMFpPFeuXHq4cURWFnfPXPvAeg16oxaNUUma3kFEpQqq5Lyy1i1Pzt5BaZ6Rblx8u3t67tIVWrCP+6/5oqRF2TXMcanYMtUwrgcFItTwolhBCVUCuXx//73/9y++23c++999K7d29CQkL48ccfa2MokFCcJRXYEgKawl0fw8OrIep625e27fPgj9cBBTqPhge+Axfvyz9f28HgEQItb4fICzLDmve3/Xt05eUfWwhRZ0RFRbF161bi4uJIS0vjiSee4NSpU4wfP57Dhw/zv//9j2nTpjFp0iRHicLF+1itVpo1a8aOHTtYtWoVR48eZcqUKaVOIlFpxeV7RrSYrVdnUOpkWh4Z+SYMWjVtwq7gdb2C7CV82TIDX51WaLIwZtEOTmcUEOnvxtyHOku5pRCihOTsule+1yrENnvgybQ8Ck2WS2wthBB1Q418ytqwYQOzZs1y3HdxceHjjz/m3Llz5OXl8eOPP172FLBXLL644XjEBQGiiO4w6lcY+YttuVoHt7wOt//38jOk7DyD4ZnDcN/XzstbDLT9e2ytU68XIUT99Oyzz6LRaGjdujWBgYGYTCZ+//13tm3bRocOHfjPf/7DI488wssvv1zmPgkJCTz22GPcc8893HfffXTv3p309HSnrKnLVvw6Y0bD1fq51Z4l1aGxD3pt9b8dekmz8zrPalV45rs9/JuQiberji9HdcXPXbLahBDO8o1msgps76N1qXwv2MuAj5sOi1Xh+Nnc2h6OEEJUiDQPsM+CF3ldyXXRvW03sxG0VfihtLRmuo06g5s/5KfbGqFHX1915xNC1LjmzZuzefNmp2VRUVFs27atUvsAzJ8/n/nz5zsts89IBLBgwYLKD7C4p5TpKs6UsveT6hxVM1PY22fgy5WgVJ2TXWhi1f5kvt95mq2x59BpVMx9sDMxgR61PTQhRB1kL93zMGgdWbB1gUqlolWIF5tPpnMoKZu2jao/C1gIIa7U1R2UKsqFpL22n0sLStlVZUCqLGoNNOsPe5bYSvgkKCWEqE4We1BKQwV6xzZIO2uoybmdhz1TqkiyYWvS/sQs5v8Tx4EzWahUKtQq27UhtUqFWqVCAQ4lZWM024KzahW8eU97esT41+7AhRB1VnIdbHJu1zLUk80n06XZuRCi3ri6g1Knt4FiAe8I8G5c26OBJn1tQanEXbU9EiFEQ2cv31Pq1kxgNSWrwMSx4tKGThH/z959xzdVfg8c/yRp0713oS0Fyt6rFBCQYcGJOABRAecXAUV+LlwIDtwbxQmoICgqDpbIVDaFsjctLXTvvZL7+yNNoLRA6UrSnvfrlRc0uffmpIE8ueee5zzuDfKcLnaGq+kyfa9+KYpCSm4xe2IzWbQ9ll0xGdXaL8zXmdu6BXJr12bS+FsIcUXGlfcsqZ+UkbGv1LEkaXYuhLAOTTspZewndXHDcXPybm34M+OMeeMQQjR+F03fa4r2x2cBEOzpiLezXYM8p4v0lKpzhSU6TqbkcjwplxPJuRxLyuVIQg7p+SWmbWzUKm7uEsDNXQKxtVGjKAqKAgoKej3oFYVgL0fa+rmYVsYUQogrMTY5t6SV94yMK/AdTcytsOKvEEJYqqZ5NmJ0trx3S7CFJKU8Wxr+zEuCknzQOpk3HiFE46UznLSX0jQrpfbFZQHQo4GqpODC6nuSlKq57MJSdp5JZ3dsBrtiMzl8PpsyfeX5p2oVtPJxZngHP+6PaGGRU2yEENYrMbsQsMxKqTBfF9QqyMgvITWvGF8Xy4tRCCEu1nSTUmXFcH6P4e8h/c0bi5GDh+FWmAkZMeDfydwRCSEaK50hMVLWRIeBvXGGflLdG6ifFFzUU6pIekpVV0Z+CYcTstkVk8G/J9M4cC6LS3NQXk5a2vq70MbPhbb+LnQIcKWtvwv2tk0z4SqEqH8Xeko5mDmSyhy0Glp4O3EmNZ9jibmSlBJCWLymeTYCkBANZUXg6A3eYeaO5gLPlnA+yjCFT5JSQpgoTbUbdx3RX7rCXnmlVJmq6Q0Der3CvriGbXIO4CrT967qbHo+m0+k8t/JNA6dzyah/MTvYi19nAgP9aJPqAe9Qjxp7uEg01OEEA0qPsNyK6XA0FfqTGo+RxNzGNjGx9zhCCHEFTW9sxGjs1sNfwb3NSzDYykuTkoJIbC1tUWlUpGamoqPj4+cfF4jRVEoKSkhNTUVtVqNVlu+mmh5T6mmWCl1Ji2fnKIy7G3Vpt4bDcGliVdKKYrCqZQ8tp9JZ9spwxS8kjI9rg62uDvakltURlxGQaX9Wng50jXInf6tvRnQ2ptAd8urTBBCNB35xWWcTDGsbNcx0NXM0VStfYALKw8mygp8Qgir0PTORgAUBWK2GP4e0s+8sVzK2FdKklJCAKDRaGjevDnnzp0jNjbW3OFYLUdHR4KDg1Gr1YY7ylff0zXBSinj1L0uzdyx1agb7HmNPaXyiptOpVR8RgHrjyazMyaDXTEZFRqQG+UWl3E+y1B1YKNW0TPEg4FtfOgV4kGHQFfT700IISzBofPZ6BVDlZSvBTY6B2hXvgLf0URZgU8IYfma3tlIQQb8+Tic2Wj4OXSgeeO5lGcrw5+SlBLCxNnZmbCwMEpLm2aFSW1pNBpsbGwqVpk14aSUscl59wZscg7gbNd0pu+V6fR8seUMH/1zkhLdhamjdjZqerfwJKKVF31beuHppCWroISswlJUQK8WnqbfkxBCWKLo8tVbuwW5mzWOKzFWAZ9OzaOkTI/WpuEuwAghxLVqOt/89HqI2QwrHoPcBFDbwvA54N/Z3JFVJJVSQlRJo9Gg0Ujj4jpTPn1P3ySTUg3f5Bwunr5X/aTUvrhM/jmazLQhYVbTuPtoYg5PL9/PofOGK/S9Qjy4vp0v4aGedGnuXsXJkaw0K4SwHvvPZQHQ1YKTUs3cHXCxtyG3qIzTqXm0D7DMaYZCCAGNPSmVkwBbP4LE/ZB0CErK51V7tYY7vobA7uaNryrGpFTOeSgtBFvpnSGEqAemSqmmNTUqt6iU48mGsaBHA1dKGaeh5VxDT6k3Vx9jZ0wGHQLcuKlLQK1jKNXpWbQtFk8nLTd2DqizRFdGfgnrjiSx+lAS/51Mo0yv4Gpvw6xbOjK6RzPpBSeEaDSiy6ttLblSSqVS0c7fhd2xmRxPypWklBAWLDW3mDWHErmzZxAOWuu4AFnXGm9SSq+HxXdB8qEL92nsoPt4uOE10FrolVlHT7Bzg+JsyIwF3/bmjkgI0Rg10el7B85loyiGq8gN3QvEuPpeXnEZiqJUK1FzLtPQaymhvOdSbX23/SyvrTwKwCt/HGZ0j+bc2zeE1r7O13Sc+IwC9pzNYH98Nvviszh0Phud/sIKmcM7+PH6qE4W229FCCFqIiWniITsItQq6NzMzdzhXFHb8qSUNDsXwnLlF5dx3zc7OZaUy5m0fGbd0tHcIZlF4z0bOb7SkJCyc4Ub3wH/LuDdBjQW/pJVKvAMhcRowxQ+SUoJIeqDztBwuqlN39t71jB1r0dIw07dA3AuT0opCuSX6K7aO0mvV0jJLQIw/VkbBSVlfL7pFABuDrZkF5aycFssS3bGsezRvpedzlim01NYqiM+o5C1h5NYezipypOcDgGujOzkz8jO/rT2bbhVDYUQoqEY+0m18XPBycL73xmbnR9LkmbnQlgivV7hqZ/3m75TLd0Vz+NDwvBw0po5soZn2Z+mNaUosPktw9/DH4WuY80bz7XybHkhKSWEEPXB2FNK3bSm7+0rP6HoboZpFw62GjRqFTq9Qm5R6VWTUhkFJZTqDNVHyTnFtX7+77efJS2vhCBPB/6ZMYgdZzL4dMNJdsdm8szyA/z1+ADsbAxl49mFpUxdspedZzIqNCo30qhVdGnuRrcgd7oFudMj2IMgT8daxyiEEJbM1E+qubtZ46iOdv6GiwPHpVJKCIv06cZTrD6UhK1GhZ+rPecyC/l+x1keHxpm7tAaXONMSh1fDUkHQesMfR8zdzTXzktW4BNC1DOdMSnVOIeBqiiKYmpybo5KKZVKhYu9DVkFpeQWlRFwlZkfSdkXqqNqWymVV1zG/M2nAXh8SBh2NhoGtfGhSzM3hn+wmZMpeXyy/hRPRbalpEzP5B+i2HY6vcIx7GzUXBfmw4hO/gxr74u7Y9O7kieEaNqMlVKW3OTcqE15Uioxu4jsglLcHJvWRSghLNnaw0m8v+4EAK+N6oSD1obHf9zHwm2xPDKwpdUsblNXGt/ZiKLA5jcNf+/ziKFHk7WRFfiEEPXNmJRqQo3Od8dkkllQiqNWQwczNX29OCl1NRWTUtWvlCou0/H4j/vQK/BMZFvC/FxYtC2WzIJSWng5cnv3ZqZtPZy0vHpbJyYv3svnm08T2dGfBVtj2HY6HSethm8n9qaNnwsOWg12NmppWC6EaLL0eoUD8dmAZTc5N3K1t6WZuwPnswo5lpRDeEsvc4ckRJO3JzaD+ZvP8M/RZAAmRIQwpncwZTo9b3s4cC6zkJ+jznFf3xAzR9qwGl9S6uTfhtX2bJ0gYqq5o6kZSUoJIepbeU8ppQlVSi3eFQvA6B7N0NqozRKDs50tUEhuNVbgS8q5KCl1DdP3/ohOYO1hw5edjcdSmNCvBcujzgHwxLAwbDQVX/vIzgHc1DmAlQcTueerHeQWl6FRq5g3voecxAghRLkzaXnkFpfhYKuhjd+1LQ5hLu0DXMqTUrnyeS6EGcWlFzDjp2j2lPc2Vang9m7NePHmDgDYaNQ8fF1LZv1xmK+2nGFc76BK39cas8b1ShUFNhmrpB4CJyv98DUmpbLPQVnt+4gIIUQlekOljtKEekptPJYKwISIFmaLwaW82fm1VkrlFZdRUHL1fRRF4Zv/YgAI8XKkTG/4ObuwlJY+TtzatVmV+82+rSOeTlpyiw3P8fqoTgxu63vV5xNCiKYiurxKqnMzN6s5WWxbPoVPVuATwnySsosY/80O9pzNRKtRM65PEP/MGMT7Y7phe9FnyV29muPhaEtcRgGrDyWZMeKGZx2fqNWVsNdws3GAiGnmjqbmnHwM/bAUPWSeNXc0QojGqHz6XlNKSukV6N/aizA/860M53otSamcin2kqlMt9d+pNI4l5eKo1fDHlAEsmNibFl6OqFTw7Ih2aNRVT7/zdrbj7Tu64O1sx9ORbRnbJ7gar0YIIWpn3rx5tGjRAnt7e8LDw9m1a9cVt//5559p164d9vb2dO7cmVWrVlV4fOLEiahUqgq3ESNG1Ems0fGGCoeuQVdpCGhBZAU+IcwrI7+E+77ZSXxGISFejmx8ejBzR3ehlU/laktHrQ0T+rUA4PGl++j/5gbu+2Ynb685RnGZroEjb1h1npSaO3cuvXv3xsXFBV9fX0aNGsXx48crbFNUVMSUKVPw8vLC2dmZO+64g+Tk5No/+ZHfDX+2HQHOPrU/nrmoVOAZavi7TOETQtQH4/Q9Tf0lpbZs2cItt9xCYGAgKpWKFStWVHhcURRefvllAgICcHBwYNiwYZw8ebLCNhkZGYwfPx5XV1fc3d158MEHycvLq3FME/uF1njfuuBib/h95xVXY/pedsWkVHLO1Zudf/WvoUrq7l5BuDnacn07X9bNGMSOmUOJ7Oh/xX2HdfBj9wtDmXJ966s+jxBC1NayZcuYMWMGs2bNYu/evXTt2pXIyEhSUlKq3H7btm2MGzeOBx98kH379jFq1ChGjRrFoUOHKmw3YsQIEhMTTbcff/yxTuLdb+on1fALZdSUcQW+E0m56PWKmaMRomnJLSpl4oJdnEzJw9/Vnh8eDKeZu8MV95kQ0YJQbycUBc5nFfLvyTQ+23Sa77c37kKVOk9Kbd68mSlTprBjxw7WrVtHaWkpN9xwA/n5+aZtnnzySf78809+/vlnNm/eTEJCAqNHj67dEyvKhaRUh9tqdyxLIH2lhBD1qQGm7+Xn59O1a1fmzZtX5eNvv/02H3/8MfPnz2fnzp04OTkRGRlJUdGF5Mv48eM5fPgw69at46+//mLLli088sgjNYon0N2eIe3MOyXN2e7aK6WM1U1Xa3Z+PCmXLSdSUalgUv8WpvttNWr8XO2rFZ80MhdCNJT333+fhx9+mEmTJtGhQwfmz5+Po6Mj3377bZXbf/TRR4wYMYKnn36a9u3b8+qrr9KjRw8+/fTTCtvZ2dnh7+9vunl41D6JVFSq42iiodrImiqlQr2d0GrU5JfoOJdZaO5whGhSnlwWzYFz2Xg6afnhoT4EeTpedR8PJy0b/m8QUS8OY/n/Inj4OsPF1C+3nGnU1VJ13uF2zZo1FX5euHAhvr6+REVFMXDgQLKzs/nmm29YsmQJQ4YMAWDBggW0b9+eHTt20Ldv35o9cdJByIw1TN1rPbyWr8ICeLYy/ClJKSFEfSivlKIeG52PHDmSkSNHVvmYoih8+OGHvPjii9x2m+FCwnfffYefnx8rVqxg7NixHD16lDVr1rB792569eoFwCeffMKNN97Iu+++S2Bg4DXFM65P0GWnrzWUa+kplVxeKdXGz4WjiTlXTUp9859hvIjs4E+Il1MtIxVCiPpTUlJCVFQUM2fONN2nVqsZNmwY27dvr3Kf7du3M2PGjAr3RUZGVqrC3bRpE76+vnh4eDBkyBBee+01vLyq7jNbXFxMcfGFz9acnKqnuR08n02ZXsHb2e6qlQ6WxEajprWvM0cScziWlEOw19VPioUQtfffyTT+OZqCrUbFokl9aO1b/dYRKpUKL2c7vJzt6NLcnb8OJJKYXcQvUee5J7xxtleo955S2dmGUldPT08AoqKiKC0tZdiwYaZt2rVrR3Bw8GUHoWoxVkm1Hgp21rEixhVJpZQQoj6V95RCozXL08fExJCUlFRhLHBzcyM8PNw0Fmzfvh13d3dTQgpg2LBhqNVqdu7cedljFxcXk5OTU+EGcHv35vX0aqrPOH0v5yqr7+UVl5majndpZrgqn3KF6XupucWs2JcAwEPXmXeKohBCXE1aWho6nQ4/P78K9/v5+ZGUVHWD36SkpKtuP2LECL777jvWr1/PW2+9xebNmxk5ciQ6XdUVBnPnzsXNzc10CwoKqnK77afTAQgP9bS6itJ2AYaT4ePS7FyIBqHXK7y55igA48ND6Ny85tWVWhvDqnwA8zefpkynr5MYLU29rgWu1+uZPn06/fv3p1OnToBhQNFqtbi7u1fY9kqD0FWvYigKHFlh+HuHUXUUvZlJUkoIUZ9MSSnzNDo3ft5f6QQjKSkJX9+K0+1sbGzw9PS87HgBhpOM2bNnV7rf3dE8CbiLGSul8q5SKWXsJ+ViZ0Ooj6Hq6UqVUj9HxVOi09MtyJ2eIdbT70QIIerS2LFjTX/v3LkzXbp0oVWrVmzatImhQ4dW2n7mzJkVqq9ycnKqTEwZk1IRraxvZe92sgKfAApLdMzbeIojiTl0CnSlR4gH3YM9cHNoOgveNJQ/DyRw6HwOznY2TBtS+z6d4/oE8+nGU8RlFPDXgURGda96JWVrVq+VUlOmTOHQoUMsXbq0Vse56lWMlKOQfspwxb9NZK2ey2IYk1JZcZB7jUtCFucaEnVCCHE5evMmperTzJkzyc7ONt3i4+PNHZJJdafvGZua+7nZ4+dqB0BK7uUrpfbEGlaFurVroNVdxRdCND3e3t5oNJpKCx0lJyfj71/1ogz+/v7XtD1Ay5Yt8fb25tSpU1U+bmdnh6ura4XbpYpKdUTFGT5jrTMpJSvwNXX74jK56eN/+XTjKTYcS+HjDaeYuGA33ef8zU97LOc7UmNQXKbj3b8Ni7w9OrAlXs52tT6mg1bDgwMMVfCfbTrVKBctqLek1NSpU/nrr7/YuHEjzZtfmDLh7+9PSUkJWVlZFba/0qBy1ROMo38Y/mw1FOwrDyZWycUf3IJA0cGnvWHXV6CvRnOzg8vhrVD4a3q9hyiEsGKmnlLmSUoZP++vdILh7+9faRWmsrIyMjIyrngSUp2TDHMxJaWusvpeYnmlVICbPb4uhiblyTlVV0opikJ0fBYA3YLd6yZQIYSoR1qtlp49e7J+/XrTfXq9nvXr1xMREVHlPhERERW2B1i3bt1ltwc4d+4c6enpBAQE1DjWvXGZlJTp8XWxo6W39fXrM1ZKxaTlU1TaeBsli4oUReF0ah5zVx/ljs+3cSYtHz9XO54d0Y7RPZrR3MMBvQLflK/aK+rGkp1xxGcU4uNix4N12E7h3r4huNjZcCI5j3VHk6++g5Wp8+l7iqIwbdo0fvvtNzZt2kRoaMU3o2fPntja2rJ+/XruuOMOAI4fP05cXNxlBxU7Ozvs7K6QZTStundrnbwGi6BSwbil8MdUSNgHq56C6CVw10LwCKl6nxN/w2+PGlbV2vcDDH4eXPyq3lYI0bTpDJU6KhvzJKVCQ0Px9/dn/fr1dOvWDTBMm9i5cyeTJ08GDCcgWVlZREVF0bNnTwA2bNiAXq8nPDzcLHHXlrGnVLUrpVzt8XUpr5S6TE+p+IxCMvJLsNWo6BBgOQk4IYS4khkzZjBhwgR69epFnz59+PDDD8nPz2fSpEkA3H///TRr1oy5c+cC8MQTTzBo0CDee+89brrpJpYuXcqePXv48ssvAcjLy2P27Nnccccd+Pv7c/r0aZ555hlat25NZGTNZ1IYp+71a+VllZWoPi52eDppycgv4VRKHp2aWc/qgeLanUnN49utMWw+kUp8xoUVF0d1C2T2rZ1wczR8D8kuKKXX6+s4npzL8aRc2vpXvxG3uCDqbAZfbYkhv6SMUp2eQ+cNFYnTh4XhqK27VIubgy33RYTw2abTvLHqKP1be5tWdG4M6vyVTJkyhSVLlvD777/j4uJi6vvh5uaGg4MDbm5uPPjgg8yYMQNPT09cXV2ZNm0aERERNVt5L/UEpBwxrCDVtupVnqyWfyd4aD3s+RbWz4GEvfDrIzBpNagvKXI7uw1+us+QkFLbGqbm7PsOBj5tntiFEJbNVClVf32W8vLyKkyZiImJITo6Gk9PT4KDg5k+fTqvvfYaYWFhhIaG8tJLLxEYGMioUaMAaN++PSNGjODhhx9m/vz5lJaWMnXqVMaOHXvNK+9ZimvtKRXgZo+vq6FSKqeojKJSHfa2mgrb7os3TCvpEOBa6TEhhLBUY8aMITU1lZdffpmkpCS6devGmjVrTL0G4+LiUF/0fbdfv34sWbKEF198keeff56wsDBWrFhh6lur0Wg4cOAAixYtIisri8DAQG644QZeffXVK1/cvgpr7icFhpW82vq5sP1MOkcTcyQp1YgdPJfNfd/uJKvAUI2t1ajpE+rJvX1DGNGpYoW5m6Mtg9r48s/RZP7Yf56n/duZI2Srlp5XzKPf7yUtr2Ile2tfZ8b0qnrRhNp4dFArfo9O4Gx6AS+tOMQHY7rV+XOYS50npT7//HMABg8eXOH+BQsWMHHiRAA++OAD1Go1d9xxB8XFxURGRvLZZ5/V7AmNU/daDgaHRtjcVa2BPg9D62EwfwDE74Cob6H3Qxe2SdwPS8ZAWRGERUL7WwwVVnsWwoAZhmMIIcTFyntKqW3qLym1Z88err/+etPPxmayEyZMYOHChTzzzDPk5+fzyCOPkJWVxYABA1izZg329vamfRYvXszUqVMZOnSoadz4+OOP6y3m+ma8qnW1Sinj9D0/V3tc7W2ws1FTXKYnJae40pLepql7Qe51Hq8QQtSnqVOnMnXq1Cof27RpU6X77rrrLu66664qt3dwcGDt2rV1GR75xWWmz9iIlt51euyG1C7AkJQ6nJBD1b89Ye32xmUy4dtd5BaV0bW5G9OGhBHRygunK1TT3NotkH+OJvPn/kSeuqGtVVYCmouiKMz89SBpecW09nVm8qBWaG3U2Nmo6RnigY2m7rskuTnY8tHYboz5cge/7TvPdWHejO5h/pWl60K9TN+7Gnt7e+bNm8e8efNq/4QnygefdjfV/liWzDMUhs6C1U/DulegzUhwawZxO2HJXVCcA8H94O5FgArWvQw55wy/n3Y3mjt6IYSlMU7fq8dG54MHD77imKBSqZgzZw5z5sy57Daenp4sWbKkPsIzC+P0vRKdvsqqJyPj9D1/V3tUKhV+rvbEZRSQklt0+aSU9JMSQog6tedsJmV6hWbuDgR5Opg7nBoLD/ViwdZYVh5M5IWb2mNbDyfMwnx2xWQwacEu8kt09GnhybeTeldratew9r442GqIyyggOj6L7sGNsMCjnvwcdY6/jyRjq1Hx0dhudAxsmArEXi08mT40jPfWneDFFYfoHuxBqBX2uruUdX8i5afDud2Gv4c1klX3rqT3g9C8D5TkwsoZhh5S390GRdkQFA73LAVbB7C1h+73GvbZ8415YxZCWKby6XuqeqyUEpVd/CXxStVSxkopfzdD1Zipr1RuxRLxkjI9hxMM/Qu6BcmXSSGEqEsXT92z5iqSIe188XbWkppbzIZjKVffQViF9LxiZv95mPFf7yC/REe/Vl4sfKB6CSkAR60NwzsYpsv+sT+hPkNtVOLSC5j9x2EAZgxv22AJKaPHrm9N35aeFJTomLK48vRBa2TdSakzGwEF/DobqoYaO7UGbv3Y0DPqxBpYcjeUFULr4XDfCrC/6D9EL0OTSE6thwxZVUEIcQnT9D3zNDpvqjRqlenLYl5x1UmpUp2e9HzDFwxTUsrVkJRKvqTZ+dHEHErK9Lg72tLikgoqIYQQtbP9dBpgaHJuzbQ2au7oaZjm8+OuODNHI4yOJeUw4sMtjP96BwfPZVd7v+IyHZ+sP8mgdzaxYGsspTqFyI5+fDux9zU31761q6FH518HEtHprz7jqak7n1XItB/3mqrSHhnYssFj0KhVfDimOx6OthxJzOGmj/9lT2xGg8dRl6w7KXWqfFnYNjeYN46G5NseBj5V/oMCne+GcT+C9pKTEc+W0GqoYZuoBQ0dpRDC0unKk1IaqZRqaBf6SpVW+XhKbjGKArYaFZ6OhvfH18Xe9NjFjFP3ujZ3t+qr+EIIYWlyiko5eN6QKLDWJucXG9s7GIDNJ1I5n1V4la1FfdtyIpU7P9/OsaRctp5K59Z5//F/P+03LXRyJTN/Pch7606QV1xGx0BXvn+wD1/c16tGi50MbOODm4MtqbnF7DyTXpOX0iSU6fR8/e8Zhr+/mf3nsnGxs+G9u7uiUZvnu5e/mz0/PRpBKx8nknOKGfPlDr7acqZarZQskXUnpWI2G/5sClP3LjZgBoRPhmGz4fYv4HI9YXo/aPhz3w9QZv1lfUKIOmRMStlKUqqhGVfgu9z0vaRsw8mCn6s96vIvO8ZKqZScqpNS0uRcCCHq1q4zGegVaOHlSICb9faTMgr1diKipReKAj/tjr+mfffHZzHjp2i6vLKWr/89U08RNh1Ld8UxaeFu8orL6BPqyahugSgK/LL3HEPe28SaQ4mX3XflgUR+3XsetQrevasrf04dwHVhPjWORWujZmT5ynwyha9qyTlF3DZvK6+tPEpBiY5eIR78+lg/gjzNW6Ee5ufCH1MHcGvXQHR6hddXHeXbrbFmjammrDspVZwDDp7QvJe5I2lYNloY+SYMmA7qK7yFYZHg7AcF6RC/q8HCE0JYgfKeUjJ9r+FdSEpVXSmVlF0+dc/1wiqEFyqlKl5B3S9NzoUQol5sOZkKQEQr611171Jj+xiWqf9pT7xpqlapTs+5zIIqt996Ko3b5m3ltnlb+XXveXKKynh77XHiM6reXlyZXq/w1ppjPPfrQXR6hdu7N+P7B/vw4djurJjSnx7B7hSU6Ji8eC9f/1u56iUpu4jnfzsIwGODW3Nnz+ami1e1YZzC93t0An9KYqqSTzac5HBCDm4Otrw5ujM/PRpBmJ+LucMCwMnOho/GduP/hrcB4Ot/z1Cq05s5qmtn3UkpgLDhhl5LojKNDYT0N/w9brt5YxFCWBa9oUpHY2Nn5kCaHuMKfJetlMqp2OQcwK+KSqnsglLOpOUD0K25e32EKoQQTVJ2QSm/RJ0DILKjn5mjqTuRHf1xd7QlMbuIf44m89PueIa8t4kBb23kjVVHKyRB/j2ZyqQFu9kfn4VWo2Z092b0DPGgpEzP3NVHzfgqrFNhiY4pS/by+abTADw+pDXv390VOxvDeWy3IHd+ejSCe/sGoyjw2sqjvPz7YcrKEwx6vcLTy/eTXVhKl+ZuPDEsrM5iC2/pRf/WXhSW6pj24z6eWb6fgpLLL8bSlJSU6fnrgKFy7ZNx3RnbJ7hOEoF1SaVS8ciglng7a0nMLmLt4SRzh3TNGkFSqgn1k6qJkH6GPyUpVXfSTsKRP0AnH9bCikmllNk4V3P63tUqpaLPZQGGqSUeTjINUwgh6sqyPXHkl+ho5+/CoDY1nxplaextNdzRw9DwfPIPUTzzywHiMwxjzpdbzvDKH4fR6xWizmbyyHdRlOj0jOjoz7aZQ3h/TDdev70TahWsOpjEDuk/VG0pOUWM/XI7qw8lodWoef/ursy4oW2lXpA2GjWv3taJF25sj0oF3+84S5fZfzNq3lYeWLSbf0+mYW+r5oMx3bDV1N1pvEatYtGkPkwb0hqVCn7ac46bP/mPvXGZdfYc1mrziVSyCkrxdbGjf2vLrZq0s9FwT3gIAAutcAqflSelNNB6qLmDsGzBfQ1/xu+SJEptlBbC/mWw4Eb4tBf8dB+snAE1bSaXfhr++wByLj9nXIh6Vd5TSmMrlVINzfVqSamciivvwYVKqcyCUorLdABEx2UB0k9KCCHq2uIdZwF4dFDLRreIxLjyKXx6Bbydtbx4U3vm3NYRlQoWbT/LtKX7eGDhbgpLdVwX5s3H47rj7WwYg9r5u3JPuKFh+uw/j8hqbdVQUqZn7Jc72H8uGw9HW354KJzR5YnBqqhUKh4e2JLP7umBq70NBSU6ouOz2HTcMJ30hZs60MrHuc7jtNGo+b8b2rLkob74u9pzJjWfOz7fxuw/D5N/mdWCm4Lf9hkqJm/rFmi2pubVdW94MLYaFXvOZl7Tao6W4NrWjLQ0zXuBg4e5o7Bsvh3Azg2KsyH5EAR2M3dE1if9NHx3G2SXN4VUqQ3JqL2LwK8jhD96bcdL3A/f327o9fXvBzDiDeg23vBYzBbY8g4kHQTPUPBpZ7h1vgvcmtXt6xJNl14HGL5IamykwqahXZi+d7meUuWVUhclpdwcbNHaqCkp05OaW0xzD0ei4w1XMCUpJYQQdSs9v5QgP1du7hJo7lDqXGtfF+bd04OswhJGd2+Og9YwfcxJa8PTy/ezsnyqUo9gd764rydam4o1DDOGt+WP6ASOJuawbHe8KUklqrYi+jxn0vLxdtay/H/9aOHtVK39RnYOYFgHP2LT8jmWlMvxpFw8nLTcW8+/74hWXqx+4jpeXXmEX/eeZ8HWWP4+nMyHY7vRu4VnvT63pckuLOWfoykAjOpu+edhvq723NQ5gBXRCSzYFsP7d3czd0jVZt2VUlIldXVqDQT1MfxdpvBdu8xYWHSrISHlEgDXvwDTD8HwOYbH18yE0xurf7z4XbDwFkNCysbBkCz8fQp8Pwq+HQHf3Qqx/0JRFiTsg/0/wj+z4LMIOPRLPbxA0SSVT90D0Mjqew3Oxc5wPSjvMlceTT2lLpq+p1Kp8Cm/Up2SW0xyThG7YjIA6CpJKSGEqHMPXRdap1OkLMlNXQIYHx5iSkgB3NGzOR+N7Y5Wo6ZjoCsLJvbBUVu5fsHTScv0YYamyu/+fZy0PFnh+3J0eoX5mw09pB6+rmW1E1JGtho1YX4u3NI1kKci2/LggNAGqdzzcNLy/t3dWPRAH5q5O3A+q5DJP0RRWKKr9+e2JGsOJVJSpqeNnzMdAlzNHU61TOwfCsBf+xNJza27/5tn0/P5YvNp4tLrZ5ED6/6klaRU9YREGP6UpNS1yYqHRbdAzjnwbgOPboFBzxgqlvpNg67jQNHBzxMN1VSXOvQLvNEcPu0Nvz4Km9+B70YZElHBETDjiCG5pbGDM5sgfofh730egYc3wN3fw5AXIaCbYZ/lD8Bvk6E4t2F/D6Lx0V2o0JFKqYZ3pZ5SiqKQXL76nt9FSSnDz8Zm50W88NtB8kt0dGnuRldpci6EEHXKzcGGMb2DzB1Gg7ulayC7XxjGH1MH4OZ4+Z6T90WE0NbPhYz8Ep775UClVeKEwbojSZxJzcfV3sYqK8oGtfHh7ycHEuTpQFpeCYt3njV3SA3q173nAbi9e3OrmcbbLcid7sHulOj0LNkZVyfHzCsu475vdjF39TEGv7uRqUv21vn0QOuevufdxtwRWIfg8qTU2e2GaWdW8p/KrHKTDAmprDjwbAn3/wHOvhceV6ng5g8h/RSc222ophr/M/h1MDx+4m/49RHDCmdpuZB24sK+LQfD2CWgdYL+T0DbG2HDa+DWHCKmgmuAYbtmPQ1/9p8Om9+Cf9+D/Uvg3C6YtLpiPEJci4uSUrbSU6rBGafv5VQxfS8jv4SS8pV2Lk1KGZudf/tfLLtiM7DVqHjnzq4WtwqMEEJYu3F9QqqsEmoKrpSMMrLVGJptj5q3lX+OprB4Zxz39g1pgOish6IofFa+0t79ES1MY7+1cbKzYer1rXn2l4PM33y6UoVdY3U+q5Cd5RXpt3Wzrmm8E/u1YF9cNF//e4Y+oZ5EtPKq1fFe/fMIcRkFONhqKCzV8deBRP46kIiHoy2uDra42tvSpbkbL9zUvtLnprHVxNVYd6WUJFeqJ7AHaLSQnwIZZ8wdjXVY+X+QGQPuITDhzwuJoovZ2sOYH8CrtaGa6ttIOL3BkPz76X5DQqrTnXDPzzDoOQiLhJ6TYNwyQ0LKyDsM7l4Eka9X/TwaW0PF1MSV4NrMkAhbfBcU59Xf6xeNm748GaJSY2PbNL90m5PLFSqlTqYY/l/7udpV6uPhW14ptSvW8CVp2pAw2vq71GeoQgjRJFljVUtD6xDoyjMj2gLw2sojnEqR76UX23Y6nQPnsrG3VTOpfwtzh1Mro3s0p7lH06qWWrHPUCXVt6Unge4OZo7m2tzYOYDwUE9yi8uY8O0ufo8+X+NjrT2cxLI98ahUsGBSb1Y9fh23d2+GRq0is6CUs+kFHDyfzeKdcbyx6miFfROzC3l8yb5qPY91J6VE9djaGxJTAHE7zBuLNTi9AY79BSoNjFtqqGC6HBd/eHAdhPSH4hz44U5DwqisEMJugNvnQ5sb4PqZMP4nuOVDw/tREyH9DAkyB09IjIblk2RFRVEzxp5SattG2y/DkhmTUlX1lNp2Kg2APqGVr2pdXDnVIcCVyYNb1VOEQgjRtHk6ydT26nigfygDWntTVKpn+rJ9lJTpzR2Sxfhs0ykAxvQKwsvZuqvSbTVqpl7fGoD5m89YXW+pxOzCak0xPZWSx7yNp7j9s628+/dxAEZ3v8J5oIWy1ahZ9EAfbuzsT4lOzxNLo5m/+fQ1T7NNyS1i5q8HAXhkYEv6tvSiQ6ArH4zpxt4Xh7PuyYEs/18Er9/eCYAfdsSx+YRhlciSMj2PLd5LRkHVi/pcSs5GmgpTX6lt5o3D0ulKYfWzhr/3eeTCdLwrcfSE+36DLmMMPaZKcg1TJu9aZKhyqktereCenwxN0k/+DX9NN0zJFOJaGKfvabTYaqTitKG5XmH1vW2n0wHoX0Wpta+L4UutjVrF23d2kYSiEEIIs1KrVbx3d1fcHW05dD6Hu+Zv42hijrnDMrvtp9PZeiodjVrFwwNbmjucOjG6R3OauTuQllfMkl1V9yoqKCm77MrC1aEoCucyC0gpX/ClLny8/iQRczcwZcleSnWXT5r+tCee4R9s5p21x9kXl4WiwPVtfbilq3VN3TOyt9Xw6bgePDjA0Pj8zdXHWHkw8Yr7rDmUxMiP/iXygy3cNX8bY7/YQUZ+Ce0DXJkxvGLbJDdHW8L8XOjVwpPx4SFM7NcCgGeW7ye7oJTXVh5hX1wWLvbVm+op32ibCmNfKamUurKdXxj6Pzl6w+Dnqr+fjR3c/gVEzoXu9xkqrLSO9RNjUG+481tQqWHf94aKqYKM+nku0TiZklI22Ehio8E521U9fS+/uIzo+CwA+rf2rrTfkHa+9GnhyaujOtGpmVu9xymEEEJcjZ+rPR+N7Y6LvQ37z2Vzyyf/8faaYxSVWlc1TV05kpDDo9/vAeCOHs1o7lFP5wMNTGujZuoQQ7XU55sqr8K28kAi4W+s57q3N7K//LtMdZSU6fkl6hwzlkUz4K2NDHhrI0Pe20x8Ru1XeTuckM3H608CsOpgEo8t3ktxWeV/l3/uTyhv2A/9W3vxxu2d2TFzKAsm9bHq/llqtYqXbu7Ao+WJ0Q/WnUCnr7qYYcHWGCYvjuJoYg7Hk3PZHZvJmbR8tDZqPhzTDTubK/8enh3RjpbeTiTnFDPmy+18t90wzfPNO7pUL9ZreF3CmgX1AVSGfkR5KeaOxjLlJsOmNw1/HzYLHNyvbX+VCiIeg9s+vfZ9r1W7Gw2N1lUaOPwbzAuHYyvr9zlF46GXSilzMk7fKyjRUXbRVbtdMRmU6RWCPB0I8qz8JdbL2Y6f/hfBuD7S60QIIYTlGNTGh/UzBjGykz9lekOD7+ve3sj7fx8nMbvQ3OE1mDOpedz/7U5yisroFeLBK7d2NHdIdeqOHs3LV+IrZtj7m3l7zTFSc4t5dvkBpizZS25RGVkFpdz7zU7TRbYr2X46nZEfbeH/ft7Pr/vOcz7L8G8lr7iMuauPXmXvKyvT6Xn2lwOU6RW6BrmjtVGz7kgy//s+qkLC9J8jyTy5LBq9AuP6BPPDg+HcEx6Mv1sN261YoKlDWuPmYMvp1Hz+OpBQ4TG9XuH1lUeY/ecRFAXGhxt+B5+N78Hc0Z1Z/r+IavUvddBqeO/urqhVcCzJsFL840PDGNSmegtzSVKqqXDwAN/yqWhSLVW19XMMU+8Cu0O3e80dzdX1nAAPrQOfdoYm9kvvgTXPmzsqYQ0u7imllmGgoV28As/FfaW2lveT6t+qcpWUEEIIYcl8Xe35/N6efHFfTwLc7EnNLebjDafo/+YGHv1+D8eSGve0vvNZhdz79U7S8kroEODKNxN7N7oVHLU2ar57IJwBrb0p0en5bNNp+rzxj6kR9mODW9G7hQe5RWXc9/VO9sVVXHmtqFRHfEYBUWczmfFTNOO+2sHp1Hy8nbVMub4V3z/Yh18f64daZahs2l7e0qAmvvkvhkPnc3C1t+Gr+3ry7YTe2Nuq2Xg8lUHvbOT2z7YyacEuHluylzK9wqhugbw2qhOqRriQmou9LQ9fZ5jG9/H6k6ZqqTKdnunLovnq3xgAnhnRltdGdWJAmDc3dg5gXJ9gujR3r/bzdA/2MPUeG9TGhyeGhlV738b1P0VcWUgEpByG3V9Du5tAbb3liHUuIRqiFxv+PvIdsJYT9WY94ZHNsGkubP0IdsyDLncZEmtCXI6xQb7GFlsbK/m33ohobdT4utiRklvMpuOpjOreDICt5V+++lUxdU8IIYSwBpEd/RnSzpe/Dyfz/Y5YdpzJYO3hZNYdSeaunkHMuKFNhYU7GoO84jImfruLhOwiWvo48d2DfXBzqOO+shYi1NuJ7x/sw7ojyby28ihxGQX4u9rzwZhuRLTyIq+4jAcW7GZXbAb3fLUTP1c78kt0FJboKi3wolIZKnOevqEdbo4Xfl/jw0P4fsdZZv95mJWPX4dGfW2Jopi0fN5fdwKAF2/ugK+rPb6u9iyY2IeHFu0mOaeY5Jxi0/aRHf14966u1/w81mRCvxZ8/V8Mp1Pz+XN/Ajd1CWD60mhWHkw09Sod3aP2Td2fHN6GQW196NTM7Zp+n5KUakp6PwzRSyBms6EqaPhsc0dkGRQF/n4RUKDzXYaeTdbE1t7wXuYkwMGfYONcw0p/QlyOafqeLTaNeAC2ZBP6teCdtcf5fNNpbu0aSFZhqak5bETLyk3OhRBCCGthq1FzU5cAbuoSwMnkXD745wSrDhqWlv9jfwIPXRfKIwNbVqgctgZHEnJYtjuO+yJa0NrXGTBMf/q/n6I5mZKHn6sdPzwYjreVr7Z3NSqVihs6+jOwjQ/bTqfRM9jTlFRytrNhwaTePLBwNztjMoi9pPeU8cJcSx9nnhwWRvdgj0rHnzG8DX/sT+BYUi4/7opjTO8gVh1MZHnUOTwctfxvUCs6BLpWGVtGfgnTl+6juEzPgNbe3NXzQqIlopUXW58bwonkPDILSsgqKMFRa0NkR/9G32PVUC3VknfWHufj9SdZeziJ1YeSsNWo+Hx8T4Z18KuT51GpVPQM8bzm/SQp1ZT4toNbP4FfHoStHxqqaTqOMndU5ndiLcT+Cxo7GPqyuaOpucHPwaFf4ORaOLcHmvcyd0TmFbsV4rZDfpphemNxHvi0NfxemvcGV+tcTaNOGKfvabSygpuZ3Ns3hPmbTnM8OZf1x1JMy2i39XPBx6Vxf5kVQgjRdIT5ufDZ+J5Enc3kjVVHiTqbyScbTrF4ZxzThrTmnvDgqzZRvhZpecV4OWlrPA0rOaeI36PPc2PngApNyrMLS3lw0W4Ss4tYHnWOd+/qysjOAczbeIq1h5PRatTMv7cnge4OdfVSLJ69rYYh7SonM5zsbFjycF/T9D0HrQZHrQ2ejlpcHWyu+t54OGmZMbwNs/44zDtrjzNv4ykSsy+syPfH/gQiO/oxbUhYhYVfTiTn8uCi3cRnFOJiZ8Pc0Z0rPZe7o5Y+odeeNGkM7o8I4at/z3AmLd/QxFyjZv59Pap8Dxua2c5G5s2bR4sWLbC3tyc8PJxdu3aZK5SmpfOd0G+a4e8rHoOU2jWRs3q6Ulj3kuHvfSeDuxU3EPZqBV3HGv6+8Q3zxmJOyUfghzth4Y2w4VXY+fmFZN22j+Gn++H99vBee8Pft30Kx9fA7m9g3cuw/AH4eRL8Nhn+nA6b3oL4XRemvDUGxteitkGjViHFUg3PzcGWeyNCAPh04ym2njb0k+rXWqqkhBBNx7WeD/z888+0a9cOe3t7OnfuzKpVqyo8rigKL7/8MgEBATg4ODBs2DBOnjxZny9BVFPPEA+W/y+C+ff2oKWPExn5Jcz+8wjD39/CxuO1X4QpNbeY/30fRa/X/uGu+duv2mj7VEoeCVkXmrDr9Qrfb49l2HubeWPVMcZ8sYPknAuJkDl/HiExuwiNWkV+iY7Ji/cyZfFe3v/HME3stVGdqqz6aao0ahW9WnjSq4UnHQPdCPV2ws3RttrJwvHhwbTxcya7sJTE7CK8nbU8PjSMm7sEoFLB2sPJ3PzJfwx5dxOv/XWE77fHcvu8rcRnFBLs6cgvj/WrctGYpsxYLQWGirUv7u9pEQkpAJWiKFWvC1iPli1bxv3338/8+fMJDw/nww8/5Oeff+b48eP4+l69Q3tOTg5ubm5kZ2fj6lp16Z64Al0Z/DDaMI3PyQcGPg09J4JNE7w6v/trWPl/4OAJT0SDvZUvs54RA5/2An0ZPLAWgvuaO6KGk5NgWD1x3/eg6EFtCx1uBbcgcPY1/PtOOgjnogy91RT91Y95MXt3CL0OHL0Mx9Zowc7Z8H/I0QscPQ33qW1BY2tIEtpdfbUKszj6Fywbb6gYe+gfWj/9C6ffvbPRfqZa6piRmlvMgLc2UFymx8FWQ2Gpjq/v71VnJdRCCFEf6uoz9VrPB7Zt28bAgQOZO3cuN998M0uWLOGtt95i7969dOrUCYC33nqLuXPnsmjRIkJDQ3nppZc4ePAgR44cwd7+6n2MLHW8aGzKdHp+jjrHB+tOkJJr6O1zY2d/Xr65Y7VWPcvIL0EFuDrYolbB79EJvPLnYbIKSitsd2vXQB4f2ppWPs6mZEh0fBbvrD3G1lOGPo4tvByJaOXN8aQc9sZlAWCrUVGqU+gQ4MpP/4tg26k0Hvk+CrUKfny4L+uPpfDlljOm57mvbwivjupUB78ZcbGjiTnM23iKgW18uLVrIPa2hoq6k8m5fLzhFKsPJlKmr5jK6NvSk8/H98TDSWuOkC1ecZmO+ZvO0L+1F71a1H/FWHU/U82SlAoPD6d37958+umnAOj1eoKCgpg2bRrPPffcVfeXAaMO5KcbKklSjxl+dm0O1z0JLa8Hj1DrafRdUwUZcGYTrHoaCtIMzc3DHzF3VHXjj8dh7yJocR3ctwI0l8zSLSsGvQ60jeTqQV4K/PeBodJJV960sP0tMGy2ITFUlZJ8OL8Xzu0yTHXMige3ZuAeYqiWU9tAWZHhlnoMTm+Aouxri0ttA837QKvrITjCcHyXALC1gLLuw7/BzxMhpD9MWsUDX25mwaODG+1nqiWPGbN+P8Si7WcBw1XF6JeHW12PDSFE01JXn6nXej4wZswY8vPz+euvv0z39e3bl27dujF//nwURSEwMJD/+7//46mnngIgOzsbPz8/Fi5cyNixYxvstYnqySsu48N1J1iwLRadXsHBVkNLHyfcHW1xd9Ti6ajFy1mLl7MdiqKw92wme85mci7zQoWTo1ZDQYkOgA4Brjw3sh2/Ryfw675zGM9yvZy09AjxQFEU/jlqqMqyUavQKwoX5zSc7Wx4OrItA9v4cOfn20jPL6F/ay+OJ+WSllfCo4NaMnNkewBWHUzk+d8O0i3InS/v64VWFo5pcLlFpfx7Mo31R1PYcSad4R38eOGm9tKawoJYbFKqpKQER0dHli9fzqhRo0z3T5gwgaysLH7//fdK+xQXF1NcfKFDfk5ODkFBQTJg1FZZCUT/AJvfgdyEC/drXcC/k6H6A0ClNiyPgLXO8VEMzcyNlTG5iZCw78LPXmHw2HZDdUtjkBUPH3c3NLNW2xgqhdyDDD2Vss8Z+iuB4f11aw6uzS689ks/DhS9of9QWbFhqqO+1FCFpS8DVKB1MtxsHUBVg34Ais5QuacrMRxTrSmvNrIpXx3S+G+u/P3T68v/LC2PqwSSDkBpeRPF4AhDX7CQfjX4xV2BrgwS9kLcDigtLH/+UijOKe9ZlQaFmRfuLy2A/NSqj2XvDk7e4OBhuNnYl///MmqA/2fZ5+D8HggdBBP+aPRfwi359Z3LLGDwO5so0yt0D3bnt8f6mzskIYS4orr4TK3J+UBwcDAzZsxg+vTppvtmzZrFihUr2L9/P2fOnKFVq1bs27ePbt26mbYZNGgQ3bp146OPPqp0TDnHsAxHEnJ4YcVB9pVXKl0rW42Kx4eE8b/BrUwJiUPns3ln7XG2n06nRHehOl6tgtE9mjN9WBiuDrbsjslg2+l0FAUeHhhKgJvh4mF0fBZjv9xOUalh3zZ+zvwxdYCpWgcMFV8atarG/auEaOyqO140eKPztLQ0dDodfn4Vpyf4+flx7NixKveZO3cus2fLSnF1zkYLvR6ArvdA1AI48BMkH4aSXEOD6MbOpz20Hgp9H2s8CSkwJKAGPweb3zZUDmXGGG6XKkg33BL3N3yMda1ZT7j+BWg15JIETx3R2EBQH8OtujJi4MxGQ5VV8mHISYSyQijKMtwsgbNMEzO35h6OjO7RjJ/2nGNI26tPXxdCiMagJucDSUlJVW6flJRketx43+W2uZScY1iGDoGu/PK/fhxJzCEtr5isglIyC0rIzC8hLb+EtNxiSnV6Ojd3p1eIB92D3bG31ZBTWEpOURluDrZ4XjJdq1MzNxY90IfiMh2Hzuew92wmafnF3NmjOWF+F9orDG3vx9D2lb8PdQty59NxPXjk+z2oVSreu6tbhYQU0OhXbBOioVjF6nszZ85kxowZpp+NVzFEHbG1NzT57jvZUBGSdqI8OZVXXk2kVK6gsUYqteGmdYYW/Rv36msDn4IBMwxVYZmxkBUH9q6Gqii3IEMVUna8oaoqN/Hy/ZVUKsOqhDZ2hsTdxVVMClCab5gKV5Jf81ht7Ax9mNQ25ZVT5VVQl8ZkfP9U6guxaLSGxEpQn/pJRtWGZ6jh1usBw8+KYpgCmJtkSAYWZkJhhqEKzRzUNtDuZvM8t6hgzm2duL6tL0PaS1JKCCEakpxjWA61WlVhJbXq8HK2w8v5yj1x7Ww09AzxoGfItTchH9bBj7+mXYdKBe0DpHJOiPrS4Ekpb29vNBoNycnJFe5PTk7G39+/yn3s7Oyws2uCTbjNQWMDfh0MN2Hd1GpDHyO3ZkAVU4Ic3MG/c0NH1XSpVIbfuYO7uSMRFsbeVsPIzgHmDkMIIRpMTc4H/P39r7i98c/k5GQCAgIqbHPxdL6LyTmGuJoOgZKMEqK+NXjNoVarpWfPnqxfv950n16vZ/369URERDR0OEIIIYQQQogGVJPzgYiIiArbA6xbt860fWhoKP7+/hW2ycnJYefOnXKOIYQQFsws0/dmzJjBhAkT6NWrF3369OHDDz8kPz+fSZMmmSMcIYQQQgghRAO62vnA/fffT7NmzZg7dy4ATzzxBIMGDeK9997jpptuYunSpezZs4cvv/wSAJVKxfTp03nttdcICwsjNDSUl156icDAwArN1IUQQlgWsySlxowZQ2pqKi+//DJJSUl069aNNWvWVGpMKIQQQgghhGh8rnY+EBcXh1p9YVJHv379WLJkCS+++CLPP/88YWFhrFixgk6dOpm2eeaZZ8jPz+eRRx4hKyuLAQMGsGbNGuzt7Rv89QkhhKgelaJYXwdrS17eWwghrE1j/0xt7K9PCCEaUmP+TG3Mr00IIRpadT9TZR1LIYQQQgghhBBCCNHgzDJ9r7aMxV05OTlmjkQIIayf8bPUCgtnq0XGDCGEqDuNecyQ8UIIIepOdccLq0xKpaenAxAUFGTmSIQQovFIT0/Hzc3N3GHUORkzhBCi7jXGMUPGCyGEqHtXGy+sMinl6ekJGBogXutg2Lt3b3bv3l3j587JySEoKIj4+Pgq50XW9vhXUp/HbkzHv9p7VNvj15emcPyavjeWEHtjPn52djbBwcGmz9bGpqZjhjWPF3L86h+/PsaMxvK7Mefxa/O+WEL8lnr8ujh2Yx4z5ByjfjSW48s5RsMfv7rHlnMMyzx+dccLq0xKGVficHNzu+YPBI1GUycfIq6urlUep66OX5X6PHZjPP7l3qO6On5da0rHv9b3xpJib8zHv3iVo8akpmOGNY8XcvxrP35djhmN7XdjzuPX5H2xpPgt7fh1eezGOGbIOUb9aGzHl3OMhjv+tR5bzjEs8/hXGy8a32hyFVOmTLHa41tz7HJ8Ob6lHluOLy7H2t83Ob75jm/NscvxG/fxZbyoP/LvQo4vx7euY8vxzX98I5VihV0KzblcqywVa/nkPbJc8t5Ypsb+vpjr9TX232tjIe+TZZL3xXI15vdGzjHElch7ZLnkvbFM1X1frLJSys7OjlmzZmFnZ9eknltUj7xHlkveG8vU2N8Xc72+xv57bSzkfbJM8r5Yrsb83sg5hrgSeY8sl7w3lqm674tVVkoJIYQQQgghhBBCCOtmlZVSQgghhBBCCCGEEMK6SVJKCCGEEEIIIYQQQjQ4SUoJIYQQQgghhBBCiAYnSalLxMfH88ADDxAYGIhWqyUkJIQnnniC9PT0au2/adMmVCoVWVlZ9RtoEzNx4kRUKhVvvvlmhftXrFiBSqUyU1QCLrw3KpUKW1tb/Pz8GD58ON9++y16vd7c4QlRb2S8sFwyZlgmGS9EUyXjheWS8cJyyZjRdEhS6iJnzpyhV69enDx5kh9//JFTp04xf/581q9fT0REBBkZGeYOsUmzt7fnrbfeIjMz09yhiEuMGDGCxMREYmNjWb16Nddffz1PPPEEN998M2VlZeYOT4g6J+OF5ZMxwzLJeCGaGhkvLJ+MF5ZLxoymQZJSF5kyZQparZa///6bQYMGERwczMiRI/nnn384f/48L7zwAgDFxcU8++yzBAUFYWdnR+vWrfnmm2+IjY3l+uuvB8DDwwOVSsXEiRPN+Ioal2HDhuHv78/cuXMvu80vv/xCx44dsbOzo0WLFrz33numx55//nnCw8Mr7dO1a1fmzJlTLzE3FXZ2dvj7+9OsWTN69OjB888/z++//87q1atZuHAhAFlZWTz00EP4+Pjg6urKkCFD2L9/f4Xj/Pnnn/Tu3Rt7e3u8vb25/fbbzfBqhLg6GS8sn4wZlknGC9HUyHhh+WS8sFwyZjQNkpQql5GRwdq1a3nsscdwcHCo8Ji/vz/jx49n2bJlKIrC/fffz48//sjHH3/M0aNH+eKLL3B2diYoKIhffvkFgOPHj5OYmMhHH31kjpfTKGk0Gt544w0++eQTzp07V+nxqKgo7r77bsaOHcvBgwd55ZVXeOmll0wfWOPHj2fXrl2cPn3atM/hw4c5cOAA99xzT0O9jCZjyJAhdO3alV9//RWAu+66i5SUFFavXk1UVBQ9evRg6NChpiuEK1eu5Pbbb+fGG29k3759rF+/nj59+pjzJQhRJRkvrIOMGdZDxgvRWMl4YR1kvLAuMmY0QopQFEVRduzYoQDKb7/9VuXj77//vgIoO3fuVABl3bp1VW63ceNGBVAyMzPrL9gmaMKECcptt92mKIqi9O3bV3nggQcURVGU3377TTH+M77nnnuU4cOHV9jv6aefVjp06GD6uWvXrsqcOXNMP8+cOVMJDw+v5+gbt4vfm0uNGTNGad++vfLvv/8qrq6uSlFRUYXHW7VqpXzxxReKoihKRESEMn78+PoOV4hak/HC8smYYZlkvBBNjYwXlk/GC8slY0bTIZVSl1AU5YqPx8bGotFoGDRoUANFJC711ltvsWjRIo4ePVrh/qNHj9K/f/8K9/Xv35+TJ0+i0+kAw5WMJUuWAIb3+scff2T8+PENE3gTpCgKKpWK/fv3k5eXh5eXF87OzqZbTEyM6apSdHQ0Q4cONXPEQlSfjBfWQcYM6yDjhWjMZLywDjJeWA8ZMxoXG3MHYClat26NSqXi6NGjVc4xPXr0KB4eHpVKb0XDGzhwIJGRkcycOfOa59SPGzeOZ599lr1791JYWEh8fDxjxoypn0AFR48eJTQ0lLy8PAICAti0aVOlbdzd3QHk/5awGjJeWBcZM6yDjBeiMZLxwrrIeGE9ZMxoXKRSqpyXlxfDhw/ns88+o7CwsMJjSUlJLF68mDFjxtC5c2f0ej2bN2+u8jharRbAlDUX9ePNN9/kzz//ZPv27ab72rdvz9atWytst3XrVtq0aYNGowGgefPmDBo0iMWLF7N48WKGDx+Or69vg8beVGzYsIGDBw9yxx130KNHD5KSkrCxsaF169YVbt7e3gB06dKF9evXmzlqIa5OxgvrI2OGZZPxQjRWMl5YHxkvLJ+MGY2Q2SYOWqATJ04o3t7eynXXXads3rxZiYuLU1avXq106tRJCQsLU9LT0xVFUZSJEycqQUFBym+//aacOXNG2bhxo7Js2TJFURTl3LlzikqlUhYuXKikpKQoubm55nxJjUZVc4rvu+8+xd7e3jTfOyoqSlGr1cqcOXOU48ePKwsXLlQcHByUBQsWVNjvq6++UgIDAxVvb2/l+++/b6BX0HhNmDBBGTFihJKYmKicO3dOiYqKUl5//XXF2dlZufnmm5WysjJFr9crAwYMULp27aqsXbtWiYmJUbZu3ao8//zzyu7duxVFMfRLUKvVyssvv6wcOXJEOXDggPLmm2+a+dUJUTUZLyybjBmWScYL0RTJeGHZZLywXDJmNB2SlLpEbGysMmHCBMXPz0+xtbVVgoKClGnTpilpaWmmbQoLC5Unn3xSCQgIULRardK6dWvl22+/NT0+Z84cxd/fX1GpVMqECRPM8Coan6oGjJiYGEWr1SoX51aXL1+udOjQQbG1tVWCg4OVd955p9KxMjMzFTs7O8XR0VEG9TowYcIEBVAAxcbGRvHx8VGGDRumfPvtt4pOpzNtl5OTo0ybNk0JDAw0/d8aP368EhcXZ9rml19+Ubp166ZotVrF29tbGT16tDlekhDVIuOF5ZIxwzLJeCGaKhkvLJeMF5ZLxoymQ6UoV+m8J4QQQgghhBBCCCFEHZOeUkIIIYQQQgghhBCiwUlSSgghhBBCCCGEEEI0OElKCSGEEEIIIYQQQogGJ0kpIYQQQgghhBBCCNHgJCklhBBCCCGEEEIIIRpck0tKzZ07l969e+Pi4oKvry+jRo3i+PHjFbYpKipiypQpeHl54ezszB133EFycrLp8f379zNu3DiCgoJwcHCgffv2fPTRRxWO8euvvzJ8+HB8fHxwdXUlIiKCtWvXNshrFEIIUTdkzBBCCFEdMl4IIUTNNLmk1ObNm5kyZQo7duxg3bp1lJaWcsMNN5Cfn2/a5sknn+TPP//k559/ZvPmzSQkJDB69GjT41FRUfj6+vLDDz9w+PBhXnjhBWbOnMmnn35q2mbLli0MHz6cVatWERUVxfXXX88tt9zCvn37GvT1CiGEqDkZM4QQQlSHjBdCCFEzKkVRFHMHYU6pqan4+vqyefNmBg4cSHZ2Nj4+PixZsoQ777wTgGPHjtG+fXu2b99O3759qzzOlClTOHr0KBs2bLjsc3Xs2JExY8bw8ssv18trEUIIUb9kzBBCCFEdMl4IIUT1NLlKqUtlZ2cD4OnpCRiuUJSWljJs2DDTNu3atSM4OJjt27df8TjGY1RFr9eTm5t7xW2EEEJYNhkzhBBCVIeMF0IIUT025g7AnPR6PdOnT6d///506tQJgKSkJLRaLe7u7hW29fPzIykpqcrjbNu2jWXLlrFy5crLPte7775LXl4ed999d53FL4QQouHImCGEEKI6ZLwQQojqa9JJqSlTpnDo0CH++++/Gh/j0KFD3HbbbcyaNYsbbrihym2WLFnC7Nmz+f333/H19a3xcwkhhDAfGTOEEEJUh4wXQghRfU12+t7UqVP566+/2LhxI82bNzfd7+/vT0lJCVlZWRW2T05Oxt/fv8J9R44cYejQoTzyyCO8+OKLVT7P0qVLeeihh/jpp58qlOsKIYSwHjJmCCGEqA4ZL4QQ4to0uaSUoihMnTqV3377jQ0bNhAaGlrh8Z49e2Jra8v69etN9x0/fpy4uDgiIiJM9x0+fJjrr7+eCRMm8Prrr1f5XD/++COTJk3ixx9/5KabbqqfFySEEKLeyJghhBCiOmS8EEKImmlyq+899thjLFmyhN9//522bdua7ndzc8PBwQGAyZMns2rVKhYuXIirqyvTpk0DDPO6wVBOO2TIECIjI3nnnXdMx9BoNPj4+ACGctoJEybw0UcfVVjq1cHBATc3t3p/nUIIIWpPxgwhhBDVIeOFEELUkNLEAFXeFixYYNqmsLBQeeyxxxQPDw/F0dFRuf3225XExETT47NmzaryGCEhIaZtBg0aVOU2EyZMaLgXK4QQolZkzBBCCFEdMl4IIUTNNLlKKSGEEEIIIYQQQghhfk2up5QQQgghhBBCCCGEMD9JSgkhhBBCCCGEEEKIBidJKSGEEEIIIYQQQgjR4CQpJYQQQgghhBBCCCEanCSlhBBCCCGEEEIIIUSDk6SUEEIIIYQQQgghhGhwkpQSQgghhBBCCCGEEA1OklJCCCGEEEIIIYQQosFJUkoIIYQQQgghhBBCNDhJSglRhwYPHsz06dPNHYYQQggLJ+OFEEKI6pIxQzRmkpQSQgghhBBCCCGEEA1OklJC1JGJEyeyefNmPvroI1QqFSqVin379jF+/Hh8fHxwcHAgLCyMBQsWmDtUIYQQZiTjhRBCiOqSMUM0djbmDkCIxuKjjz7ixIkTdOrUiTlz5gAwe/Zsjhw5wurVq/H29ubUqVMUFhaaOVIhhBDmJOOFEEKI6pIxQzR2kpQSoo64ubmh1WpxdHTE398fgPPnz9O9e3d69eoFQIsWLcwYoRBCCEsg44UQQojqkjFDNHYyfU+IejR58mSWLl1Kt27deOaZZ9i2bZu5QxJCCGGBZLwQQghRXTJmiMZEklJC1KORI0dy9uxZnnzySRISEhg6dChPPfWUucMSQghhYWS8EEIIUV0yZojGRJJSQtQhrVaLTqercJ+Pjw8TJkzghx9+4MMPP+TLL780U3RCCCEshYwXQgghqkvGDNGYSU8pIepQixYt2LlzJ7GxsTg7O/Pxxx/Ts2dPOnbsSHFxMX/99Rft27c3d5hCCCHMTMYLIYQQ1SVjhmjMpFJKiDr01FNPodFo6NChAz4+Pmi1WmbOnEmXLl0YOHAgGo2GpUuXmjtMIYQQZibjhRBCiOqSMUM0ZipFURRzByGEEEIIIYQQQgghmhaplBJCCCGEEEIIIYQQDU6SUkIIIYQQQgghhBCiwUlSSgghhBBCCCGEEEI0OElKCSGEEEIIIYQQQogGJ0kpIYQQQgghhBBCCNHgJCklhBBCCCGEEEIIIRqcJKWEEEIIIYQQQgghRIOTpJQQQgghhBBCCCGEaHCSlBJCCCGEEEIIIYQQDU6SUkIIIYQQQgghhBCiwUlSSgghhBBCCCGEEEI0OElKCSGEEEIIIYQQQogGJ0kpIYQQQgghhBBCCNHgJCklhBBCCCGEEEIIIRqcJKWEEEIIIYQQQgghRIOTpJQQQgghhBBCCCGEaHCSlBJCCCGEEEIIIYQQDU6SUkJU0yuvvIJKpbrm/SZOnEiLFi3qPiAhhBBCCCGEEMKKSVJKiAZWUFDAK6+8wqZNm8wdihBCCCGEEEIIYTaSlBKigRUUFDB79mxJSgkhhBBCCCGEaNIkKSWEEEIIIYQQQgghGpwkpYSown///Ufv3r2xt7enVatWfPHFF1Vu98MPP9CzZ08cHBzw9PRk7NixxMfHX/a4sbGx+Pj4ADB79mxUKhUqlYpXXnkFgAMHDjBx4kRatmyJvb09/v7+PPDAA6Snp9f5axRCCHF5mzZtolevXhXGgUt7Cy5YsIAhQ4bg6+uLnZ0dHTp04PPPP690rBYtWnDzzTebjung4EDnzp1NFbO//vornTt3xt7enp49e7Jv374K+0+cOBFnZ2fi4uK4+eabcXZ2plmzZsybNw+AgwcPMmTIEJycnAgJCWHJkiUV9s/IyOCpp56ic+fOODs74+rqysiRI9m/f38d/9aEEEJczvLly1GpVGzevLnSY1988QUqlYpDhw4BcOzYMe688048PT2xt7enV69e/PHHH5X2O3DgAIMGDcLBwYHmzZvz2muvsWDBAlQqFbGxsabtfv/9d2666SYCAwOxs7OjVatWvPrqq+h0unp7vUJUl0pRFMXcQQhhSQ4ePEh4eDg+Pj5MnjyZsrIyPv30U/z8/Dhw4ADG/zKvv/46L730EnfffTeDBg0iNTWVTz75BGdnZ/bt24e7uztgOJnYtGkTsbGx5Ofn8/333zN58mRuv/12Ro8eDUCXLl3o0qUL7733Hr///jvDhw/H39+fw4cP8+WXX9K5c2d27NhRo0brQgghrs2+ffuIiIggICCA//3vf+h0OubNm4ePjw/79+83jQN9+vShY8eOdO3aFRsbG/7880/+/vtvPv30U6ZMmWI6XosWLbC3tycnJ4dHH30UNzc33n33XbKzs5k/fz7PP/88jz32GABz587Fx8eH48ePo1Ybrh1OnDiRZcuW0bJlSwYOHEjnzp1ZvHgx27ZtY8GCBbzwwguMHz+e4OBg5s+fz7Fjxzh58iShoaEA7Nmzh7Fjx3LXXXcRGhpKcnIyX3zxBXl5eRw5coTAwMAG/g0LIUTTU1hYiK+vL/fff7/pooLRkCFDSElJ4dChQxw+fJj+/fvTrFkzJkyYgJOTEz/99BP//vsvv/zyC7fffjsA58+fp0uXLqhUKh5//HGcnJz4+uuvsbOzY//+/cTExJgWW7r99tvRarX07t0bZ2dnNmzYwM8//8xTTz3FO++809C/CiEqUoQQFYwaNUqxt7dXzp49a7rvyJEjikajUYz/ZWJjYxWNRqO8/vrrFfY9ePCgYmNjU+H+CRMmKCEhIaafU1NTFUCZNWtWpecuKCiodN+PP/6oAMqWLVtq+cqEEEJUxy233KI4Ojoq58+fN9138uRJxcbGRrn4q1NVn9mRkZFKy5YtK9wXEhKiAMq2bdtM961du1YBFAcHhwrjzRdffKEAysaNG033TZgwQQGUN954w3RfZmam4uDgoKhUKmXp0qWm+48dO1ZpjCkqKlJ0Ol2FmGJiYhQ7Oztlzpw51fiNCCGEqAvjxo1TfH19lbKyMtN9iYmJilqtNn0eDx06VOncubNSVFRk2kav1yv9+vVTwsLCTPdNmzZNUalUyr59+0z3paenK56engqgxMTEmO6varx69NFHFUdHxwrPI4Q5yPQ9IS6i0+lYu3Yto0aNIjg42HR/+/btiYyMNP3866+/otfrufvuu0lLSzPd/P39CQsLY+PGjTV6fgcHB9Pfi4qKSEtLo2/fvgDs3bu3hq9KCCFEdel0Ov755x9GjRpVoYKodevWjBw5ssK2F39mZ2dnk5aWxqBBgzhz5gzZ2dkVtu3QoQMRERGmn8PDwwHD1fGLxxvj/WfOnKkU20MPPWT6u7u7O23btsXJyYm7777bdH/btm1xd3evsL+dnZ2p6kqn05Geno6zszNt27aVsUUIIRrQmDFjSElJqbDg0fLly9Hr9YwZM4aMjAw2bNjA3XffTW5urukcIz09ncjISE6ePMn58+cBWLNmDREREXTr1s10LE9PT8aPH1/peS8er4zHve666ygoKODYsWP19nqFqA4bcwcghCVJTU2lsLCQsLCwSo+1bduWVatWAXDy5EkURalyOwBbW9saPX9GRgazZ89m6dKlpKSkVHjs0hMcIYQQdS8lJYXCwkJat25d6bFL79u6dSuzZs1i+/btFBQUVHgsOzsbNzc3088XJ54A02NBQUFV3p+ZmVnhfnt7e1NPwou3bd68eaWp3W5ubhX21+v1fPTRR3z22WfExMRU6CHi5eVV6XUKIYSoHyNGjMDNzY1ly5YxdOhQAJYtW0a3bt1o06YNu3btQlEUXnrpJV566aUqj5GSkkKzZs04e/ZshYsdRlWNX4cPH+bFF19kw4YN5OTkVHhMzjGEuUlSSoga0Ov1qFQqVq9ejUajqfS4s7NzjY579913s23bNp5++mm6deuGs7Mzer2eESNGoNfraxu2EEKIOnL69GmGDh1Ku3bteP/99wkKCkKr1bJq1So++OCDSp/ZVY0VV7pfuaTlZ232f+ONN3jppZd44IEHePXVV/H09EStVjN9+nQZW4QQogHZ2dkxatQofvvtNz777DOSk5PZunUrb7zxBoDpM/mpp56qMEvjYlUlna4kKyuLQYMG4erqypw5c2jVqhX29vbs3buXZ599VsYBYXaSlBLiIj4+Pjg4OHDy5MlKjx0/ftz091atWqEoCqGhobRp0+aanuNyzcozMzNZv349s2fP5uWXXzbdX1UsQggh6oevry/29vacOnWq0mMX3/fnn39SXFzMH3/8UaEKqqbTt+vT8uXLuf766/nmm28q3J+VlYW3t7eZohJCiKZpzJgxLFq0iPXr13P06FEURWHMmDEAtGzZEjDMuhg2bNgVjxMSEnLVsQoMq8mmp6fz66+/MnDgQNP9MTExtX0pQtQJ6SklxEU0Gg2RkZGsWLGCuLg40/1Hjx5l7dq1pp9Hjx6NRqNh9uzZla5mK4pCenr6ZZ/D0dERMJwMXPrcxv0v9uGHH9bkpQghhKgBjUbDsGHDWLFiBQkJCab7T506xerVqytsBxU/s7Ozs1mwYEHDBVtNGo2m0tjy888/m/qSCCGEaDjDhg3D09OTZcuWsWzZMvr06WNaLdXX15fBgwfzxRdfkJiYWGnf1NRU098jIyPZvn070dHRpvsyMjJYvHhxhX2qGq9KSkr47LPP6vJlCVFjUiklxCVmz57NmjVruO6663jssccoKyvjk08+oWPHjhw4cAAwVEq99tprzJw5k9jYWEaNGoWLiwsxMTH89ttvPPLIIzz11FNVHt/BwYEOHTqwbNky2rRpg6enJ506daJTp04MHDiQt99+m9LSUpo1a8bff/8tVzGEEKKBvfLKK/z999/079+fyZMno9Pp+PTTT+nUqZPpy/8NN9yAVqvllltu4dFHHyUvL4+vvvoKX1/fKk8kzOnmm29mzpw5TJo0iX79+nHw4EEWL15suiIvhBCi4dja2jJ69GiWLl1Kfn4+7777boXH582bx4ABA+jcuTMPP/wwLVu2JDk5me3bt3Pu3Dn2798PwDPPPMMPP/zA8OHDmTZtGk5OTnz99dcEBweTkZFhmp3Rr18/PDw8mDBhAo8//jgqlYrvv/++0sUKIcxFKqWEuESXLl1Yu3YtPj4+vPzyy3z77bfMnj2b22+/vcJ2zz33HL/88gtqtZrZs2fz1FNP8ccff3DDDTdw6623XvE5vv76a5o1a8aTTz7JuHHjWL58OQBLliwhMjKSefPmMXPmTGxtbStcmRdCCFH/evbsyerVq/Hw8OCll17im2++Yc6cOQwdOhR7e3vAsPjF8uXLUalUPPXUU8yfP59HHnmEJ554wszRV/b888/zf//3f6xdu5YnnniCvXv3snLlykpN1oUQQjSMMWPGkJeXB1BhBVUwrNa6Z88ebrrpJhYuXMiUKVOYP38+arW6QouPoKAgNm7cSPv27XnjjTf48MMPmTBhAg888ACAabzy8vLir7/+IiAggBdffJF3332X4cOH8/bbbzfQqxXiylSKpEiFEEIIIa5q1KhRHD58WHr9CSGEsFjTp0/niy++IC8v77KLYQhhSaRSSgghhBDiEoWFhRV+PnnyJKtWrWLw4MHmCUgIIYS4xKVjVXp6Ot9//z0DBgyQhJSwGlIpJYQQQghxiYCAACZOnEjLli05e/Ysn3/+OcXFxezbt4+wsDBzhyeEEELQrVs3Bg8eTPv27UlOTuabb74hISGB9evXV1hpTwhLJo3OhRBCCCEuMWLECH788UeSkpKws7MjIiKCN954QxJSQgghLMaNN97I8uXL+fLLL1GpVPTo0YNvvvlGElLCqkillBBCCCGEEEIIIYRocNJTSgghhBBCCCGEEEI0OElKCSGEEEIIIYQQQogGZ5U9pfR6PQkJCbi4uKBSqcwdjhBCWDVFUcjNzSUwMBC1uvFdq5AxQwgh6k5jHjNkvBBCiLpT3fHCKpNSCQkJBAUFmTsMIYRoVOLj42nevLm5w6hzMmYIIUTda+gxY+7cufz6668cO3YMBwcH+vXrx1tvvUXbtm1N2xQVFfF///d/LF26lOLiYiIjI/nss8/w8/Or1nPIeCGEEHXvauOFVTY6z87Oxt3dnfj4eFxdXc0djhBCWLWcnByCgoLIysrCzc3N3OHUORkzhBCi7phrzBgxYgRjx46ld+/elJWV8fzzz3Po0CGOHDmCk5MTAJMnT2blypUsXLgQNzc3pk6dilqtZuvWrdV6DhkvhBCi7lR3vLDKSiljOa2rq6sMGEIIUUca61QFGTOEEKLuNfSYsWbNmgo/L1y4EF9fX6Kiohg4cCDZ2dl88803LFmyhCFDhgCwYMEC2rdvz44dO+jbt+9Vn0PGCyGEqHtXGy8a10RwIYQQQgghRKOXnZ0NgKenJwBRUVGUlpYybNgw0zbt2rUjODiY7du3myVGIYQQV1frpNSWLVu45ZZbCAwMRKVSsWLFiqvus2nTJnr06IGdnR2tW7dm4cKFtQ1DCCGEEEII0QTo9XqmT59O//796dSpEwBJSUlotVrc3d0rbOvn50dSUlKVxykuLiYnJ6fCTQghRMOqdVIqPz+frl27Mm/evGptHxMTw0033cT1119PdHQ006dP56GHHmLt2rW1DUUIIYQQQgjRyE2ZMoVDhw6xdOnSWh1n7ty5uLm5mW7S5FwIIRperXtKjRw5kpEjR1Z7+/nz5xMaGsp7770HQPv27fnvv//44IMPiIyMrG04QgghhBBCiEZq6tSp/PXXX2zZsqXCak7+/v6UlJSQlZVVoVoqOTkZf3//Ko81c+ZMZsyYYfrZ2JRXCCFEw2nwRufbt2+vMNcbIDIykunTp192n+LiYoqLi00/S2lt/VAUhYTsIg6ey+ZoYg4FJWXoFVAUULC6RRorUatUqFXgZGdD35Ze9AzxwFbTONuqKYpCUk4RsWkFnE3P53xWIS72NgS6O9DM3QEbtZrzWQWcyywkKbsI3WUW4VSrVNhq1Ght1NjZqLHVqNCo1dioVSiKQn6JjsISHQUluhr9G1GhwtZGha1ajY1GhU6vUKpTKNXp0V8Sk/H9U6tV2KhVaDUabG1U+LrYc3OXAOxtNTX6XTUEnV4hLa+YpOwiknOKyCwoIauglKzCUopKdWaJyVaj5u5eQbT2dTbL84u6lVtUypKdcdzVKwhPJ625wxFCiDqnKArTpk3jt99+Y9OmTYSGhlZ4vGfPntja2rJ+/XruuOMOAI4fP05cXBwRERFVHtPOzg47O7t6izkzv4Sf9sQztL0vrX1d6u15hBDCmjV4UiopKQk/P78K9/n5+ZGTk0NhYSEODg6V9pk7dy6zZ89uqBCbnPS8YuZtPM2K6PNk5JeYO5wGchJnOxv6t/biiaFt6BDYuFZYeXHFIRbvjDN3GA3mnbXHmDYkjLt7BaG1MW+iUVEUikr1RJ3N5N+Tqfx7Mo3jybno9JaX2I3PKODze3uaOwxRBz7dcIovtpwhOaeYl2/pYO5whBCizk2ZMoUlS5bw+++/4+LiYuoT5ebmhoODA25ubjz44IPMmDEDT09PXF1dmTZtGhEREdVaea8+vPP3cZbsjOPttccZ2zuI6cPa4ONy5SRYUnYRy3bHcywpB51eQa8oqFQqujZ3o39rb7o0d0ejbpyr5QohmqYGT0rVhJTW1o+84jK+/vcMX205Q36JoVrDRq2ijZ8LHQNd8XTWosJQnWLtK8UrCoaqLxSSs4v492Qa6fklrD2czP74bDY+NRgHreVW2lyLUym5LNllSEi18HIkxMuJ5h4O5BWXkZBVyPnMQkr1Cs09DFVTAW72l60Y0ykKpWUKJTodJWV6yvQKOr1CmU4BFThpNThqbXDQaqjJ9yO9AmU6PaU6hRKdHlu1ChuNGluNmotDMr1/Svnz6w3bl5Tp2X46nfNZhby44hBfbDnNUze05daugXW6VHVqbjFbTqQSFZdJUYnO9HvIKSolPa+EjPwSsgpLKNUpl00+adQqfJzt8HOzx8tJi7uDLe6OWuxt1Q3+/+tEch7rjiSTU1TasE8s6s220+kAHE7INnMkQghRPz7//HMABg8eXOH+BQsWMHHiRAA++OAD1Go1d9xxB8XFxURGRvLZZ581cKQX/HcyDTBUTC/eGceKfed56LqWTOrfAnfHC1WtOr3C1lNp/LDjLOuPpVT5XWLdkWTe/fsErvY2RHb0Z9qQMIK9HBvstQghRH1p8KSUv78/ycnJFe5LTk7G1dW1yiopqP/S2qYoKbuI0Z9tJSG7CIDOzdyYMbwNEa28LHoaVF3R6xUOJWQz+Ye9nM8qZMG2GB4b3NrcYdWJTzacQlEgsqMfX9zXy9zh1LviMh1Ld8XzyYZTxGcU8sTSaBZui+XFmzrQM8Sj0vaKohCfUUhUXAZ7YjOJOpvJ+cxC/N3sCfJ0pLmHAxq1iuIyPcWlek4k53Lw/LWf6Pu62HFdmA8D23jTu4Unfq72FnNlc+WBRNYdSaa0zPKqt8S1yy0qNSWjTqbkmTkaIYSoH8plWg1czN7ennnz5lV7Aab6dC6zgLiMAjRqFV/f34sP/znB/nPZfLT+JF//e4Z7I0IY1t6PdUeS+T36PMk5F1qV9An1JLKjP/a2ajQqFYWlOnaeyWDb6TRyisr4Oeocv+07z9g+QUwbEoafq70ZX6kQQtROgyelIiIiWLVqVYX71q1bd9m53qLuler0TFmyl4TsIpp7ODBzZHtGdvJHbSEnzA1BrVbRpbk7T0W24cll+/l842nG9g62+l4sp1Ly+GN/AgCPDw0zczQNw85Gw4R+LbirV3O++TeGzzefZl9cFnd8vo2Ill4083DAy1mLnY2GIwnZ7IvLIr2Kaaq5KXlXPKHvGOjKgDBvvJy0pr5aTnY2eDlr8Xayw93RFluNoTeWrVqNq4NNnVZr1SVbjSGuUr3ezJGIuhB1NhPjRfWM/BLS8orxdpYLOUIIYU7byytYuzR34/p2vgxq48PqQ0l8suEkx5Jy+WLzGb7YfMa0vZuDLaO6BTK+bwht/Cr3n5rUPxSdXmFPbAafbjzFvyfT+GFHHL9EnefHR/rSLci9oV6aEELUqVonpfLy8jh16pTp55iYGKKjo/H09CQ4OJiZM2dy/vx5vvvuOwD+97//8emnn/LMM8/wwAMPsGHDBn766SdWrlxZ21BENc1ddYyos5m42Nnww4PhtPB2MndIZnNb12Z8tSWGI4k5fLLhJLNu6WjukGrlkw0nURS4oYMfHQPdzB1Og3LU2jBtaBhjegfx7t/H+TnqHNvPpFe5ra1GRadmbvQK8aBniActfZxJyi4iPrOA85mFgCHZZWerxtfFjgFh3vi6NJ6rkMbpmmW6uq+UmjdvHu+88w5JSUl07dqVTz75hD59+lS57VdffcV3333HoUOHAEOT2jfeeKPC9oqiMGvWLL766iuysrLo378/n3/+OWFhTSPpWh27YjIq/HwiOVeSUkIIYWbG7yARLb0AwwXRm7oEcGNnfzYcS2HexlMcS8plYJgPt/doxuC2PtjZXHm2gkatIrylF+EtvdhxJp03Vh3lwLlsXl95hJ8ejbDYi2FCCHEltU5K7dmzh+uvv970s7H304QJE1i4cCGJiYnExV1ouBwaGsrKlSt58skn+eijj2jevDlff/01kZGRtQ1FVMNfBxL4dmsMAO/d3bVJJ6TA8AVh5o3tuO+bXfyw4yyT+oVa7fz8Uyl5/NnEqqSq4utqz9t3duXh61qyLy6L1Lxi0vNKyCsupY2fCz1CPOgQ4FppmmpVVyUbK2NSqlRXt5VSy5YtY8aMGcyfP5/w8HA+/PBDIiMjOX78OL6+vpW237RpE+PGjaNfv37Y29vz1ltvccMNN3D48GGaNWsGwNtvv83HH3/MokWLCA0N5aWXXiIyMpIjR45gb994EoW1YUxK2ahVlOkVTibn0a+Vt5mjEkKIpktRFHaUV0pFtPKq8JhKpWJoez+Gtveratdq69vSiy/v68WgdzayOzaTzSdSGdy28lgrhBCWrtZJqcGDB19xjvfChQur3Gffvn21fWpxjc6k5vHs8gMA/G9QK27o6G/miCzDdWE+XBfmzb8n03jn7+N8Mq67uUOqkU83nESvwPAOfnRq1rSqpKoS5udCWBNKNF0LG+P0vTpOSr3//vs8/PDDTJo0CYD58+ezcuVKvv32W5577rlK2y9evLjCz19//TW//PIL69ev5/7770dRFD788ENefPFFbrvtNgC+++47/Pz8WLFiBWPHjq3T+K1RUamO/eeyAIjs5M/KA4mcSM41b1BCCNHExWUUkJBdhK1GRa8Qz3p7Hn83e+7rG8LX/8Xw3t8nGNTGx1QttWRnHKdT85g5sh02l1nQRgghLIF8QjUh320/S36Jjj6hnjx1Qxtzh2NRnhvZDpUK/tyfwL64THOHc01KyvS89/dxfi+vknqiCVdJieox9ZSqw+l7JSUlREVFMWzYMNN9arWaYcOGsX379modo6CggNLSUjw9DV/gY2JiSEpKqnBMNzc3wsPDr3jM4uJicnJyKtwaq31xWZTqFPxc7RheftX9ZLI0OxdCCHMy9pPqFuRe76s7Tx7cCiethoPns1l7OAlFUXhrzTGe/+0g3/wXw99Hkq9+ECGEMCNJSjUhe84apnjc1zdErphcomOgG3f0aA7AnL+OVGuFF0twPCmX2z/balpxb2K/FlIlJa7qQk+puquUSktLQ6fT4edXcTqCn58fSUlJ1TrGs88+S2BgoCkJZdzvWo85d+5c3NzcTLegoKBreSlWxTh1r0+oF2F+zgCcSMmt0WdYam4xr/xxmFMpUmklhBC1cWk/qfrk5WzHgwNCAXj37xO88sdhPt902vT4in3n6z0GIYSoDclMNBH5xWUcTTScaPRq4WHmaCzT05FtcdRq2BeXxe/RCeYO56r+2J/ALZ/8x+GEHDwcbZl3Tw9eudW6G7WLhmGjLu8ppbec5Oubb77J0qVL+e2332rdK2rmzJlkZ2ebbvHx8XUUpeXZHWtMSnnSyscZtQqyCkpJzSu+yp6Vfbc9loXbYvn635i6DlMIIZoMRVHYVl4p1bdV/SelAB4a2BI3B1tOpeSxaPtZVCpMiaqNx1PIKqi86rAQQlgKSUo1EdHxWej0Cs3cHQhwczB3OBbJz9WeKde3BuDN1ccoKCm75mP8Hn2ed9cep6hUV9fhVbDjTDr/91M0JTo9Q9r5snb6QG7qElCvzykaD9t66Cnl7e2NRqMhObniNIHk5GT8/a/cv+7dd9/lzTff5O+//6ZLly6m+437Xesx7ezscHV1rXBrjEp1eqLOGqYbh4d6Ym+rIcTLsHhFTabwRcdnAZApJy9CCFFjp1PzSc0tRmujpkdww1wIdrW35dFBLQFQq+C9u7ry0s0daOfvQqlOYdXB6lUsCyGEOUhSqonYE2s4cekZIlVSV/LggFCaeziQlFPE/M1nqr2fXq/w5upjPLE0mk83nmLaj/vqdGrUxU6l5PLId3so1Snc2Nmfr+/vha+rrEImqu/C9L26q5TSarX07NmT9evXm+7T6/WsX7+eiIiIy+739ttv8+qrr7JmzRp69epV4bHQ0FD8/f0rHDMnJ4edO3de8ZhNxaHz2RSW6vBwtKW1j2HqXphv+RS+i5qdK4py1el8iqJw8Hw2ALlF156QF0IIYWCcutcj2L3SSr/16aEBLXluZDt+eCic0eUtKUZ1N6xkK1P4hBCWTJJSTURUnCSlqsPeVsMLN7YH4IvNpzmXWXDVfUrK9Mz4KZr5mw3z9201KtYdSeb53w7WeW+q1NxiJi7YTU5RGT2C3Xn/7m6o1ao6fQ7R+NXX6nszZszgq6++YtGiRRw9epTJkyeTn59vWo3v/vvvZ+bMmabt33rrLV566SW+/fZbWrRoQVJSEklJSeTlGap8VCoV06dP57XXXuOPP/7g4MGD3H///QQGBjJq1Kg6jd0aGftJ9W7hafocaFO+4uSJiyqlPl5/ig4vr+VwQvZlj3Uus5CsglIA8oolKSWEEDW147Sxn5R3gz6v1kbN/wa1ol+rC897a9dAVCrYFZtRre+0QghhDjbmDkDUP51eYd9ZSUpV14hO/oSHerIzJoMpi/fyw0PhuNjbVrltYYmOh77bzdZT6dioVbx5Rxdc7W343w9R/LTnHB5OWu7s0Zy9cZlEx2fh7+rA1CGt0dQgkRSTls9ji/dyLrOQFl6OfD2hd4NegRONh7FSqq6TUmPGjCE1NZWXX36ZpKQkunXrxpo1a0yNyuPi4lCrL1wL+fzzzykpKeHOO++scJxZs2bxyiuvAPDMM8+Qn5/PI488QlZWFgMGDGDNmjW17jvVGFxocn5huXFjs/OT5ZVSWQUlfL75FEWlelYdTKRjYNULIRw4dyFhJZVSQghRM+ezCvn3ZCoAEQ3UT+pKAt0dCA/1ZMeZDP7Yn8Bjg1ubOyQhhKhEklJNwInkXHKLy3DSamjn72LucCyeSqXijdGdufPzbew/l82DC/ew8IHeOGor/ndRFIWnl+9n66l0nLQaPr+3JwPb+ADw5uguPPPLAb7YfIYvLpkGGJuezzt3djGtgJiSW8SnG04R4ObAvX2DKyXAFEXhx13xvPrXEQpLdXg6aVkwqQ+eTtp6/C2IxsyYlNIrhqmndWnq1KlMnTq1ysc2bdpU4efY2NirHk+lUjFnzhzmzJlTB9E1LvvPZQHQq8VFSSlfY6VUrumzo6jUkHzcH3/5SqkD57NMf5eklBBCXLv0vGLu+3onOUVltPFzpnuwu7lDAuD27s3YcSaDFfvOM3lQK1QqqbAXQlgWq56+l16D1YWaoj3lVVLdgz1MiRBxZa18nPn+wXBc7G3YFZvBI99FVWpe/sWWM/x1IBEbtYpvJ/Y2JaQA7u4dxHMj2wHgYKshPNSTe8KD0ahV/LbvPE8si6ZUp+fP/Qnc8MEWvtt+lrfWHOO6tzfy6YaTJGUXsTcuk2W743hg4W6e/+0ghaU6Ilp68de0AYR6OzXo70M0LsbpewCl+vrpfSbql6IoZJZPtwtwu1A11tLHCbUKcorKSMgu4rvtsabH9p/LumwS8kD8xZVSpfUTtBBCNFJ5xWVMXLCbM2n5NHN3YNEDfUwXgMxtRKcAtDZqTiTnmVbiFkIIS2LVlVJbT6URGuhz9Q2buL3lSakeMnXvmnRq5sbCSX2475ud/Hcqjfu+2cmU61szMMyHLSdTeWvNMQBm3dqR8JaVS7T/N6gVd/RojoejrSkZOKiND1OX7GXlgUT2x2dxLrMQgPYBrhSX6TiTms+7f5/g3b9PVDiWVqPm6ci2PDggVHpIiVqzvWgKXWkdNjsXDaegRIeuPMHkYn9hKLe31dDCy4kzafl8sv4kidlFeDtrySsuI7eojDNp+bQub4ZupNcrHDp/ISlVXKanpEyP1sYyTqiEEMKSJWUXMeOnaA6ez8bTSct3D/axqJWu3RxsGdrOl9WHkvjzQAIdAhvnirRCCOtl1Ump/06mce9Ac0dh+facNfQd6SVJqWvWM8SDbyb0ZtLCXeyOzWTigt2EeDmSkV+CosC4PkHcGx582f19XOwq/BzZ0Z8v7+vFoz9EcS6zEI1axdTrWzN1SGvUKhV/HUjgkw2nOJWSh7+rPWF+zrT2dWZM7yDa+cuXCFE3bC+qlCrT6a27ZLaJMk6x06hVOFzSWy7Mz5kzafks3R0PwPjwELaeSmPP2Uz2x2dVSkrFpueTW1yGnY2a4jJD5VxecRmeNjJFWAghqlJcpmPt4WSWR53jv5Op6BVw0mpYNKkPrXycr36ABta3pRerDyURm5Zv7lCEEKISq05KbT2dhk6v1KhpdFORklNEfEYhahUWM7fd2kS08mLNEwNZtD2W5VHnOJtuWL2kR7A7r9za8Zrn5l/fzpcfHgzn5z3x3B/Rgs7NLzQevq1bM27tGkhxmV6amIt6c/FnZolOj7QMtz7GKXYu9jaVPoPa+Lmw9nAyYEhAju8bTF5xmSEpdS6LO3o2r7D9wfIqqY6BrhxNzKWwVEduUan0rRNCiMt4/Md9ps9ZMCw48eyIdhW+01kSb2fDRdL0vBIzRyKEEJVZdVIqu7CM6PgsWVHuCqLKp+619Xe97Apy4upaeDsx65aOPB3Zlj+iEziWlMuU61tjZ1OzxFGfUM8KK2ZdTKVSSUJK1CuVSoVWo6ZEp6dMp1h5d8GmKae8UuriqXtGYX4XFrS4pWsgvi72dA1yB2B/fFal7Y0r73Vp7s65zMLypJQ0OxdCiKrkFZex4VgKAI8NbsWY3kGEeFl206p7KAAAdAFJREFUr08vZ8NFhjTpxyuEsEBWnZQC2Hw8RZJSV2Bsct4zxN28gTQSjlobxva5/HQ9IayFjUZFiQ5JSlmpHGOllF3liw1tL0pKPdA/FIDu5UmpI4k5FJfpKiTUD5YnpTo3c+Pfk6mk5BZLUkoIIS5j26k0SnUKIV6OPDOinbnDqRZjpVSqJKWEEBbI6k9FNp1INXcIFs2YlOoVUnVVjhCiabIpn8JXopPV96yRMWnk6lD52lIbP2fu6xvCtCGt6dTMMJWkuYcDnk5aSnUKRxJyTNvq9AqHEoyVUm44l1fU5hVLUkoIIaqyufzcY1Ab61lsybu8Uiq3qIziMt1VthZCiIZl9UmpA+eySc1teln/lNwiCkuuPKicyyzgwLksAHpfZqqYEKJpMq6sVqaXpJQ1utBTqnKllEql4tVRnfi/G9pWuK9rea+Ti6fwnU7No6BEh6NWQ0sfZ1zLpwMajy+EEOICRVHYdNyQlBrc1nqSUm4OtqZFTqSvlBDC0lh1Uqp9gGGKwpYmVi11NDGHwe9s4rq3N1a44n2pZbvjURTo18qLZu6WszStEML8bNTlSSmdYuZIRE3kXqGn1OWY+kqVT9eDC/2kOgW6oVGrcLYzJqWkUkoIIS51OjWP81mFaG3URLT0Nnc41aZSqfBykmbnQgjLZNVJqetaG65QNKUpfHq9wsxfD1JQoiMtr5ixX24n6mxGpe3KdHqWlS8Hfk+49EASQlRko5Hpe9bMWMnkeg0LWHSrotn5wfJqWuOKUcYkl0zfE0KIyoxVUuGhnjhorWtRGml2LoSwVNadlGrjBRgqpcqayInV4l1xRMdn4WxnQ49gd3KKyhj/9U7T/Haj9cdSSMktxstJyw0d/M0UrRDCUmk1UillzWpUKdXcHYAzaflkF5RSWKJj2+l0wNBPCsC5vHF6jkzfE0KISoxJKWvqJ2VkbHYuSSkhhKWx6qRUl+YeuDnYkl1Yyv7yq72NWUpOEW+vPgbA05FtWfxQXwa18aGoVM9Di3az8XiKadsfd8UBcGev5qbeMUIIYWSslGoqCf3GpiZJKQ8nLSFejgBsOJ7M2C+3czIlD3tbNX1belU4Xp5M3xNCiAryi8vYFWOYnTC4ra+Zo7l2FyqlZPqeEMKyWHW2QqNWcV2YYT73hmMpV9na+s3+6wi5xWV0DXLn3r4hOGg1fHV/L27qHECpTuGxH/YSHZ9FfEaBqXJqXG+ZuieEqMzYU0qm71mnnMLLNzq/EmO11Iyf9rP/XDbujrZ8/2A4fq725ceTnlJCCFGVHWfSKdHpae7hQCsfJ3OHc818pFJKCGGhrDopBTC8gx8Aaw8nmzmS+qMoCot3nmXlgUQ0ahVv3N4JTfly7lobNR+M6cZ1Yd4Ulup4YOFu3vv7OIoC/Vt70cLb+gZNIUT9s7WR6XvWrCaVUnChr5SiQIiXI7891p/eLS6szuoiq+8JIUSVLl51T6VSmTmaa2ecvpcuSSkhhIWpk6TUvHnzaNGiBfb29oSHh7Nr164rbv/hhx/Stm1bHBwcCAoK4sknn6SoqKhGz319O19sNSpOpeRxKiW3RsewZOezCpm0cDcv/HYIgIcGhNIx0K3CNlobNfPv7UmX5m5k5JewIjoBgHv6hDR4vEII62Bbntgu00ullDXKqUGjczCMmfa2avq08OTXyf0IveTChbHyShqdCyHEBYqisOmEYVbG4DbWN3UPZPqeEMJy1ToptWzZMmbMmMGsWbPYu3cvXbt2JTIykpSUqqfTLVmyhOeee45Zs2Zx9OhRvvnmG5YtW8bzzz9fo+d3tbdlQGvDFL7VB5Nq/Dos0Z/7E7jh/c1sOp6K1kbNMyPa8nRk2yq3dbKz4duJvWlR3i/E21lrqiITQohLXVh9TyqlrFFNK6VCvZ2IfvkGlj3aF6/yq+YXc7aT6XtCCHGps+kFxGcUotWoiWjlZe5wakQanQshLFWtk1Lvv/8+Dz/8MJMmTaJDhw7Mnz8fR0dHvv322yq337ZtG/379+eee+6hRYsW3HDDDYwbN+6q1VVXMqKTYXW5NYcbT1KqTKfn2V8OkF+io2eIB6sev47HBrfGRnP5t8zb2Y7vHghnWHtfXr6lozQ4F0Jclq1p9T2plLJGxul119pTCsDeVnPZqSfSU0oIISo7lmSYjdEuwAUnu2u7GGAppFJKCGGpapW1KCkpISoqimHDhl04oFrNsGHD2L59e5X79OvXj6ioKFMS6syZM6xatYobb7zxss9TXFxMTk5OhdvFhnfwR6NWcTghh7j0gtq8JIuRkFVEQYkOrY2anx6NoLWvc7X2C/Zy5OsJvbm1a2A9RyiEsGbGpFSpJKWsjqIopul1rtdYKXU1xiSX9JQSQogLYtPzAWjhZb29Wo2NzjPyi9HrpUpaCGE5apWUSktLQ6fT4edXcZqYn58fSUlVVy3dc889zJkzhwEDBmBra0urVq0YPHjwFafvzZ07Fzc3N9MtKCiowuOeTlrCQw2NWtc2kmqpuAxDci3Iw8HU1FwIIeqKbfn0vVKZvmd18kt0GM8nalIpdSXGSqm84jIURf5tCCEEQGxaeVLKihcQ8nAyVErpFcgskGopIYTlaPD5XZs2beKNN97gs88+Y+/evfz666+sXLmSV1999bL7zJw5k+zsbNMtPj6+0jbGKXyrDyXWW+wN6WyGYfALseIrMkIIy2Uj0/eslrGKyUatwt62bodxY1JKr0BBia5Ojy2EELWxZcsWbrnlFgIDA1GpVKxYsaLC4xMnTkSlUlW4jRgxok6eO6Y8KRXq7VgnxzMHW40aD0fDhQyZwieEsCS1qvv39vZGo9GQnJxc4f7k5GT8/f2r3Oell17ivvvu46GHHgKgc+fO5Ofn88gjj/DCCy+gVlf+gm1nZ4edXeWGrBeL7OjPy78fZm9cFknZRfi72dfwVVkG4zTEYE/rHfyEEJbLuPqeVEpZn5zCC03O63pZcgdbDRq1Cp1eIbeozGp7pwghGp/8/Hy6du3KAw88wOjRo6vcZsSIESxYsMD089XOH6qrMUzfA0P/2cyCUtLzigEXc4cjhBBALSultFotPXv2ZP369ab79Ho969evJyIiosp9CgoKKiWeNBoNQK2mCvi52tMj2B2Av49Y/xS+s+VJqRAvSUoJIeqeqaeUXiqlrE1tmpxfjUqlMq3Al1csfaWEEJZj5MiRvPbaa9x+++2X3cbOzg5/f3/TzcPDo9bPW1BSRnKOYcW6UCuevgcXmp2nygp8QggLUuu6/xkzZvDVV1+xaNEijh49yuTJk8nPz2fSpEkA3H///cycOdO0/S233MLnn3/O0qVLiYmJYd26dbz00kvccsstpuRUTY3sFADA6oPWn5Qy9pSSSikhRH24MH1PKqWsjXFlPFeH+qliMialcmQFPiGEldm0aRO+vr60bduWyZMnk56efsXtr7aYEkBsmuE7ubujLe6O2nqJu6F4lzc7T5fpe0IIC1Lrb7RjxowhNTWVl19+maSkJLp168aaNWtMzc/j4uIqVEa9+OKLqFQqXnzxRc6fP4+Pjw+33HILr7/+em1DYUQnf15fdZQdMemcSM6ljZ91lqUqimJKSkmllBCiPlxodN50KqUaS+PuHGOllF3dV0rBhb5SuZKUEkJYkREjRjB69GhCQ0M5ffo0zz//PCNHjmT79u2XvfA9d+5cZs+efcXjNpape3AhKZUmlVJCCAtSJ5dZp06dytSpU6t8bNOmTRWf0MaGWbNmMWvWrLp46gqCPB0Z2cmf1YeS+GTDKT4Z173On6MhZOSXmJb7bu4hSSkhRN0zTd9rQpVSKw8kcs91buYOo9aMySJj8qiuuZZPC8yTpJQQwoqMHTvW9PfOnTvTpUsXWrVqxaZNmxg6dGiV+8ycOZMZM2aYfs7Jyam0yveFJueNISllqPSSSikhhCVp8NX36tu0IWEA/HUggVMpeWaOpmaMVVL+rvbY29ZuSqMQQlTFprxSqimtvvf6qiMkZReZO4xau5CUqp9KKWdTpZT0lBJCWK+WLVvi7e3NqVOnLruNnZ0drq6uFW6Xik1rPJVSXlIpJYSwQI0uKdUh0JUbOvihKPDphpPmDqdGTP2kZOqeEKKe2KqNlVJNJymVW6Tj2V8OWP00vguNzuunUsp4XGPFrhBCWKNz586Rnp5OQEBArY5jmr7nbf3fy03T9/KlUkoIYTkaXVIK4PGhhmqpP/YncCbV+qqlTCvvSZNzIUQ9ubD6nnUnaK6FrY2azSdS+XFXvLlDqRVjTynXekpKSaNzIYQlysvLIzo6mujoaABiYmKIjo4mLi6OvLw8nn76aXbs2EFsbCzr16/ntttuo3Xr1kRGRtbqeWPKG503pul7ablSKSWEsByNMinVqZkbw9r7oldg3sbT5g7nmpmSUlIpJYSoJ/U1fW/evHm0aNECe3t7wsPD2bVr12W3PXz4MHfccQctWrRApVLx4YcfVtrmlVdeQaVSVbi1a9euRrFNH9oagDdXH0Vnxcm4+p6+5yI9pYQQFmjPnj10796d7t0NPWNnzJhB9+7defnll9FoNBw4cIBbb72VNm3a8OCDD9KzZ0/+/fdf7OzsavycuUWlpqluLRpFUurC9D1rrxoWQjQe9XOZ1QI8PjSMf46msCL6PGfS8rBVq9HaqLm+nS/3R4SYqgQsUXz59L0gqZQSQtSTC6vv1d2X0mXLljFjxgzmz59PeHg4H374IZGRkRw/fhxfX99K2xcUFNCyZUvuuusunnzyycset2PHjvzzzz+mn21sajZ0jQ8P4YPN58gpKiM9rxhfV/saHcfc6rvRuYv0lKozOr3Cm6uP0qmZG7d1a2bucISwaoMHD75iImXt2rV1/pzGC8VeTlrTIhDWzKu8Uqq4TE9+ic5UGSuEEObUaD+JujR3Z1h7P/45msy+uCzT/f+dSmPZ7jjm3NaJvi29zBfgFZzNMMxdD2kEDRWFEJbpwup7dVcp9f777/Pwww8zadIkAObPn8/KlSv59ttvee655ypt37t3b3r37g1Q5eNGNjY2+Pv71zo+G40aXxd7knKKSMwusuKkVPn0PYf6qpQyJqWkUqq2tp5K46t/Y1CpDL/XIe38zB2SEOIaXOgn1Ti+kztqbXDUaigo0ZGWWyxJKSGERbDccqE68PG4bix6oA9f3teTz8b34MWb2uPppOVEch5jv9zBcxbY8LaoVEdyjqFMWHpKCSHqi00dJ6VKSkqIiopi2LBhpvvUajXDhg1j+/bttTr2yZMnCQwMpGXLlowfP564uLgrbl9cXExOTk6Fm5G/myERlWjFq/A1VKWUNDqvvYPnswFQFHjix2irXRVYiKaqMa28Z2ScwpeeL32lhBCWoVEnpRy1Ngxq48MNHf25sXMAD13Xkg3/N4h7+wajUsHS3fHsjs00d5gVGFfec7G3wd3R+suEhRCWSWvqKVU3ifm0tDR0Oh1+fhUrQfz8/EhKSqrxccPDw1m4cCFr1qzh888/JyYmhuuuu47c3NzL7jN37lzc3NxMt6CgINNjAeVJqaTswhrHZG713VPK2c62/Hlk+l5tHTiXBYCdjZrc4jIe+X6PqVG9EMLyXWhy3nguFBun8KXmygp8QgjL0KiTUlVxd9Ty2qjOjOhomAqyN87CklLlc9eDPR1RqVRmjkYI0VjZqK1j9b2RI0dy11130aVLFyIjI1m1ahVZWVn89NNPl91n5syZZGdnm27x8RdW2zNVSuVYb6WUMalR7z2lpFKq1g6dN1TpvXtXVwLc7DmTms8TP+5Db+H/74QQBo1t+h5IpZQQwvI0uaSUUfdgdwD2WVhS6myGrLwnhKh/xtX3SsvqZvqet7c3Go2G5OTkCvcnJyfXST8oI3d3d9q0acOpU6cuu42dnR2urq4VbkYXKqWsMyml1yumaXX13+hcklK1kZFfwvksQ0XeoLY+fHlfL+xs1Gw8nsrW02lmjk4IUR2NefpemlRKCSEsRBNOSnkAsDcuy6L6SsWVX5EJ9mw8g58QwvJoy3tKlenrJiml1Wrp2bMn69evN92n1+tZv349ERERdfIcAHl5eZw+fZqAgIAa7R/g5gBYb0+pvJIyjENWfa0E5SLT9+qEsZ9UqLcTrva2dG7uxk2dDf9ud8dkmDM0IUQ15BSVkp5vSNw0rkopw/S9tDyplBJCWIYmm5TqFOiGjVpFam4xCRZ0cmKslAqWJudCiHp0odF53SXlZ8yYwVdffcWiRYs4evQokydPJj8/37Qa3/3338/MmTNN25eUlBAdHU10dDQlJSWcP3+e6OjoClVQTz31FJs3byY2NpZt27Zx++23o9FoGDduXI1itPZKKWP1kq1GhZ1N/QzhxkqpolJ9na7O2NQcKk9KdWrmZrqve8iFC2JCCMtmrJLycbFrVKvUyfQ9IYSlaTyfsNfIQauhfYArB89nsy8uk2buDuYOCbjQ6Fym7wkh6pNp+l4dJh3GjBlDamoqL7/8MklJSXTr1o01a9aYmp/HxcWhVl9IpCQkJNC9e3fTz++++y7vvvsugwYNYtOmTQCcO3eOcePGkZ6ejo+PDwMGDGDHjh34+PjUKEb/i5JSiqJYXe8+Y/WSq71tvcXufNG0wLyiMjz+v737Do+qTNsAfp/p6b1CQigJndARAREIBtaGFVm+FVnLfgouyloWdwXFVSzoh666rOwiuhZQEV0VQY2AAqF3CDUJSUhPSE8mmZnz/TFzJgkkkGT6nPt3Xbl2nTlz5g0D88555il+Goc8j7c7mmcOSg3u1lw+OtzSOuBQbgWMJhFKhWf9/SOSkyxLUKqnF5XuAc2Nzlm+R0TuQrZBKcD84dAclKrATUNiXb0cGE0i8srN/SeYKUVEjmQt37NjphQAzJ8/H/Pnz2/zPinQJElISLhq+fTatWvttTQAQGSADoIANBpNKK9tRJjlG2NP0Tx5z3Hbt1qpgE6tQEOTCTV6BqW66mgbmVJ9owLgp1GiRm/AmeJq9IsObO/hNiut0eODndmYc22CNTOCiDou2zJ5L8GLJu8BLXpKMVOKiNyEbMv3gOa+Uu7S7LywqgGNRhNUCgGxbpK5RUTeSWXJ0GiyU08pT6FRKawfyD2xr1S1dfKeY/pJSfwtfaWq2FeqSy62aHLeMiilUiqQHBcMADhwvsKha/jXr1n4+89n8foPpxz6PETeqrl6wbsypaw9paoZlCIi9yDzoFQwAPPIZr3B6NrFAMgpM29+3UN8mNJPRA7V3FNKXkEpwLP7SjkjUwoAAjmBzyaXNjlvabh10IpjvxDLKq0BAPxyutStBroQeYriavMeER2oc/FK7CsiwPz7VDUYrGXGRESuJOugVHyoL0L9NGg0mnAiv8rVy8HZ4moAQLyXfSNDRO7HUeV7nkC6wCiorHfxSjqvyklBKen8NQxKdUlbpXuS4T2CAQAHzjs2KJVraQdwoaLe2huHiDquxJJJFBHgXeWvQT5q3Jxsblvy9Pojsvxyiojci6yDUoIgYJgljf5gG5NwavUGPPff45i0fCt+Plnk8PVsO10KABjTM9Thz0VE8uaIRueeQsqU8sTyvap6J5XvSZlSepbvdUVbTc4lw+LMmVKZpbW4WOu4RsN5F+us///XM6UOex4ibyUFpSIDvSsoBQBLbh6AYF81ThRU4V+/Zrl6OUQkc7IOSgHNJXwHcyta3b79TClu+L9fsGZnNrJKa/HQh/ux8WiBw9ahNxix85z5Q+PEpK5NlSIi6ii1tXxPhplSQeaefSzfa1+ApacUM6W65kqZUiF+GvQKN2dEH8x1TLZUZX2TNasOYFCKqLOajCaUWYLGEV44KCDcX4u/3jgAALDip9MdyqasamjCK5tO4nRRtaOXR0Qyw6DUJc3O6xuNWPTlUfzPv3fjQkU9uof4YHK/SBhMIuZ/cgDr9+fZ9HyiKOK9X85h66niVrfvzbqIukYjIgO0GBjruGk8REQAoLZkShmYKeVRnNbo3BL0qmJQqtPaa3LekvTZw1HNzi9cND+/YGlPuSuzTJZZkURdVVZjzpJSKQSE+HrnBNI7hnfD+D7h0BtMWPTlkav2nvu/H0/jH1vPcXgCEdmd7INSQ7oHQRCAvIv12J1Zhtve3YFP9+QAAOaM7YHNj12HVfeOxN0ju8MkAn/6/DA+25vb5efbdroEL208iUc+PtBqqpEUpJqYFAFBYJNzInIslawzpSyNzqs8MShlDhIFOqmnFBudd56UJZUQ5ntZk3OJta+Ug5qd51pK9wbFBiHUT4MavQGHLskIJ6L2lVqCUuH+Wii8dPiQIAh46bbB0KkV2JVZjk3HCts9trqhCZ/vM38xf6qQmVJEZF92CUq98847SEhIgE6nw5gxY7Bnz54rHl9RUYF58+YhJiYGWq0WSUlJ2Lhxoz2W0mkBOjWSIgMAAPes2oWThdUI99fikwfG4PlbB8FPq4JSIeDl24dgztgeAIDF/z3WqldDZ/xwwtybqq7RiC9bZF1tsQSlru8bacuvQ0TUIVKmVJNJftkTzZlS9R43lUzKlGov2GEvUiZWDXtKdZoUlBrcPbjdY6QJfIdzK2A02f/vYJ4lUyo+1Bfj+oQDAH49XWL35yHyViXV5tI9b+wn1VJ8mC9+d435+ubnk8XtHvf5vjzU6M1fUuSU16GhyfVTy4nIe9gclFq3bh0WLlyIJUuW4MCBA0hOTkZqaiqKi9t+Y2tsbMTUqVORnZ2NL774AqdOncKqVavQrVs3W5fSZVJfKVE0Nxnf+MfxuNbyIU6iUAh47paBGN0zFA1NJry0MaPTz2MyiUjLaG6Y/mH6eZhMInLL63CupBZKhYDxieFXOAMRkX2oFea3f1GEQy6K3VmUZfpeQ5MJlfWeFXRxXk8pZkp1Ra3egHWWbOqhlkEqbUmKCoC/VoXaRqNDsg6kL866h/hgghSUOsu+UkQdJWVKeWM/qUtJgetdWWVt3m80iVizM9v63yYRnOhJRHZlc1DqjTfewIMPPoi5c+diwIABWLlyJXx9fbF69eo2j1+9ejXKy8vx1VdfYdy4cUhISMDEiRORnJxs61K67Pbh3REbpMOjk/vg4wfGINJywXIpQRDw3M0DoRCAjUcLsaOTH/COXqhEUZUefhol/LUqZJbWYse5Umy1fHs5Ij4EQT6O/fabiAhonr4HyG8Cn06tRKifuUeIp/WVag5KOTpTyhyUYqPzzln2fQZyyuvQLdgHd4/s3u5xSoWA5Dhzv6n9DijhkzKluof4WL/sOpxbgco6zwrCErlKqUwypQBgZEIolAoBueX11n54Lf18shg55XUI8lFb+96eKa5x9jKJyIvZFJRqbGzE/v37kZKS0nxChQIpKSlIT09v8zH//e9/MXbsWMybNw9RUVEYNGgQXnrpJRiNrksDHd0zFDsXTcGfbuhr7bPSngGxgfgfS5rr898c79TF3E+WLKmJfSNw5wjzh9UPdp7HVku67PX9OHWPiJxD3eK9Tm5BKQCItnz54GkT+Kqsjc4dmynlz55SnfbL6RJ8tMvck/K1O4dcNXAolfC98M0J3PNeOt7ZchZn7XSh1xyU8kVssA96R/jBJALpmcyWIuqI0lrz3iCHTCl/rQqDLMGm3ZmXZ0ut3p4FAJg1Oh5DupuD6Wc5gY+I7MimoFRpaSmMRiOioqJa3R4VFYXCwrab5WVmZuKLL76A0WjExo0b8eyzz+L111/H3/72t3afR6/Xo6qqqtWPKy2cmoQQXzVOF9XgP+nnO/y4Hy39pKYOiLIGttJOFmG7JePq+iT2kyIi52gZlDLIsNm5p07gc1r5niWg0nIgB7Wvsr4JT68/AsA8JOXSFgBtmTGsG3qE+aLRaMKuzHK8tvkUbvr7r9apX10liiLyys3le3GhPgCACYnmL71+OcOgFFFHlFRbyvfaqZ7wNtf0CgMA7M4sb3V7RkEV0jPLoFQIuHdsD/Sx9OFlphQR2ZPTp++ZTCZERkbivffew4gRIzBz5kz85S9/wcqVK9t9zLJlyxAUFGT9iYuLc+KKLxfsq8GTqf0AmMejltc2XvUxueV1OFlYDaVCwKS+kegT6Y8JieEQRUBvMCEqUIv+MQGOXjoREQBz+ZA06NMgx0wpaQJf5eWlCu7KaBKtjWYdXb7nb+kpJT0fXdkL355AQWUDEsJ88fT0fh16TO8If2x94npseeJ6vDBjELoF+6ChyYRNx9ufgNURVfUGVFtet27BvgCA65LMQbJtp0pgklkPOaKuKK0xf7aXQ6YUAIzpFQrg8r5S7+8wZ0lNHxSN2GAfJEb6A2BQiojsy6agVHh4OJRKJYqKilrdXlRUhOjo6DYfExMTg6SkJCiVSutt/fv3R2FhIRob2w7uLFq0CJWVldaf3NxcW5ZtFzNHxWFATCCq9QZ8mJ591eOlLKlRCSEI9jX3Mrl3bIL1/uuTIiEI3jlylojck5Qt1STDi1RPzJRqGSBydKZUIMv3OqyqoQnrD5in6S6/Kxm+mo6/NoIgoGe4H353TQ/8zjLh97sjBTatJ9fS5DzcXwMfjfmz1jW9whCgVeFCRT3SrjBhi4jMpEwpOfSUAsx9pRQCcL6sDgWWL2uKqxrw1cF8AMDvx/cEAPSxBKWyS2tlWfpPRI5hU1BKo9FgxIgRSEtLs95mMpmQlpaGsWPHtvmYcePG4ezZszC1GEN++vRpxMTEQKPRtPkYrVaLwMDAVj+uplQIePj63gCA/6Sfv+po1ObSveZg3eR+kdbU+sn9WbpHRM6lVpgD4QaT/D5YRgeZ33sLqzwnKFVtKaXTqBTQqZVXOdo2UiZWjd4AUZRf0LIzcsrqIIpAmJ8GIxNCu3yeGwfHAAB2ZZZZL4i7Quon1S3E13qbr0aF/7EEvd7depavKdFVyC1TKlCnxsBYc78oqYTv/Z3ZaDSaMLJHiLUHXkyQDn4aJQwmEefLOIGPiOzD5vK9hQsXYtWqVfjggw+QkZGBhx9+GLW1tZg7dy4A4N5778WiRYusxz/88MMoLy/HggULcPr0aXz33Xd46aWXMG/ePFuX4nTTB0WjW7APymobseHghXaPq6xrwp5s8xv81P7N/beUCgH/njMKr94xBDcMiGrv4UREDiENdpDjt52xHpgpJWUtBTo4SwoAAn3Mz2E0iahtdN0gEk+QZ8lM6h7qe5Ujrywu1BfJccEwicCmY13PlrKuJ8Sn1e1zxyVAo1LgYE4F9mSVt/VQIrKQ9sWIAHkEpQDgGksJ3+6sMlQ3NOGjXea+uX+Y2Nt6jCAI6BNl6StVxBI+IrIPm4NSM2fOxPLly7F48WIMHToUhw4dwqZNm6zNz3NyclBQ0PzhKi4uDps3b8bevXsxZMgQ/PGPf8SCBQvw5z//2dalOJ1KqcDccQkAgH/9mtlun4Ytp4phNInoGxWA+LDWH1qTogJw96g4lu4RkdNJ5XtybHTe3FPK84JSju4nBQA+aiW0KvPfj4sd6JsoZ7nl5sykuEuCQF1x8xBzttQ3NpTwSZlScSGtP29EBuhwl2Xy7z+2nevy+YnkIshH7fCsVHcypqe52fmuzHKs3ZOL6gYDekf4YUq/1tUc7CtFRPZml0bn8+fPx/nz56HX67F7926MGTPGet/WrVuxZs2aVsePHTsWu3btQkNDA86dO4dnnnmmVY8pTzJzVBwCtCqcK6nF1tOX92mobmjC338+A8A8dY+IyF2oleZguBwzpaSgVI3eYC2Lc3dV9eZ1OrqfFGD+NjzUz1xS35FhHnImZSbF2ZgpBQC/sZTw7c0uR5GltLS0Ro/73t+DN3441an1XJopBQAPXdcLCgHYeqoEJ/JdO8mYyN3JKUsKAEb1DIUgAFmltdbA9R+u6w2FovUX5wxKEZG9OX36nrcJ0Klxz2jzNMBVv2S1uk8URTzx+WGcK6lFTJDOmlVFROQOrI3OZZgp5atRIcjHnHHkKdlSF+vMwSFp3Y4WYhnKUV7HoNSV5LaTmdQVscE+GNEjBKIIbDxagKqGJsxZvQdbT5Xgna3nOpS1JmVKtRWU6hHmhxuHxAIA/vkLs6WIriRSZkGpIB81BsSY+/aW1zYiMkCLW4fFXnZcYpQlKFVU7dT1EZH3YlDKDu4b1xNKhYD0zDIcyq2w3v6Pbeew+XgRNEoF3p09HGEyaZZIRJ5BZcmUMsowKAV43gQ+aZ3Suh1NypRi+d6V5Za3n5nUFVLD868OXsADa/bhuCWjyWgS28zIbkkUxRZBqbaDZP87sRcA4JvD+da1E9Hl5JYpBTSX8AHA3HE9oVVdXsnSJ8LcUyqztBZGGU7vJSL7Y1DKDroF+1g/RN7+7g7c8146Xt10Ess3m1Ptn7tlIIZZplYQEbkLtcKSKSXTD5XR1qBUvYtX0jH5FeZ1xgbbJ/hxNSzfu7qWQSB7lO8B5hI+QQAO51ViT3Y5AnQqTBtontz7U8aVg1KV9U2o0Zt7j7UXJBsYG4SRPUJgEs2T/oiobXLLlAKAsb3NQSl/rQq/HRPf5jHdQnygUyvQaDAxsE1EdsGglJ08Pb0fhsUHWz7klePdredgEoGZI+Mwy1LeR0TkTtQqS08pk/x6SgHN5VbZZZ7xoTrfkikVG8SglLsorWlEfZMRggDEBtsngy06SIdRPcxTsHRqBVbfNwr/e715+tW2UyVoNLT/71Vquh4RoL1ig+YoS0C21hLAIqLLyTFTanK/SPxxch+8NWtou6XiSoWA3hHsK0VE9sOglJ10C/bBhkfG4denJuGvN/bH6J6hmD4oGs/fOpCT9YjILakU8p2+BwA9w/0AAFkltS5eSccUWDKlYuwU/LgaqafURfaUapfUVDw6UNdmmUtX/XFKIpLjgvHe70ZiVEIohnQLQkSAFjV6A3ZntZ/ddKUm5y35acxrrW002m3NRI72yy+/4Oabb0ZsbCwEQcBXX33V6n5RFLF48WLExMTAx8cHKSkpOHPmTJefLzLAOe+17kSpELDwhr6Y3O/Kw5mam52zrxQR2Y5BKTuLC/XFAxN64bM/jMU//meErEbJEpFnkabvGWQ4fQ8AekVYglKl7h+UEkXRBeV75m/JmSnVPns2OW9pfGI4vp43DtclRQAAFAoBKf3NY9l/OlHU7uOu1k9K4qsxT3CsZ1CKPEhtbS2Sk5PxzjvvtHn/q6++irfeegsrV67E7t274efnh9TUVDQ0dK1voBwzpToqMcrcV+psETOliMh2DEoREclU8/Q9mQalws3f9GaVuX+z1qoGgzWrxXnle+YLsou1TU55Pk9k7ybnV5LS35y58FNGMUSx7b+vHc6U0kqZUizfI88xffp0/O1vf8Ntt9122X2iKGLFihX461//iltvvRVDhgzBhx9+iPz8/MsyqjpKjj2lOqpPJMv3iMh+GJQiIpIplVLe5XvdQnygUZqbtUpZSO5KasYe7KuGj8Y5Gbghlkypslq9U57PE1mDQHZqcn4l4/qEQ6dW4EJFPTIK2i6Zac6UunJQSsqUqtMzU4q8Q1ZWFgoLC5GSkmK9LSgoCGPGjEF6enq7j9Pr9aiqqmr1I2GmVPukoNS5khqY3PxLHSJyfwxKERHJlFphaXQu00wppUJAjzBzMMHdS/gKKpzb5BxobnR+sY6ZUu2RGovHOSFTSqdWYkKiuZzvp4zWJXyiKCKrtBanLf1drlZO6KthphR5l8LCQgBAVFTrXkhRUVHW+9qybNkyBAUFWX/i4szDidRKRbuNvgnoEeoLQQDqGo0oY4k3EdmIQSkiIpmSyvcM7ZQCdcU777yDhIQE6HQ6jBkzBnv27Gn32OPHj+OOO+5AQkICBEHAihUrbD5nZ0nNzjNL3LsE4YK1n5TzGu+GWhqdV9Q1un15o6tImVJxTsiUAoCp1hK+IlTUNeLbI/l46ovDGP/KFkxavtUaJEsI87viefykTCn2lCKZW7RoESorK60/ubm5AIBwfw0HFV2BqkXQrrKeQSkisg2DUkREMqWyc6PzdevWYeHChViyZAkOHDiA5ORkpKamori4uM3j6+rq0KtXL7z88suIjo62yzk7q6eHNDuXyvdinJgpFWLJlDKJQFU9s6UuZTSJ1mChs4JSk/pFQhCAI3mVGP7Cj5j/yUF8ti8PFyrqoVEqMLZXGF66bTDiw66SKSX1lNIzU4q8g7SHFBW1ziIsKipqd38BAK1Wi8DAwFY/ABDuz9K9qwm2BKUqmE1LRDZiUIqISKbs3ej8jTfewIMPPoi5c+diwIABWLlyJXx9fbF69eo2jx81ahRee+013HPPPdBq274A6Ow5O6u3pdl5prsHpaTyPSdN3gPMfz8CdOaMGpZnXK6oqgFNRhEqhYDoQOdksEUEaDE6IRSAOViYFOWPB8b3xAe/H41DS6bi04euwW/HxF/1PMyUIm/Ts2dPREdHIy0tzXpbVVUVdu/ejbFjx3b6fOEBGnsuzysFWbNpGZQiItuoXL0AIiJyDbVS6ille2lWY2Mj9u/fj0WLFllvUygUSElJuWKTWWef81JSplRmiXsHpfIrnV++B5j7SlU3GHCxjkGpS0mT92KDfaBUOK/M561Zw7Av+yKGxQd3OUgp9ZSqY08p8iA1NTU4e/as9b+zsrJw6NAhhIaGIj4+Ho899hj+9re/ITExET179sSzzz6L2NhYzJgxo9PPFcFMqauyZkoxk5aIbMSgFBGRTNlz+l5paSmMRmObTWZPnjzp1HPq9Xro9c0T41pOU7qU1FMqv7IeDU1G6NTOmWzXWfmWTClnlu8BQIivBufL6lDOTKnL5F6USvec+5pEBepw45AYm87hy0wp8kD79u3DpEmTrP+9cOFCAMCcOXOwZs0aPPXUU6itrcVDDz2EiooKjB8/Hps2bYJO1/lgPsv3ri7YVyrf4/5ARLZhUIqISKY0dgxKuZNly5bh+eef79CxYX4aBOpUqGow4HxZHfpGBzh4dZ1nMokorJTK95yfKQUAFxmUuoy1yflVJt25I/aUIk90/fXXQ7zCYA5BELB06VIsXbrU5ucKD2BQ6mqCrY3OmSlFRLZhTykiIplSWUqOmkTbe0qFh4dDqVR2usmsI87Z3jSltgiCgJ4R5r5SWaXuOYGvrLYRjUYTBMGcJeNMUlCqnN+EX0aadOesJuf21LKn1JUu8onkiplSV8eeUkRkLwxKERHJlFS+12Sw/aJUo9FgxIgRrZrMmkwmpKWldanJrC3nbG+aUnt6WUr4zrlpX6l8y4S3yACttTm9s1iDUjUMSl0q15Ip1T3EueV79iBlShlMIhrtNOiAyJtE+LPR+dWwpxQR2QvL94iIZEpjaXRuNNnnonThwoWYM2cORo4cidGjR2PFihWora3F3LlzAQD33nsvunXrhmXLlgEwNzI/ceKE9f9fuHABhw4dgr+/P/r06dOhc9qDFJTKctMJfAXWJufOD36E+DJTqj155VJQyvMypXxb9E6r0xuhVblnLzUiV4lg+d5VsacUEdkLg1JERDJlzZSyU0+pmTNnoqSkBIsXL0ZhYSGGDh2KTZs2WRuV5+TkQKFozvTJz8/HsGHDrP+9fPlyLF++HBMnTsTWrVs7dE57kCbwuWtQSmpyHuvkJucAEOpnvuhgT6nWGg0mFFSZXxdnNzq3B5VSAa1KAb3BhNpGA0L8mBVC1FKoH4NSVyMFpdhTiohsxaAUEZFMqSyZUk12LN+ZP38+5s+f3+Z9UqBJkpCQ0KF+Nlc6pz1IE/gyS9yzp5SUKRUT5Nx+UkDzhVk5e4a0UlBZD1EEdGqFx46O99OqoDc0op4T+Iguo1Gxw8nVBPmwpxQR2QffcYmIZKp5+p68e8pIQamLdU1umREkZUrFuKB8j5lSbZOanHcP8YUgCC5eTdf4WEr4ahmUIqIuYPkeEdkLg1JERDIlTd8zmOQ9fctXo7JmIWWVuV8JX74lU6pbsPMzpaw9pRiUasWTm5xL/CzNzuv0BhevhIg8kdTovKrBAKPMP0cQkW3sEpR65513kJCQAJ1OhzFjxmDPnj0detzatWshCAJmzJhhj2UQEVEnNPeUknemFNCyhM/9glIFUqaUS3pKmYNSNXoD9AZm1EiKq/QAXFNSaS++GnMHB2ZKEVFXBFmCUgBQxb5SRGQDm4NS69atw8KFC7FkyRIcOHAAycnJSE1NRXFx8RUfl52djSeeeAITJkywdQlERNQF1vI9fsOJXtZm5+7VV6rJaEJRtVS+5/wASKBODaUlo459Q5pV1Jszx4J9PbdBuDVTqpGZUkTUeSqlAgFac3C7gkEpIrKBzUGpN954Aw8++CDmzp2LAQMGYOXKlfD19cXq1avbfYzRaMTs2bPx/PPPo1evXrYugYiIuqC50TmDUj3D/QG43wS+oqoGiKI5gBjugmlQCoWAEEvfEJbwNau0BOiCW2QKeBprppSemVJE1DVB7CtFRHZgU1CqsbER+/fvR0pKSvMJFQqkpKQgPT293cctXboUkZGRuP/++zv0PHq9HlVVVa1+iIjINio2Orfq5ablewWV5iyp6CAdFArXNNSW+kqx2XkzKStAavTrifw0zJQiIttYm50zU4qIbGBTUKq0tBRGoxFRUVGtbo+KikJhYWGbj9m+fTv+/e9/Y9WqVR1+nmXLliEoKMj6ExcXZ8uyiYgIgMaSKWVgphR6hPkCAHLK6yCK7vPnkV9hbnLuyt5FIZa+UmUMSlldrPP88j1fS9lNHXtKEVEXBfuY3wMrWd5NRDZw6vS96upq/O53v8OqVasQHh7e4cctWrQIlZWV1p/c3FwHrpKISB5UCjY6l3QL8YEgmC/Q3Sn4km9pct4t2HVT3kKlTCmWZ1h5Rfme2pwpVctMKSLqIpbvEZE9qGx5cHh4OJRKJYqKilrdXlRUhOjo6MuOP3fuHLKzs3HzzTdbbzOZzBdDKpUKp06dQu/evS97nFarhVbr/F4aRETeTK2yBKXY6BxalRIxgTrkVzYgp7wO4f7usecUVFoypVzQ5FwS6m8OSrGnVLPm8j0vyJRiTyki6iIpMM/yPSKyhU2ZUhqNBiNGjEBaWpr1NpPJhLS0NIwdO/ay4/v164ejR4/i0KFD1p9bbrkFkyZNwqFDh1iWR0TkRGpLjyKjiZlSABAXai7hyy2vc/FKmmWXmdcSE+QGmVIMSgEATCbRmhXgDT2lmClFRF1l7SnF8j27qKhrxP7zF129DCKnsylTCgAWLlyIOXPmYOTIkRg9ejRWrFiB2tpazJ07FwBw7733olu3bli2bBl0Oh0GDRrU6vHBwcEAcNntRETkWFKjc07fM4sP9cXurHLklLlHUOqX0yX45XQJAGBoXLDL1iH1lCrnRQcAoKbRACm5MMiTy/eYKUVENrL2lGKmlM0O5VbgoQ/3obhaj4/uH4PxiR1vdUPk6WwOSs2cORMlJSVYvHgxCgsLMXToUGzatMna/DwnJwcKhVNbVxERUQeoLY3O2VPKLD60udm5q1XWN+Hp9UcAAHPG9sCgbkEuW0uonznwUl6rd9ka3ElFrfniy0ethM7Sl8kTMVOKiGzFnlL2seFgHp5efxSNBvPnse+O5jMoRbJic1AKAObPn4/58+e3ed/WrVuv+Ng1a9bYYwlERNRJakumFKfvmcWHuU9Qauk3J1BQ2YCEMF88Pb2fS9cS4iv1lOI34QBQUe/5pXsA4Kvh9D0iso3UU+oiM2m77LXNJ/HOlnMAgH7RAThZWI2fMorxokmEwtJmgcjbMYWJiEimVJZMKQMzpQC4T0+pH08UYf2BPCgE4PW7k63BA1cJ8zM3fWdPKTOpd4onl+4BgK+UKaVnphQRdY007IHle12zJ6vcGpCaN6k3vpo3Dv5aFUqq9ThyodLFqyNyHgaliIhkSsqUamKjcwDN5XsFVQ3QG1yTPVLXaMCiL48CAB68rhdG9Ah1yTpaCpHK9+oaIYrMqmuevOfZQSk/rTkoVd/ETCki6ppglu/Z5LN9uQCAu0Z0x5Op/aBTKzGxbwQA4KcTRVd6aLuKqxrw3ZECmDhZmTwIg1JERDKltvT7M/CDCwAgzE8DX40SoghcuFjvkjXsySpHaY0eMUE6PJ6S5JI1XCrU0ui80WBiqReaL76kskZPJWXg1bLRORF1kVS+V1nfxCBIJ9XoDdh4tAAAcM/o5gn0Kf0jAQA/ZXQtKDXvkwOY98kBrPzlnO2LJHISBqWIiGSquXyPHyQBQBAElzc7P5BTAQAY2yvMbZpo+6iV0KrMHxfKWcJnLd/z+Ewpa08plu8RUdcEWoJSJhGoZilwp2w8UoC6RiN6RfhheHyI9fZJfSOhVAg4WVjd6XYCB3IuYm/2RQDAu1vOoaSaA0rIMzAoRUQkU9byPQalrFzdV+pgjvnD5LAeIVc50nkEQUCYn9TsnEGp5p5SHp4pZSnfq2s0MsOBiLpEp1bCx/IFSiWbnXfK5/vNpXt3jugOQWhuaB7sq8FIy2eAtE5mS/17e5b1/9foDXjjx9PW/25oMmLexwcweflWrN+fx/d9cisMShERyZRayakul3JlppTJJOKQJVNqeHyw05//SkKkoBT7hnjN9D2/Fg302VeKiLrK2leqnvtDR2WV1mJv9kUoBOCO4d0vu3/qgCgAwE8ZxR0+Z255Hb63lAP+bcYgAMC6vTk4WViFJqMJ8z85gO+OFiCztBZ/+vwwbnlnO9LPldnhtyGyHYNSREQypVJyC7iUK4NSZ4prUK03wFejRN+oAKc//5VIfaU4ga85UyrEw4NSOrUC0pfztSzhI6IukiaRVjBTqsO+sGRJXZcUgahA3WX3T+lvDkrtyixDVUPbf64Nl3yZ8MHObJhEYEJiOP7nmh74zeBomETghW9P4LF1h/BTRjG0KgXuH98TAVoVjl2owqxVu7BmR1ab5ydyJl6REBHJFDOlLhcfJgWlnN/o/ICldG9I9yC3CxhKQanSGvankBqde3r5niAI8LWU3dSx2TkRdVFzphSDUh1hNIlYv/8CAOCuEXFtHtMz3A99Iv1hMInYdqrksvs3HMxDv2c34Q//2YeyGj2qG5qwdq850HX/+J4AgD9P6w+NUoEdZ8vw3ZECqJUC/vm7EXj2pgHY+uT1uGeU+blf//E0Sy/J5dzrUy8RETmNNH2PmsW36Cklis7tt3DgvDko1bLhqbuItnyTW1jJoJR04eXp5XsA4KuVmp3LOyh1uqga972/B/vPl7t6KUQeJ9gSoK9keXeH/HqmBIVVDQj2VSNlQGS7x6VYsqU2Hy+87L5Vv2RZ7itC6opf8JcNx1CjNyAx0h8TkyIAmL9kmzs+AQCgVAh4+7fDcX1f8/OF+Wvx0m2D0TcqANUNBqz6NdOevyJRp/GKhIhIphQKAUoFs6Va6hbsA0EwNwi96ORvDqVMKXcMSsUEWYJSVc7PIHM3lV4yfQ8A/DRSs3N5l+99tOs8tp4qwSMfH2DGAFEnWTOl+G+nQ6Qg0y3JsdCq2p+yO31QNADgxxNFqGyRhXa2uBonCqqgUghIjPRHaU0j/ns4H4A5S6pl0/THpiThj5P7YM3cUUgdGN3q/AqFgMenJgEAVu/IQhkzocmFGJQiIpIxFYNSrejUSmtW0PmyWqc9b0VdI86VmJ9vmJs1OQeA6CAfAEBBZYOLV+JaoihaM6VCfD27fA8AfC3Nzmtlnil1qrAaAFBUpcfz3xx38WqIPEsQy/c65diFKgDANb3CrnjckO5B6BcdAL3BhP8eumC9/b+HzAGo65Ii8M2j4/HghJ4QBCA2SIcZw7q1OoePRomFN/TFhMSINp8jdWAUBncLQl2jESu3nbPl1yKyCYNSREQypnaz3kXuIM4Fzc4P5lYAABLCfBHmr3Xa83aUlClVUCHvoFS13gCjZYy21NzXk/lppZ5S8s2UEkURp4uqrf/95cEL+KGNchkiaptUvsdMqatrMppwyvJ+MzA28IrHCoKAu0ea+z5J/aJEUbRmRd2SHAudWom/3DgAvzw5CV/NHweduv3Mq/ae4083mLOlPkw/j6Iqee/x5Dq8GiEikjE2O79cy75SznLQjftJAc1BqeLqBhiMJhevxnWk0i6dWtHpD//uiJlSQGlNIy7WNUEQgPuuTQAAPLPhKMo5adIjPffccxAEodVPv379XL0sryaV71XW89/M1ZwrqUGjwQR/rQpxIb5XPf62Yd2gUSpwPL8Kxy5U4uiFSmSX1UGnVmDqgCjrcXGhvogMuHyKX0dMTIrAyB4h0BtMePvns106B5GtGJQiIpIxd5vy5g7iXZApdSCnAgAwrId7BqXC/LVQKQSYRKBExn0npEyAYA+fvCexZkrJuKfUGUvWQnyoL/48vZ+1R8vir4+5eGXUVQMHDkRBQYH1Z/v27a5eklcL9mFPqY46bindGxATCEUH2ieE+GmQaukttW5vrrV0b0r/KPhZBlXYShAEPJHa1/ocVQ18Hcn5eDVCRCRjavaUuoyzg1JGk4hDlvK94W7YTwowT+6JsvTaknNfqQpLJoA3NDkHAB+1JVNKL99MKal0LzEyADq1Em/cPRRKhYBvjxQg/VyZi1dHXaFSqRAdHW39CQ8Pd/WSvBp7SnXciQJLUOoqpXstzbSU8H116AK+OdJcumdP1/QKQ59IfzQaTdhystiu5ybqCAaliIhkTK2y7zbwzjvvICEhATqdDmPGjMGePXuuePznn3+Ofv36QafTYfDgwdi4cWOr+++7777LSjGmTZtm1zVfKs5avuecSXNniqtRozfAV6NE36gApzxnV0RLE/hkHJS66EWT94DmTKl6GWdKnSqqAQD0jfYHAAzuHoTfjo4HAPztuxMwWXqIkec4c+YMYmNj0atXL8yePRs5OTmuXpJXY0+pjjueXwmgc0Gpa3uHoXuID6obDCiq0iNAp8L1fdtuXG6L1IHmcsDN7KlHLsCgFBGRjNlz+t66deuwcOFCLFmyBAcOHEBycjJSU1NRXNz2t247d+7ErFmzcP/99+PgwYOYMWMGZsyYgWPHWpfNTJs2rVUpxqeffmq3NbdFypTKr6xHo8Hx/ZMOWkr3krsHu3U5pbXZuYyDUpV1lkwpLynfY0+p5vK9pBYB4cdSEhGgVeF4fhW+PHihvYeSGxozZgzWrFmDTZs24R//+AeysrIwYcIEVFdXt3m8Xq9HVVVVqx/qnJY9pUSRQdz2iKKIE/nN5XsdpVA0NzwHgOmDoqFV2b+n4bSBMQCALSdL0NAk3z2BXMN9P/0SEZHD2XP63htvvIEHH3wQc+fOxYABA7By5Ur4+vpi9erVbR7/5ptvYtq0aXjyySfRv39/vPDCCxg+fDjefvvtVsdptdpWpRghIY7tuxTur4GPWglRBC5UOD5balemuURohJv2k5LEWDOlnJNB5o4qvC1TSiPvnlItJ+8lRjYHpcL8tZg/uQ8A4LXNJ2X75+OJpk+fjrvuugtDhgxBamoqNm7ciIqKCnz22WdtHr9s2TIEBQVZf+Li4to8jtonvR82GUXUyTjAfTV5F+tR1WCAWim0CoJ3xJ0jukP6DvGW5G4OWB0wqFsgugX7oL7JiF/PlDrkOYjaw6AUEZGM2Sso1djYiP379yMlJcV6m0KhQEpKCtLT09t8THp6eqvjASA1NfWy47du3YrIyEj07dsXDz/8MMrKHNvnRRAE9Ik0l/LszS536HMZjCZsPVUCAJjogHR8e4oO8gEA5Ms4U0rqmRLkJUEpX628e0oVV+tR1WCAUiGgV4Rfq/vmXJuAuFAfFFXp8d4vmS5aIdkqODgYSUlJOHu27aliixYtQmVlpfUnNzfXySv0fD5qJTSWzxLsK9U+qZ9UYmQANJ1snRAb7IMXZgzCvEm9cW3vMEcsD4Ig4AZLCd+mYyzhI+diUIqISMZUSvuU75WWlsJoNCIqKqrV7VFRUSgsbPvDTWFh4VWPnzZtGj788EOkpaXhlVdewbZt2zB9+nQYje1fRNujHEMatbzxaEGnH9sZB3MrUFnfhCAfNYbFBTv0uWwVw55SuGgp3wvx9Y7yPblnSp0qNGdJ9QjzhU7duhxGp1biz9P6AwD+uS1T1n/vPVlNTQ3OnTuHmJiYNu/XarUIDAxs9UOdIwhCc7Nzy3skXe54fuebnLc0e0wPPJnar0NT+7oqdaB50l/aySIYjI5vX0AkYVCKiEjG7Fm+5wj33HMPbrnlFgwePBgzZszAt99+i71792Lr1q3tPsYe5Ri/GWy+gNl+phSVDmzempZh7rd1fd8It+4nBbDROQDr3wVpBLqn87EEpeSaKSWV7iVFtl1K85vB0RgWH4z6JiM2sLeUR3jiiSewbds2ZGdnY+fOnbjtttugVCoxa9YsVy/Nq0nviY7cLz2d1E9qYBeDUs4wKiEUoX4aVNQ1YU+WYzPFiVqyyyfgzkxbWrVqFSZMmICQkBCEhIQgJSXlqtOZiIjIMdR2ypQKDw+HUqlEUVFRq9uLiooQHR3d5mOio6M7dTwA9OrVC+Hh4e2WYgD2KcfoE+mPftEBMJhEbD7huDT2n0+af//J/SId9hz2ImVKFVU1wCjTiWRSaYr39JQyl+/JNVPqjGXyXlJ020EpQRCso9d3nGWPFU+Ql5eHWbNmoW/fvrj77rsRFhaGXbt2ISLCvcujPZ30nsjyvfadkCbvdaLJubMpFQKm9reU8HEKHzmRzUGpzk5b2rp1K2bNmoUtW7YgPT0dcXFxuOGGG3DhAr+BIiJyNpXCPtk5Go0GI0aMQFpamvU2k8mEtLQ0jB07ts3HjB07ttXxAPDjjz+2ezxgvuAoKytrtxQDsF85xo2WbKnvjjimhC+3vA6ni2qgEICJSe5/wRThr4VCAAwmEWU1elcvxyWk0pQgb5m+p5XK9+SZKXXKOnnPv91jJiSGAwD2ZJdzIpUHWLt2LfLz86HX65GXl4e1a9eid+/erl6W15PeEyuYKdWmi7WN1n6M/d04UwoAUgeZg1I/HC+CSaZfQJHz2Xw10tlpSx9//DEeeeQRDB06FP369cO//vUv64ULERE5lz3L9xYuXIhVq1bhgw8+QEZGBh5++GHU1tZi7ty5AIB7770XixYtsh6/YMECbNq0Ca+//jpOnjyJ5557Dvv27cP8+fMBmHuBPPnkk9i1axeys7ORlpaGW2+9FX369EFqaqrd1t2e3wwxB6V2nC11SJ+MLafMX96M7BGKYA/oUaRSKhAVaM6WKpBpCV+lJQsgxM/bMqXkF2wRRRFniy2ZUleYhNU7wh/RgTo0GkwOH3xA5KmkTKnyWnl+YXE1UpPz+FBfBOrce/+4tnc4/DRKFFY14HBehauXQzJh09VIV6YtXaqurg5NTU0IDQ21ZSlERNQF9irfA4CZM2di+fLlWLx4MYYOHYpDhw5h06ZN1mbmOTk5KChozjq69tpr8cknn+C9995DcnIyvvjiC3z11VcYNGgQAECpVOLIkSO45ZZbkJSUhPvvvx8jRozAr7/+Cq1Wa7d1t6d3RHMJ3w/Hm8sMS2v0KK62PSgj9ZOa3N/9S/ckUl8pOQalRFG0ZgEEe0mmlJ8lU6pWhuV7+ZUNqNGbx7MnhPm1e5wgCBjXx5wttZ1j0ona1CPUFwCQWVLr4pW4p+OW0j137icl0amVmGIp4fvPrvMuXg3JhcqWB19p2tLJkyc7dI6nn34asbGxl40Fb0mv10Ovb468d2WSEhERXc7ezbXnz59vzXS6VFvNye+66y7cddddbR7v4+ODzZs323N5nXbTkBicLKzGt0cLcPeoOKzfn4dnNhyFRqnAV/PHoXdE+2U/V1LXaEB6ZhkAz+gnJYkJ0uEggILKelcvxelq9AYYLKUM3tJTylfKlJJho3OpyXnPcL+rjmefkBiO9Qfy8OuZUiy64pFE8iT1ZZNKYqk1qcm5O/eTaun343viv4fz8fWhfDyekoQ4S9CRyFFcOurn5Zdfxtq1a7FhwwbodLp2j7PHJCUiIrqcPTOlvJE0hW/n2VI8/cUR/Onzw9AbTKjWGzDv4wNd7jGz42wZGg0mdA/xQWJk1wJbrhAd6ANAnhP4pCwprUoBnVrp4tXYh1S+12g0odEgr/HfpwvNF8+JVyjdk0iZUicKqmTbT43oSvpa/h2dLa6R7SCMKzkuTd7r5hlBqaFxwZiQGA6jScQ/tp1z9XJIBmwKSnVl2pJk+fLlePnll/HDDz9gyJAhVzzWHpOUiIjocmo7NTr3Vr0i/NE/JhAGk4h1+8x7zx+u64UwPw1OFlbjxe8yunReaerelH6REATPCQzGyLh8z9pPygP6f3WUj6Y5uFYvs75Spy2T9/p2ICgVEaBFP0smyI5zZQ5dF5Enigv1hU6tgN5gQk55nauX41YaDSacKzG/3/T3kEwpAHh0ciIA4It9ebL8Ioqcy6arka5MWwKAV199FS+88AI2bdqEkSNHXvV57DVJiYiIWlMxU+qqbk42Z0sF6lRYfd9ILPpNf7x+dzIAc7+F7492bjpfXaMBP1n6SU3yoNI9oLmnlBw/oF60NLv3ltI9ANCoFNZsSbn1lTpTfPXJey1JU/i2nylx2JqIPJVSISAx0lLCV8gSvpYuVNTDJAI+aiWiA9uvDHI3o3uGYnRCKBqNJrz3S6arl0NezuavyDs7bemVV17Bs88+i9WrVyMhIQGFhYUoLCxETU2NrUshIqJOsuf0PW/1+3E98eJtg7BxwQRM7mfuoXh930j8YWIvAMBT648gtxPfDL/y/UmUVOsRG6TD2N5hDlmzo1gzpark11NKKt8L8vGeoBTQoq+UjDKlWk7e6xN59UwpABifGAHA3OxcFFmeRHQpaYrlafaVauV8mbn5e3yor0dlRgPA/Ml9AACf7DmPUpYukwPZfDXS2WlL//jHP9DY2Ig777wTMTEx1p/ly5fbuhQiIuok9pS6Op1aidljeqB7SOtGn0/c0BfD4oNR3WDAvE8OQG+4+kX9znOl+CDdPM3mlTuHQKvyrN5EMcHmnlJFlXqYZNY3pMJSvudNmVIA4Gcp4auTUaZUSY0edY1GKAQgLtSnQ48ZnRAKjVKB/MoGZJbWoslown8P5+O9X87hDC/CiaxZh2x23ppUzuiJzcInJIYjuXsQGppM+Pf2LFcvh7yYTdP3JJ2ZtpSdnW2PpyQiIjuw9/Q9OVErFXj7t8Nx01u/4kheJZZ+cwIv3ja43eNr9AY89cURAMDsMfGYYMm88CSRAVoIgrkxdnldI8L9ta5ektNUSuV7Pt7TUwoAfLXmj4K1MprAl1NmvkiMCfLpcGDYR6PEyIQQ7DxXhhe/y0BGQZW1t9pLG0+ib1QAbk6OwQMTenlNI3yizpAm8DFI25r0ftMjzPOCUoIg4H8n9sbDHx/A90cL8PS0fq5eEnkpXo0QEckYy/ds0y3YByvuGQZBAD7enYMvD+S1e+yL32Ug72I9uof44Jnf9HfiKu1HrVQgwhKIKqiQV1+pi5byvWA/Zkp5uvNdvEgcb+kr9fPJYhRUNiDcX4sJieFQKwWcKqrG8h9OY/HXx+y+XiJPIA0NyCypld00zys5X+65QSkAGBofDADIu1gPg5GvKzkGr0aIiGRMrWD5nq0mJkVgwRTzlJpnNhzF1lPFOFdSg6KqBpzIr8K7W8/i7pXp+HRPDgDgtTuT4ae1S6KySzRP4JNXXympp5TXZUpZekrVyqinVFcvEm8eEosQXzUSI/3x6h1DsOPPk/Cf+8dg31+m4tmbBgAA/ns4H1UNTR0+p9Ekym7yIXmnmCAdArQqGEwiskprXb0ct5HrweV7ABAVoINWpYDBJCJfZl9GkfN47qdiIiKymVrF7ybs4Y+TE3EwpwLbTpfgvvf3tn/clESPa25+qeggHQ7nVaKwSl4fTivrvW/6HgD4SplSevlkSuVYGg/3CPPr1OPiQn1xcPENl90e5KvG78clYO2eHJwprsE3h/Mxe0yPq57PYDThvvf3Yv/5i/h+wQQkhHduPUTuRBAEJEUHYP/5izhVVI2+0R0bIuDNRFG09pTq4aFBKYVCQI8wX5wuqkF2WS3iPTTji9wbr0aIiGRMxUwpu1AoBKyYORQp/SPN3xbrVFAIgE6twJR+kXhhxiD8+tQkLJya5Oql2iwmyNwYWuqnIxfNmVJeFpTSyi9TKrvM/heJgiBg5qg4AMBn+9ov423p3a3nsP1sKeqbjPjq0AW7rYXIVaRm56cL2VcKaB6qIAhAt5CODVVwR/Gh5oC5NEmQyN6YKUVEJGPsKWU/IX4a/GvOKOt/i6IIUTQHrLxJtKV8r1BmQamLlkbnQV6WKSX1lKqXUU8pKXPB3t/4zxjWDS9/fxKHcytwqrA5U0QUReRXNiA2SGcdCX8w5yLeTDtjfeymY4V4LMXzg9Ykb0mWvlKn2ewcQHPpXmwnhiq4owTLe6UU0CeyN16NEBHJGINSjiMIgtcFpAB59pQymkTkXjT/vt2CPffb7rbIradUdUMTymvNAcbOlu9dTbi/FlP6RwIAPtuXCwBoMprw0H/2Y9zLP2P2v3bj2IVK1OgNeGzdIRhNIlL6R0KlEHCysJp9eMjj9WVQqhVpqEK8h5buSXqES5lSDEqRY/BqhIhIxlRK7wuakGPFWoIyueXyCUqdLzNPk9KpFYgL8eyLi0v5aeXVU0q6qArz08DfAQMHpBK+DQcvoKHJiKe+OIIfTxQBAHaeK8NNf9+OW/6+HefL6tAt2Aev3z3U2mdu8/FCu6+HyJmSLNmB58vr2MAfLbIyPTwoJWVKsXyPHIVBKSIiGVMzKEWdlBRpvui4UFGPyvqOTxnzZGeKawAAfSL9vS77TW6ZUlJQylHj2a9LjEBkgBbltY2YtWoXNhy8AKVCwMu3D8aMobEAgMzSWggC8MbdyQjyUSN1YDQAcwkfkScL99cizE8DUQTOWt435SynzDGlws7WQ+opVV4Hk0l08WrIGzEoRUQkYyzfo84K8lVbS9hOFlS5eDXOccZSiiIF5LyJdfqeTHpKnS/v2uS9jlIpFbhzRHcAwMGcCgDA63cl457R8VhxzzB8++h43DasG16+fTDG9DJnSN0wMAqCABzKrZBVWSx5p0RLs/NTLOHD+XLHBsGdJTZYB5VCQKPBJLvJu+QcvBohIpIxlYLbAHVe/xhzcOakTCYsnS4yf+OfGOW9QalavTwypXKc0OPlrpFx1v///C0DMWNYN+t/D+oWhP+bORQzR8Vbb4sM0GFkjxAAwGZmS5GHk/pKnWFQymvK91RKBeJCpRI+9pUi++PVCBGRjLF8j7qiX3QgACBDJplSUtNeady5N/Gz9FWqkVlPKUdmLvQM98O7s4fjnd8Ox5xrEzr0GGsJH/tKkYeT+krJPVOqrtGAkmo9gObyN0/Wg32lyIEYlCIikjGW71FX9I+RT1DKYDQhs8T8ITzRC8v3pG/wTxdWwyiDXiE5Tiqn+c3gGNw4JKbDx0tBqT1Z5Sir0TtqWUQOJ2VKHbtQKYv3lPZIw0ACdSoE+apdvBrb9bDsFdnMlCIH4NUIEZGMcfoedYVUvneqyPsDGefL69BoNMFHrUT3EB9XL8fu+scEwl+rQrXecFmQsbCyAQs/O+Q14931BiPyLT2bHNVTqqviQn0xqFsgTCLwU0aRq5dD1GWDuwchQKdCaU0j9maXu3o5LiNlFLnbe01XSb8HM6XIERiUIiKSMWZKUVf0CPODTq1AQ5MJ2V7+AVXqi+KNk/cAQKkQMMLSz+jSC8i3t5zBlwcuYPnmU65Ymt3lltdDFAE/jRJhfhpXL+cy0weZM6v+s+s8J1yRx9KqlJhmyfz75nC+i1fjOtZ+Uh7e5FySEM6eUpJavQHp58rw6Z4cLNuYgcVfH8PJQu/PHHckXo0QEckYg1LUFUqFgL4y6St1xtrk3Pv6SUlG9wwFYC4dk4iiiK2nSgAAuzLLvCIjLscyeS8+zA+C4H4BxntGxcFfq8KxC1X4+vAFVy+HqMtuSo4FAGw6VgiD0eTi1biGtzQ5l7TMlBJFz98Puqq4ugFT39iGWat2YdGXR/HPXzLxYfp53PTWdizbmCGbSbb2xqsRIiIZU3lh5gc5xwBpAl+Bd5R2ted0sTkoleSFk/ckoxLMQam92eXWi41zJTXIu2gudatqMODYhUqXrc9erE3O3fQiMcxfi0cm9QYAvLbpFBqa5DERkbzPtb3DEOqnQVltI9Izy1y9HJdw9/ebzuoe4gOFANQ2GlFa0+jq5biEKIpYtP4o8isbEOqnwcSkCNx3bQJS+kfBYBLxz18ykfL6Nvx4giXYncWgFBGRjGlU3Aaoa+TS7PyMF0/ekwzpHgSNUoHSmkZklZqzibacLGl1zPazpa5Yml05Y/KerX4/rie6Bfsgv7IBq3dkuXo5RF2iViowbZC8S/hyvSxTSqtSIibI3FdRrn2lvtifh7STxVArBXzy4Bh88PvReO6WgfjXnJFYfd9IdA8xv3c/+OE+/OE/+1BY2WB9bHVDE9LPlSGjoAr1jfzC4VK8GiEikjFmSlFX9ZNB+Z63T96T6NRKDI0LBtDcV2rr6WIAQO8Ic8nGznPeEJRy/8bDOrUST6b2BQC8u+UcJ/GRx7p5SHMJX6NBXiV8RpOI3Ive1VMKkHdfqfyKeiz95gQA4LGUJOtnIMnkflH48fGJePj63lApBGw+XoSUN7bhr18dxW3v7sDQpT9i1qpdmP7mr+i/eBPGLkvDwnWHcLFWnllnl2JQiohIxthTirqqn6V8L7+yARV13vmhKrusefJet2Dvm7zX0qie5mbnu7PKUaM3WPtLLZreHwCwN/uix5eTnS93/0wpALglORaDuwWhRm/Aip/OuHo5RF0yumcoIgK0qGow4NczJVd/gBcpqKxHk1GEWilYs4u8gVwn8ImiiKfXH0G13oChccH4w3W92jzOR6PE09P64ZtHx2NoXDBq9AZ8tCsHB3MqYDSJ6Bbsg0CdCgBQUNmALw9ewG/e+hX7ZDylUsKrESIiGWNQiroqUKdG9xDzh+2Thd7ZV0oq3UuM8s7Jey217Cu182wpmowieoT5Ykr/SEQH6tBoMGH/+YudPq/JJOJkYZXLmx0bTSLyys09sty9nEahEPCXG83BwE/25FhLKok8iVIh4MbB5omS3x4pcPFqnEtqct49xBdKL9o7EiwB/WyZZUp9vi8Pv54phValwOt3J0N1lc/O/WMCsf7ha/Hy7YMxe0w8XrtzCLY/PQk7/jwZh5fcgAPPTsVH949Br3A/FFQ2YOZ7u/D2z2dwtrgG1Q1Nsmwkz6sRIiIZUym958MSOZ+3l/CdlibveXHpnmREjxAoBCC3vB5r9+YCACb1jYQgCLi2TxiAzvWVMhhN2HAwDzes+AXTVvyKp7444pB1d1RhVQMajSaolQJiPSDr7ZpeYZjcLxJGk4gVP5129XKIuuTmZHNQ6scTRR6fadkZuzPNmS/uHgDvrPhQ+WVKVTc04dXNJwEAC6cmoXdEx/pLKhUC7hkdjxdvG4y7Rsahe4j574IgCAj102B8Yjj+++h4zBgaC6NJxPIfTiPljW0Y/NwPGLhkM259ZweWfZ+BraeKUaP3/ol+DEoREcmYWsFtgLpOmsDntUGpYu9vci4J0Kmtzet/PmnuJ3V93wgAwPg+4QCAnR0MSm0+XojJr2/D4+sO46xleuGXBy9g+xnX9aU6lFMBwLMyF/50QxIA4L+H83Gy0Dv/jZF3GxYXgm7BPqjRG/CvXzNdvRynyCmrw8pt5wAAtw/v5uLV2Je1p1S5fDKl3v75LEprGtEr3A9zx/W067n9tSr838yhePXOIegXHYAAS2lfXaMRh3Mr8M9tmbjv/b0YtGQzBi/ZjMnLt2LWe7vw+b5cr8umssvVyDvvvIOEhATodDqMGTMGe/bsueLxn3/+Ofr16wedTofBgwdj48aN9lgGERF1klpl34sze+8Hoihi8eLFiImJgY+PD1JSUnDmDHusuAspiOGt5XtnLZlSSVHenykFmHvASLQqBa7pZc6QGmcJSh25UInKuqYrnuO7IwV4+KP9yCmvQ6ifBk+m9sU9o+IAAIu/Pga9wfZsiZ9OFOHLA3kd/lD++b5cPL7uEABgVEKIzc/vLANjg3DjkBiIIvD6D8yW6qjO7kPkOAqFgAUpiQCAN348jd2ZZS5ekWOJoohnvz4GvcGEcX3CcEtyrKuXZFdS5ldFXZPX9pJsKau01joF9dmbBjhkYrUgCLh7ZBw2PXYdjj6Xioyl0/DznybijbuTcdeI7tY2CdV6AzJLa5GeWYYnvziCBz/ch5Jq7xmEYfOf7Lp167Bw4UIsWbIEBw4cQHJyMlJTU1FcXNzm8Tt37sSsWbNw//334+DBg5gxYwZmzJiBY8eO2boUIiLqJJUdM6UcsR+8+uqreOutt7By5Urs3r0bfn5+SE1NRUNDQ5vnJOeSglKnCqtd3jPI3pqMJmSWWsr3ZJApBQCjE5qDUtf2DoNOrQQARAXq0CfSH6IIpF/hovLnk0VYsPYgTCJw54ju2P70JMyb1AfP3Ngf4f5aZJbWYtUvXc+WMJpEvLQxAw98uA8LPzuMP649dMWSIIPRhKXfnMCTXxxBo9GEaQOjseTmgV1+fld4PCUJCsFc/nQot8LVy3F7nd2HyPHuGtEdtw/rBpMI/HHtQZR68UTJ744WYNvpEmiUCrxw6yAIgmdkZXaUr0aFqEAtAOCVTadavf+eKarG/Wv2Yu77e3CupMZVS7SrF7/LQJNRxMSkCEzqF+mU5/TRKNErwh+3D++O1+5KxvanJ+PIczcg7U8Tsfaha7BwahI0SgV+yihG6opfsOFgHmq9oLxPEG3M/RozZgxGjRqFt99+GwBgMpkQFxeHRx99FH/+858vO37mzJmora3Ft99+a73tmmuuwdChQ7Fy5coOPWdVVRWCgoJQWVmJwMDAqz+AiIjaJIoieiz8Arkr7rb5PdXe+4EoioiNjcWf/vQnPPHEEwCAyspKREVFYc2aNbjnnns6tC7uGY5jMokY9Nxm1DUaMXdcAmaPiUcfL+i/VFTVgPUH8vDqplPw0yhx7PlUr7u4aEtJtR6jXvwJALD01oG4d2yC9b4lXx/DB+nn8btreuCFGYMue+zOs6W4b81eNBpMuCU5Fv83c2irMrmvD13AgrWHoFUp8NPCiYjrZK+VWr0BC9Yewk8ZRQAAlUKAwSQiuXsQ3rt3JKICddZjK+ubsH5/Hj7afR6ZJebeJ4+lJOKPkxM9smH9E58fxhf78zC+Tzg+emCMq5fj1u+pnd2HLuXOv5snq2s04Ja3d+BscQ0mJIbjg7mjPfLf4pVUNTRhyuvbUFKtx4IpiXh8apKrl+QQ7+/IwvPfnABgLm1/+Y4h2HysEP/engWDyRxW0KgUWDAlEQ9d1+uqA3WqGpqQU1aHkmo9Smv0KK9thK9GiZEJoegbFWDz3xNRFKE3mKBVKTq8jzc0GbH1VDH+96MDUCoEbH5sglt9tskoqMLj6w5Zs9Q1SgXG9ArFxKQIjEwIRf+YAGhVShev0qyj76kqW56ksbER+/fvx6JFi6y3KRQKpKSkID09vc3HpKenY+HCha1uS01NxVdffdXu8+j1euj1zVH1qirW1RMR2YMgCFDZ4YOhI/aDrKwsFBYWIiUlxXp/UFAQxowZg/T09HaDUtwznEehEDAhMRybjxfh/R3ZeH9HNpK7B1kberorESKajCKajCY0GU0QIEClFKBWKlBWo8fB3ApIX9klxwXLIiAFABEBWlzTKxTH86swdUBUq/vG9QnHB+nnsf5AHvZml8NoMv/51egNqGowoNFgzpSbOiAKr9+dfFnfpluSY7F2Ty7SM8vw+zV7O10SmVFYhcySWmhUCiy/KxmRAVo8/NF+HM6rxE1/347k7kEQBAFGk4id50rR0GReT4BWhVfvHILplilgnmjBlER8fegCtp8txc1/344AnQp+WhU0Lpqe2ljnnlkQXdmHuF84h69GhXd+Oxy3vrMdv54pxeTXtyLMX4tAnQo+GiUEuO97rAjzZiCKQMtUDkEw/9Q3GlGjN6CgsgEl1Xr0DPfDw9f3dtFqHW/uuJ7oFeGPP312GKeLanD7uzut96X0j0SjUcQvp0vw2uZT2HDwAnqFm5uji5D+/ESYRKCmwVyOdqXMuSAfNYbFB8NP0/mQRbXegIKKehRUNqBGb4CvRomYIB1ig32svZsAcwZuneU1rNUbUFKtx8UWZer3ju3hVgEpwJyl/vX8cfjH1nNYfyAPueX1+PVMKX619G3UKBXoHxuI6EAtBAjWv6uu+HfW0f3CpqBUaWkpjEYjoqJaf3CJiorCyZMn23xMYWFhm8cXFha2+zzLli3D888/b8tSiYioHUo7TOBzxH4g/S/3DPf291nD8fPJInyxPw9bTpXgcF4lDudVunpZNhsWH4zpg6Jx54g4Vy/FqdbMHQ19kwlBvupWt1/TOwwBWhWq9YZ2e4ilDozCW7OGtfnNuCAIeGHGIEx/8xecKa7BmeLOBzbC/TV4796RGB5v7gv19bzxuP+DvThTXIOfMlqXZ/WNCsD/jO2B24Z1g7/Wpo+7LhcX6ovfXZOA1TuycPSC6/9tmfTu2eS4K/sQ9wvn6RsdgBdnDMZT648gu6wO2WXu+ffIFgoBeHHGIGvps7eamBSBTY9NwJOfH8aWUyWIC/XBczcPxJT+URBFERsOXsDSb0/gbHGNddjFlYT7axEdpEWonxZhfhqU1uix//xFVNY3YeupErusua7RiHMltThX0rHJgTq1AoNig/DYFPfMeNOqlHgsJQkLpiQis7QWW04WY/vZUhzOrcDFuiYczq3AYVcvEh3fLzxil160aFGrb9OrqqoQFyevD4lERI7yZGpf/OE1V6/CfrhnOJdGpcC0QTGYNigGJdV6bDlV7BGjv9VKheXHHJRtNJjQZBShUpqzv2KCfFy8QtfQqZVtXlAF6tTYuGACMktroRQEKBTmP0N/rQoBOhUCdGoE+ajbOGOzPpH++OwPY7sUWFEpFEgZEInIgOYyvfgwX3w1bxzSThajvtEAkwiYRBF9owIwokeIV2W4PfObfrhxSDQq6ppQozegRm+A0eSa6Uv1tdX43xUueWq7437hXHeM6I4xvUKRU16HqnoDquqb0GCH4QfOIADmdBOJaM6h0qmVCNCa3wO7h/ggwZIZ5O3C/bVYfd8oZBRUo1eEn3XfEAQBtw/vjolJEUg7WYwmS79JKWNHYcnY0WmU6Bnmh4RwXwToLt87mowmHM+vwvH8yi691+lUSsQG+yAmWIdwPy3K6xqRX1GP/Ir61p9RBAF+GiX8tCr4a1UI89cgJtAHgT4qj9hDBEFA7wh/9I7wxwMTekEUReSW1+NQXgWq6pvMeX6ilO/nfB3dL2wKSoWHh0OpVKKoqKjV7UVFRYiOjm7zMdHR0Z06HgC0Wi20Wq0tSyUionbcMyoef7DxHI7YD6T/LSoqQkxMTKtjhg4d2u5auGe4TkSAFneP5AWdt4oL9e10L6hLDYsPwbB4+03A89OqvG7CVVtUSgVG9Ai9+oFOUFVVhf919SLa0JV9iPuF83UP8XX7Em/qGEEQMCC27T5BYf62fR5QKxUYGheMoXHBXT5HS0G+avSUQcBQEATEh/kiPsw9/o11dL+wqRhdo9FgxIgRSEtLs95mMpmQlpaGsWPHtvmYsWPHtjoeAH788cd2jyciIvfniP2gZ8+eiI6ObnVMVVUVdu/ezT2DiIha6co+RERErmdz+d7ChQsxZ84cjBw5EqNHj8aKFStQW1uLuXPnAgDuvfdedOvWDcuWLQMALFiwABMnTsTrr7+OG2+8EWvXrsW+ffvw3nvv2boUIiJyIXvvB4Ig4LHHHsPf/vY3JCYmomfPnnj22WcRGxuLGTNmuOrXJCIiN3W1fYiIiNyPzUGpmTNnoqSkBIsXL0ZhYSGGDh2KTZs2WZsM5uTkQKFoTsi69tpr8cknn+Cvf/0rnnnmGSQmJuKrr77CoEGXjxcmIiLP4Yj94KmnnkJtbS0eeughVFRUYPz48di0aRN0Ot1lz09ERPJ2tX2IiIjcjyCKoqv6XnVZVVUVgoKCUFlZicDAtutYiYioY7z9PdXbfz8iImfy5vdUb/7diIicraPvqTb1lCIiIiIiIiIiIuoKm8v3XEFK7qqqqnLxSoiIPJ/0XuqBibMdwj2DiMh+vHnP4H5BRGQ/Hd0vPDIoVVZWBgCIi+PYaSIieykrK0NQUJCrl2F33DOIiOzPG/cM7hdERPZ3tf3CI4NSoaGhAMxNczu7GY4aNQp79+7t8nNXVVUhLi4Oubm5bdZF2nr+K3Hkub3p/Fd7jWw9v6PI4fxdfW3cYe3efP7KykrEx8db31u9TVf3DE/eL3j+jp/fEXuGt/zZuPL8trwu7rB+dz2/Pc7tzXsGrzEcw1vOz2sM55+/o+fmNYZ7nr+j+4VHBqWk6U1BQUGdfkNQKpV2eRMJDAxs8zz2On9bHHlubzx/e6+Rvc5vb3I6f2dfG3dauzefv+VkPG/S1T3Dk/cLnr/z57fnnuFtfzauPH9XXhd3Wr+7nd+e5/bGPYPXGI7hbefnNYbzzt/Zc/Mawz3Pf7X9wvt2k6uYN2+ex57fk9fO8/P87npunp/a4+mvG8/vuvN78tp5fu8+P/cLx+HfC56f5/esc/P8rj+/RBA9sEuhK8e1clSs++Nr5L742rgnb39dXPX7efufq7fg6+Se+Lq4L29+bXiNQVfC18h98bVxTx19XTwyU0qr1WLJkiXQarWyem7qGL5G7ouvjXvy9tfFVb+ft/+5egu+Tu6Jr4v78ubXhtcYdCV8jdwXXxv31NHXxSMzpYiIiIiIiIiIyLN5ZKYUERERERERERF5NgaliIiIiIiIiIjI6RiUIiIiIiIiIiIip2NQ6hK5ubn4/e9/j9jYWGg0GvTo0QMLFixAWVlZhx6/detWCIKAiooKxy5UZu677z4IgoCXX3651e1fffUVBEFw0aoIaH5tBEGAWq1GVFQUpk6ditWrV8NkMrl6eUQOw/3CfXHPcE/cL0iuuF+4L+4X7ot7hnwwKNVCZmYmRo4ciTNnzuDTTz/F2bNnsXLlSqSlpWHs2LEoLy939RJlTafT4ZVXXsHFixddvRS6xLRp01BQUIDs7Gx8//33mDRpEhYsWICbbroJBoPB1csjsjvuF+6Pe4Z74n5BcsP9wv1xv3Bf3DPkgUGpFubNmweNRoMffvgBEydORHx8PKZPn46ffvoJFy5cwF/+8hcAgF6vx9NPP424uDhotVr06dMH//73v5GdnY1JkyYBAEJCQiAIAu677z4X/kbeJSUlBdHR0Vi2bFm7x6xfvx4DBw6EVqtFQkICXn/9det9zzzzDMaMGXPZY5KTk7F06VKHrFkutFotoqOj0a1bNwwfPhzPPPMMvv76a3z//fdYs2YNAKCiogIPPPAAIiIiEBgYiMmTJ+Pw4cOtzvPNN99g1KhR0Ol0CA8Px2233eaC34bo6rhfuD/uGe6J+wXJDfcL98f9wn1xz5AHBqUsysvLsXnzZjzyyCPw8fFpdV90dDRmz56NdevWQRRF3Hvvvfj000/x1ltvISMjA//85z/h7++PuLg4rF+/HgBw6tQpFBQU4M0333TFr+OVlEolXnrpJfz9739HXl7eZffv378fd999N+655x4cPXoUzz33HJ599lnrG9bs2bOxZ88enDt3zvqY48eP48iRI/jtb3/rrF9DNiZPnozk5GR8+eWXAIC77roLxcXF+P7777F//34MHz4cU6ZMsX5D+N133+G2227Db37zGxw8eBBpaWkYPXq0K38FojZxv/AM3DM8B/cL8lbcLzwD9wvPwj3DC4kkiqIo7tq1SwQgbtiwoc3733jjDRGAuHv3bhGA+OOPP7Z53JYtW0QA4sWLFx23WBmaM2eOeOutt4qiKIrXXHON+Pvf/14URVHcsGGDKP01/u1vfytOnTq11eOefPJJccCAAdb/Tk5OFpcuXWr970WLFoljxoxx8Oq9W8vX5lIzZ84U+/fvL/76669iYGCg2NDQ0Or+3r17i//85z9FURTFsWPHirNnz3b0colsxv3C/XHPcE/cL0huuF+4P+4X7ot7hnwwU+oSoihe8f7s7GwolUpMnDjRSSuiS73yyiv44IMPkJGR0er2jIwMjBs3rtVt48aNw5kzZ2A0GgGYv8n45JNPAJhf608//RSzZ892zsJlSBRFCIKAw4cPo6amBmFhYfD397f+ZGVlWb9VOnToEKZMmeLiFRN1HPcLz8A9wzNwvyBvxv3CM3C/8BzcM7yLytULcBd9+vSBIAjIyMhos8Y0IyMDISEhl6XekvNdd911SE1NxaJFizpdUz9r1iw8/fTTOHDgAOrr65Gbm4uZM2c6ZqGEjIwM9OzZEzU1NYiJicHWrVsvOyY4OBgA+G+LPAb3C8/CPcMzcL8gb8T9wrNwv/Ac3DO8CzOlLMLCwjB16lS8++67qK+vb3VfYWEhPv74Y8ycORODBw+GyWTCtm3b2jyPRqMBAGvUnBzj5ZdfxjfffIP09HTrbf3798eOHTtaHbdjxw4kJSVBqVQCALp3746JEyfi448/xscff4ypU6ciMjLSqWuXi59//hlHjx7FHXfcgeHDh6OwsBAqlQp9+vRp9RMeHg4AGDJkCNLS0ly8aqKr437hebhnuDfuF+StuF94Hu4X7o97hhdyWeGgGzp9+rQYHh4uTpgwQdy2bZuYk5Mjfv/99+KgQYPExMREsaysTBRFUbzvvvvEuLg4ccOGDWJmZqa4ZcsWcd26daIoimJeXp4oCIK4Zs0asbi4WKyurnblr+Q12qop/t3vfifqdDprvff+/ftFhUIhLl26VDx16pS4Zs0a0cfHR3z//fdbPW7VqlVibGysGB4eLv7nP/9x0m/gvebMmSNOmzZNLCgoEPPy8sT9+/eLL774oujv7y/edNNNosFgEE0mkzh+/HgxOTlZ3Lx5s5iVlSXu2LFDfOaZZ8S9e/eKomjul6BQKMTFixeLJ06cEI8cOSK+/PLLLv7tiNrG/cK9cc9wT9wvSI64X7g37hfui3uGfDAodYns7Gxxzpw5YlRUlKhWq8W4uDjx0UcfFUtLS63H1NfXi48//rgYExMjajQasU+fPuLq1aut9y9dulSMjo4WBUEQ58yZ44Lfwvu0tWFkZWWJGo1GbBlb/eKLL8QBAwaIarVajI+PF1977bXLznXx4kVRq9WKvr6+3NTtYM6cOSIAEYCoUqnEiIgIMSUlRVy9erVoNBqtx1VVVYmPPvqoGBsba/23NXv2bDEnJ8d6zPr168WhQ4eKGo1GDA8PF2+//XZX/EpEHcL9wn1xz3BP3C9IrrhfuC/uF+6Le4Z8CKJ4lc57REREREREREREdsaeUkRERERERERE5HQMShERERERERERkdMxKEVERERERERERE7HoBQRERERERERETkdg1JEREREREREROR0sgtKLVu2DKNGjUJAQAAiIyMxY8YMnDp1qtUxDQ0NmDdvHsLCwuDv74877rgDRUVF1vsPHz6MWbNmIS4uDj4+Pujfvz/efPPNVuf48ssvMXXqVERERCAwMBBjx47F5s2bnfI7EhGRfXDPICKijuB+QUTUNbILSm3btg3z5s3Drl278OOPP6KpqQk33HADamtrrcc8/vjj+Oabb/D5559j27ZtyM/Px+233269f//+/YiMjMRHH32E48eP4y9/+QsWLVqEt99+23rML7/8gqlTp2Ljxo3Yv38/Jk2ahJtvvhkHDx506u9LRERdxz2DiIg6gvsFEVHXCKIoiq5ehCuVlJQgMjIS27Ztw3XXXYfKykpERETgk08+wZ133gkAOHnyJPr374/09HRcc801bZ5n3rx5yMjIwM8//9zucw0cOBAzZ87E4sWLHfK7EBGRY3HPICKijuB+QUTUMbLLlLpUZWUlACA0NBSA+RuKpqYmpKSkWI/p168f4uPjkZ6efsXzSOdoi8lkQnV19RWPISIi98Y9g4iIOoL7BRFRx6hcvQBXMplMeOyxxzBu3DgMGjQIAFBYWAiNRoPg4OBWx0ZFRaGwsLDN8+zcuRPr1q3Dd9991+5zLV++HDU1Nbj77rvttn4iInIe7hlERNQR3C+IiDpO1kGpefPm4dixY9i+fXuXz3Hs2DHceuutWLJkCW644YY2j/nkk0/w/PPP4+uvv0ZkZGSXn4uIiFyHewYREXUE9wsioo6Tbfne/Pnz8e2332LLli3o3r279fbo6Gg0NjaioqKi1fFFRUWIjo5udduJEycwZcoUPPTQQ/jrX//a5vOsXbsWDzzwAD777LNW6bpEROQ5uGcQEVFHcL8gIuoc2QWlRFHE/PnzsWHDBvz888/o2bNnq/tHjBgBtVqNtLQ0622nTp1CTk4Oxo4da73t+PHjmDRpEubMmYMXX3yxzef69NNPMXfuXHz66ae48cYbHfMLERGRw3DPICKijuB+QUTUNbKbvvfII4/gk08+wddff42+fftabw8KCoKPjw8A4OGHH8bGjRuxZs0aBAYG4tFHHwVgrusGzOm0kydPRmpqKl577TXrOZRKJSIiIgCY02nnzJmDN998s9WoVx8fHwQFBTn89yQiIttxzyAioo7gfkFE1EWizABo8+f999+3HlNfXy8+8sgjYkhIiOjr6yvedtttYkFBgfX+JUuWtHmOHj16WI+ZOHFim8fMmTPHeb8sERHZhHsGERF1BPcLIqKukV2mFBERERERERERuZ7sekoREREREREREZHrMShFREREREREREROx6AUERERERERERE5HYNSRERERERERETkdAxKERERERERERGR0zEoRURERERERERETsegFBEREREREREROR2DUkRERERERERE5HQMShERERERERERkdMxKEVkR9dffz0ee+wxVy+DiIjcHPcLIiLqKO4Z5M0YlCIiIiIiIiIiIqdjUIrITu677z5s27YNb775JgRBgCAIOHjwIGbPno2IiAj4+PggMTER77//vquXSkRELsT9goiIOop7Bnk7lasXQOQt3nzzTZw+fRqDBg3C0qVLAQDPP/88Tpw4ge+//x7h4eE4e/Ys6uvrXbxSIiJyJe4XRETUUdwzyNsxKEVkJ0FBQdBoNPD19UV0dDQA4MKFCxg2bBhGjhwJAEhISHDhComIyB1wvyAioo7inkHejuV7RA708MMPY+3atRg6dCieeuop7Ny509VLIiIiN8T9goiIOop7BnkTBqWIHGj69Ok4f/48Hn/8ceTn52PKlCl44oknXL0sIiJyM9wviIioo7hnkDdhUIrIjjQaDYxGY6vbIiIiMGfOHHz00UdYsWIF3nvvPRetjoiI3AX3CyIi6ijuGeTN2FOKyI4SEhKwe/duZGdnw9/fH2+99RZGjBiBgQMHQq/X49tvv0X//v1dvUwiInIx7hdERNRR3DPImzFTisiOnnjiCSiVSgwYMAARERHQaDRYtGgRhgwZguuuuw5KpRJr16519TKJiMjFuF8QEVFHcc8gbyaIoii6ehFERERERERERCQvzJQiIiIiIiIiIiKnY1CKiIiIiIiIiIicjkEpIiIiIiIiIiJyOgaliIiIiIiIiIjI6RiUIiIiIiIiIiIip2NQioiIiIiIiIiInI5BKSIiIiIiIiIicjoGpYiIiIiIiIiIyOkYlCIiIiIiIiIiIqdjUIqIiIiIiIiIiJyOQSkiIiIiIiIiInI6BqWIiIiIiIiIiMjp/h8fE4S+aSp/UQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(2, 3, figsize=(3 * 4, 2 * 3))\n", + "fig.suptitle(\"Stochastic Volatility\")\n", + "thc = srr.transaction_history[1:].total.sum()\n", + "srr.book_history.Main.plot(ax=axs[0][0], title=f\"Total Hedge Cost: {thc:.2f}\")\n", + "metrics.price.plot(title=\"price\", ax=axs[0][1])\n", + "metrics.vol.plot(title=\"vol\", ax=axs[0][2])\n", + "metrics.delta.plot(title=\"delta\", ax=axs[1][0])\n", + "metrics.gamma.plot(title=\"gamma\", ax=axs[1][1])\n", + "metrics.vega.plot(title=\"vega\", ax=axs[1][2])\n", + "fig.tight_layout()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Transactions" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tstotaldescquantitypriceasset_nameorder_labelbook
02022-09-22-1.4100buy CO_ACME1.001.41CO_ACMENaNMain
12022-09-2290.55420000sell ACME-0.905542100.00ACMENaNMain
22022-09-220.045interest payment on cash 89.14NaNNaNNaNNaNMain
32022-09-23-90.72625298buy ACME0.905542100.19ACMENaNMain
42022-09-2383.40617120sell ACME-0.832480100.19ACMENaNMain
52022-09-230.041interest payment on cash 81.87NaNNaNNaNNaNMain
62022-09-24-83.72251360buy ACME0.832480100.57ACMENaNMain
72022-09-2477.19642573sell ACME-0.767589100.57ACMENaNMain
82022-09-240.038interest payment on cash 75.38NaNNaNNaNNaNMain
92022-09-25-77.47275777buy ACME0.767589100.93ACMENaNMain
102022-09-2573.19413321sell ACME-0.725197100.93ACMENaNMain
112022-09-250.036interest payment on cash 71.14NaNNaNNaNNaNMain
122022-09-26-74.17314916buy ACME0.725197102.28ACMENaNMain
132022-09-2674.12998700sell ACME-0.724775102.28ACMENaNMain
142022-09-260.036interest payment on cash 71.14NaNNaNNaNNaNMain
152022-09-27-74.78228450buy ACME0.724775103.18ACMENaNMain
162022-09-2773.48366102sell ACME-0.712189103.18ACMENaNMain
172022-09-270.035interest payment on cash 69.87NaNNaNNaNNaNMain
182022-09-28-71.91684522buy ACME0.712189100.98ACMENaNMain
192022-09-2862.26871112sell ACME-0.616644100.98ACMENaNMain
\n", + "
" + ], + "text/plain": [ + " ts total desc quantity \\\n", + "0 2022-09-22 -1.4100 buy CO_ACME 1.00 \n", + "1 2022-09-22 90.55420000 sell ACME -0.905542 \n", + "2 2022-09-22 0.045 interest payment on cash 89.14 NaN \n", + "3 2022-09-23 -90.72625298 buy ACME 0.905542 \n", + "4 2022-09-23 83.40617120 sell ACME -0.832480 \n", + "5 2022-09-23 0.041 interest payment on cash 81.87 NaN \n", + "6 2022-09-24 -83.72251360 buy ACME 0.832480 \n", + "7 2022-09-24 77.19642573 sell ACME -0.767589 \n", + "8 2022-09-24 0.038 interest payment on cash 75.38 NaN \n", + "9 2022-09-25 -77.47275777 buy ACME 0.767589 \n", + "10 2022-09-25 73.19413321 sell ACME -0.725197 \n", + "11 2022-09-25 0.036 interest payment on cash 71.14 NaN \n", + "12 2022-09-26 -74.17314916 buy ACME 0.725197 \n", + "13 2022-09-26 74.12998700 sell ACME -0.724775 \n", + "14 2022-09-26 0.036 interest payment on cash 71.14 NaN \n", + "15 2022-09-27 -74.78228450 buy ACME 0.724775 \n", + "16 2022-09-27 73.48366102 sell ACME -0.712189 \n", + "17 2022-09-27 0.035 interest payment on cash 69.87 NaN \n", + "18 2022-09-28 -71.91684522 buy ACME 0.712189 \n", + "19 2022-09-28 62.26871112 sell ACME -0.616644 \n", + "\n", + " price asset_name order_label book \n", + "0 1.41 CO_ACME NaN Main \n", + "1 100.00 ACME NaN Main \n", + "2 NaN NaN NaN Main \n", + "3 100.19 ACME NaN Main \n", + "4 100.19 ACME NaN Main \n", + "5 NaN NaN NaN Main \n", + "6 100.57 ACME NaN Main \n", + "7 100.57 ACME NaN Main \n", + "8 NaN NaN NaN Main \n", + "9 100.93 ACME NaN Main \n", + "10 100.93 ACME NaN Main \n", + "11 NaN NaN NaN Main \n", + "12 102.28 ACME NaN Main \n", + "13 102.28 ACME NaN Main \n", + "14 NaN NaN NaN Main \n", + "15 103.18 ACME NaN Main \n", + "16 103.18 ACME NaN Main \n", + "17 NaN NaN NaN Main \n", + "18 100.98 ACME NaN Main \n", + "19 100.98 ACME NaN Main " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "with pd.option_context(\"display.max_rows\", None):\n", + " display(srr.transaction_history.head(20))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "scratch-3.12", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/poetry.lock b/poetry.lock index 39e5d6d..9631c10 100644 --- a/poetry.lock +++ b/poetry.lock @@ -61,13 +61,13 @@ tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "p [[package]] name = "babel" -version = "2.14.0" +version = "2.15.0" description = "Internationalization utilities" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "Babel-2.14.0-py3-none-any.whl", hash = "sha256:efb1a25b7118e67ce3a259bed20545c29cb68be8ad2c784c83689981b7a57287"}, - {file = "Babel-2.14.0.tar.gz", hash = "sha256:6919867db036398ba21eb5c7a0f6b28ab8cbc3ae7a73a44ebe34ae74a4e7d363"}, + {file = "Babel-2.15.0-py3-none-any.whl", hash = "sha256:08706bdad8d0a3413266ab61bd6c34d0c28d6e1e7badf40a2cebe67644e2e1fb"}, + {file = "babel-2.15.0.tar.gz", hash = "sha256:8daf0e265d05768bc6c7a314cf1321e9a123afc328cc635c18622a2f30a04413"}, ] [package.extras] @@ -441,63 +441,63 @@ test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] [[package]] name = "coverage" -version = "7.4.4" +version = "7.5.1" description = "Code coverage measurement for Python" optional = false python-versions = ">=3.8" files = [ - {file = "coverage-7.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e0be5efd5127542ef31f165de269f77560d6cdef525fffa446de6f7e9186cfb2"}, - {file = "coverage-7.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ccd341521be3d1b3daeb41960ae94a5e87abe2f46f17224ba5d6f2b8398016cf"}, - {file = "coverage-7.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09fa497a8ab37784fbb20ab699c246053ac294d13fc7eb40ec007a5043ec91f8"}, - {file = "coverage-7.4.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1a93009cb80730c9bca5d6d4665494b725b6e8e157c1cb7f2db5b4b122ea562"}, - {file = "coverage-7.4.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:690db6517f09336559dc0b5f55342df62370a48f5469fabf502db2c6d1cffcd2"}, - {file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:09c3255458533cb76ef55da8cc49ffab9e33f083739c8bd4f58e79fecfe288f7"}, - {file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ce1415194b4a6bd0cdcc3a1dfbf58b63f910dcb7330fe15bdff542c56949f87"}, - {file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b91cbc4b195444e7e258ba27ac33769c41b94967919f10037e6355e998af255c"}, - {file = "coverage-7.4.4-cp310-cp310-win32.whl", hash = "sha256:598825b51b81c808cb6f078dcb972f96af96b078faa47af7dfcdf282835baa8d"}, - {file = "coverage-7.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:09ef9199ed6653989ebbcaacc9b62b514bb63ea2f90256e71fea3ed74bd8ff6f"}, - {file = "coverage-7.4.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f9f50e7ef2a71e2fae92774c99170eb8304e3fdf9c8c3c7ae9bab3e7229c5cf"}, - {file = "coverage-7.4.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:623512f8ba53c422fcfb2ce68362c97945095b864cda94a92edbaf5994201083"}, - {file = "coverage-7.4.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0513b9508b93da4e1716744ef6ebc507aff016ba115ffe8ecff744d1322a7b63"}, - {file = "coverage-7.4.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40209e141059b9370a2657c9b15607815359ab3ef9918f0196b6fccce8d3230f"}, - {file = "coverage-7.4.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a2b2b78c78293782fd3767d53e6474582f62443d0504b1554370bde86cc8227"}, - {file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:73bfb9c09951125d06ee473bed216e2c3742f530fc5acc1383883125de76d9cd"}, - {file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f384c3cc76aeedce208643697fb3e8437604b512255de6d18dae3f27655a384"}, - {file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:54eb8d1bf7cacfbf2a3186019bcf01d11c666bd495ed18717162f7eb1e9dd00b"}, - {file = "coverage-7.4.4-cp311-cp311-win32.whl", hash = "sha256:cac99918c7bba15302a2d81f0312c08054a3359eaa1929c7e4b26ebe41e9b286"}, - {file = "coverage-7.4.4-cp311-cp311-win_amd64.whl", hash = "sha256:b14706df8b2de49869ae03a5ccbc211f4041750cd4a66f698df89d44f4bd30ec"}, - {file = "coverage-7.4.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:201bef2eea65e0e9c56343115ba3814e896afe6d36ffd37bab783261db430f76"}, - {file = "coverage-7.4.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:41c9c5f3de16b903b610d09650e5e27adbfa7f500302718c9ffd1c12cf9d6818"}, - {file = "coverage-7.4.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d898fe162d26929b5960e4e138651f7427048e72c853607f2b200909794ed978"}, - {file = "coverage-7.4.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ea79bb50e805cd6ac058dfa3b5c8f6c040cb87fe83de10845857f5535d1db70"}, - {file = "coverage-7.4.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce4b94265ca988c3f8e479e741693d143026632672e3ff924f25fab50518dd51"}, - {file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:00838a35b882694afda09f85e469c96367daa3f3f2b097d846a7216993d37f4c"}, - {file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:fdfafb32984684eb03c2d83e1e51f64f0906b11e64482df3c5db936ce3839d48"}, - {file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:69eb372f7e2ece89f14751fbcbe470295d73ed41ecd37ca36ed2eb47512a6ab9"}, - {file = "coverage-7.4.4-cp312-cp312-win32.whl", hash = "sha256:137eb07173141545e07403cca94ab625cc1cc6bc4c1e97b6e3846270e7e1fea0"}, - {file = "coverage-7.4.4-cp312-cp312-win_amd64.whl", hash = "sha256:d71eec7d83298f1af3326ce0ff1d0ea83c7cb98f72b577097f9083b20bdaf05e"}, - {file = "coverage-7.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d5ae728ff3b5401cc320d792866987e7e7e880e6ebd24433b70a33b643bb0384"}, - {file = "coverage-7.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cc4f1358cb0c78edef3ed237ef2c86056206bb8d9140e73b6b89fbcfcbdd40e1"}, - {file = "coverage-7.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8130a2aa2acb8788e0b56938786c33c7c98562697bf9f4c7d6e8e5e3a0501e4a"}, - {file = "coverage-7.4.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf271892d13e43bc2b51e6908ec9a6a5094a4df1d8af0bfc360088ee6c684409"}, - {file = "coverage-7.4.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4cdc86d54b5da0df6d3d3a2f0b710949286094c3a6700c21e9015932b81447e"}, - {file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ae71e7ddb7a413dd60052e90528f2f65270aad4b509563af6d03d53e979feafd"}, - {file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:38dd60d7bf242c4ed5b38e094baf6401faa114fc09e9e6632374388a404f98e7"}, - {file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa5b1c1bfc28384f1f53b69a023d789f72b2e0ab1b3787aae16992a7ca21056c"}, - {file = "coverage-7.4.4-cp38-cp38-win32.whl", hash = "sha256:dfa8fe35a0bb90382837b238fff375de15f0dcdb9ae68ff85f7a63649c98527e"}, - {file = "coverage-7.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:b2991665420a803495e0b90a79233c1433d6ed77ef282e8e152a324bbbc5e0c8"}, - {file = "coverage-7.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b799445b9f7ee8bf299cfaed6f5b226c0037b74886a4e11515e569b36fe310d"}, - {file = "coverage-7.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b4d33f418f46362995f1e9d4f3a35a1b6322cb959c31d88ae56b0298e1c22357"}, - {file = "coverage-7.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aadacf9a2f407a4688d700e4ebab33a7e2e408f2ca04dbf4aef17585389eff3e"}, - {file = "coverage-7.4.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c95949560050d04d46b919301826525597f07b33beba6187d04fa64d47ac82e"}, - {file = "coverage-7.4.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff7687ca3d7028d8a5f0ebae95a6e4827c5616b31a4ee1192bdfde697db110d4"}, - {file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5fc1de20b2d4a061b3df27ab9b7c7111e9a710f10dc2b84d33a4ab25065994ec"}, - {file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c74880fc64d4958159fbd537a091d2a585448a8f8508bf248d72112723974cbd"}, - {file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:742a76a12aa45b44d236815d282b03cfb1de3b4323f3e4ec933acfae08e54ade"}, - {file = "coverage-7.4.4-cp39-cp39-win32.whl", hash = "sha256:d89d7b2974cae412400e88f35d86af72208e1ede1a541954af5d944a8ba46c57"}, - {file = "coverage-7.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:9ca28a302acb19b6af89e90f33ee3e1906961f94b54ea37de6737b7ca9d8827c"}, - {file = "coverage-7.4.4-pp38.pp39.pp310-none-any.whl", hash = "sha256:b2c5edc4ac10a7ef6605a966c58929ec6c1bd0917fb8c15cb3363f65aa40e677"}, - {file = "coverage-7.4.4.tar.gz", hash = "sha256:c901df83d097649e257e803be22592aedfd5182f07b3cc87d640bbb9afd50f49"}, + {file = "coverage-7.5.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0884920835a033b78d1c73b6d3bbcda8161a900f38a488829a83982925f6c2e"}, + {file = "coverage-7.5.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:39afcd3d4339329c5f58de48a52f6e4e50f6578dd6099961cf22228feb25f38f"}, + {file = "coverage-7.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a7b0ceee8147444347da6a66be737c9d78f3353b0681715b668b72e79203e4a"}, + {file = "coverage-7.5.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a9ca3f2fae0088c3c71d743d85404cec8df9be818a005ea065495bedc33da35"}, + {file = "coverage-7.5.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd215c0c7d7aab005221608a3c2b46f58c0285a819565887ee0b718c052aa4e"}, + {file = "coverage-7.5.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4bf0655ab60d754491004a5efd7f9cccefcc1081a74c9ef2da4735d6ee4a6223"}, + {file = "coverage-7.5.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:61c4bf1ba021817de12b813338c9be9f0ad5b1e781b9b340a6d29fc13e7c1b5e"}, + {file = "coverage-7.5.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:db66fc317a046556a96b453a58eced5024af4582a8dbdc0c23ca4dbc0d5b3146"}, + {file = "coverage-7.5.1-cp310-cp310-win32.whl", hash = "sha256:b016ea6b959d3b9556cb401c55a37547135a587db0115635a443b2ce8f1c7228"}, + {file = "coverage-7.5.1-cp310-cp310-win_amd64.whl", hash = "sha256:df4e745a81c110e7446b1cc8131bf986157770fa405fe90e15e850aaf7619bc8"}, + {file = "coverage-7.5.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:796a79f63eca8814ca3317a1ea443645c9ff0d18b188de470ed7ccd45ae79428"}, + {file = "coverage-7.5.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4fc84a37bfd98db31beae3c2748811a3fa72bf2007ff7902f68746d9757f3746"}, + {file = "coverage-7.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6175d1a0559986c6ee3f7fccfc4a90ecd12ba0a383dcc2da30c2b9918d67d8a3"}, + {file = "coverage-7.5.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fc81d5878cd6274ce971e0a3a18a8803c3fe25457165314271cf78e3aae3aa2"}, + {file = "coverage-7.5.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:556cf1a7cbc8028cb60e1ff0be806be2eded2daf8129b8811c63e2b9a6c43bca"}, + {file = "coverage-7.5.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9981706d300c18d8b220995ad22627647be11a4276721c10911e0e9fa44c83e8"}, + {file = "coverage-7.5.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:d7fed867ee50edf1a0b4a11e8e5d0895150e572af1cd6d315d557758bfa9c057"}, + {file = "coverage-7.5.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ef48e2707fb320c8f139424a596f5b69955a85b178f15af261bab871873bb987"}, + {file = "coverage-7.5.1-cp311-cp311-win32.whl", hash = "sha256:9314d5678dcc665330df5b69c1e726a0e49b27df0461c08ca12674bcc19ef136"}, + {file = "coverage-7.5.1-cp311-cp311-win_amd64.whl", hash = "sha256:5fa567e99765fe98f4e7d7394ce623e794d7cabb170f2ca2ac5a4174437e90dd"}, + {file = "coverage-7.5.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b6cf3764c030e5338e7f61f95bd21147963cf6aa16e09d2f74f1fa52013c1206"}, + {file = "coverage-7.5.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ec92012fefebee89a6b9c79bc39051a6cb3891d562b9270ab10ecfdadbc0c34"}, + {file = "coverage-7.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:16db7f26000a07efcf6aea00316f6ac57e7d9a96501e990a36f40c965ec7a95d"}, + {file = "coverage-7.5.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:beccf7b8a10b09c4ae543582c1319c6df47d78fd732f854ac68d518ee1fb97fa"}, + {file = "coverage-7.5.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8748731ad392d736cc9ccac03c9845b13bb07d020a33423fa5b3a36521ac6e4e"}, + {file = "coverage-7.5.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7352b9161b33fd0b643ccd1f21f3a3908daaddf414f1c6cb9d3a2fd618bf2572"}, + {file = "coverage-7.5.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7a588d39e0925f6a2bff87154752481273cdb1736270642aeb3635cb9b4cad07"}, + {file = "coverage-7.5.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:68f962d9b72ce69ea8621f57551b2fa9c70509af757ee3b8105d4f51b92b41a7"}, + {file = "coverage-7.5.1-cp312-cp312-win32.whl", hash = "sha256:f152cbf5b88aaeb836127d920dd0f5e7edff5a66f10c079157306c4343d86c19"}, + {file = "coverage-7.5.1-cp312-cp312-win_amd64.whl", hash = "sha256:5a5740d1fb60ddf268a3811bcd353de34eb56dc24e8f52a7f05ee513b2d4f596"}, + {file = "coverage-7.5.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e2213def81a50519d7cc56ed643c9e93e0247f5bbe0d1247d15fa520814a7cd7"}, + {file = "coverage-7.5.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5037f8fcc2a95b1f0e80585bd9d1ec31068a9bcb157d9750a172836e98bc7a90"}, + {file = "coverage-7.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3721c2c9e4c4953a41a26c14f4cef64330392a6d2d675c8b1db3b645e31f0e"}, + {file = "coverage-7.5.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca498687ca46a62ae590253fba634a1fe9836bc56f626852fb2720f334c9e4e5"}, + {file = "coverage-7.5.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0cdcbc320b14c3e5877ee79e649677cb7d89ef588852e9583e6b24c2e5072661"}, + {file = "coverage-7.5.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:57e0204b5b745594e5bc14b9b50006da722827f0b8c776949f1135677e88d0b8"}, + {file = "coverage-7.5.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8fe7502616b67b234482c3ce276ff26f39ffe88adca2acf0261df4b8454668b4"}, + {file = "coverage-7.5.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:9e78295f4144f9dacfed4f92935fbe1780021247c2fabf73a819b17f0ccfff8d"}, + {file = "coverage-7.5.1-cp38-cp38-win32.whl", hash = "sha256:1434e088b41594baa71188a17533083eabf5609e8e72f16ce8c186001e6b8c41"}, + {file = "coverage-7.5.1-cp38-cp38-win_amd64.whl", hash = "sha256:0646599e9b139988b63704d704af8e8df7fa4cbc4a1f33df69d97f36cb0a38de"}, + {file = "coverage-7.5.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4cc37def103a2725bc672f84bd939a6fe4522310503207aae4d56351644682f1"}, + {file = "coverage-7.5.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fc0b4d8bfeabd25ea75e94632f5b6e047eef8adaed0c2161ada1e922e7f7cece"}, + {file = "coverage-7.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d0a0f5e06881ecedfe6f3dd2f56dcb057b6dbeb3327fd32d4b12854df36bf26"}, + {file = "coverage-7.5.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9735317685ba6ec7e3754798c8871c2f49aa5e687cc794a0b1d284b2389d1bd5"}, + {file = "coverage-7.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d21918e9ef11edf36764b93101e2ae8cc82aa5efdc7c5a4e9c6c35a48496d601"}, + {file = "coverage-7.5.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c3e757949f268364b96ca894b4c342b41dc6f8f8b66c37878aacef5930db61be"}, + {file = "coverage-7.5.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:79afb6197e2f7f60c4824dd4b2d4c2ec5801ceb6ba9ce5d2c3080e5660d51a4f"}, + {file = "coverage-7.5.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d1d0d98d95dd18fe29dc66808e1accf59f037d5716f86a501fc0256455219668"}, + {file = "coverage-7.5.1-cp39-cp39-win32.whl", hash = "sha256:1cc0fe9b0b3a8364093c53b0b4c0c2dd4bb23acbec4c9240b5f284095ccf7981"}, + {file = "coverage-7.5.1-cp39-cp39-win_amd64.whl", hash = "sha256:dde0070c40ea8bb3641e811c1cfbf18e265d024deff6de52c5950677a8fb1e0f"}, + {file = "coverage-7.5.1-pp38.pp39.pp310-none-any.whl", hash = "sha256:6537e7c10cc47c595828b8a8be04c72144725c383c4702703ff4e42e44577312"}, + {file = "coverage-7.5.1.tar.gz", hash = "sha256:54de9ef3a9da981f7af93eafde4ede199e0846cd819eb27c88e2b712aae9708c"}, ] [package.extras] @@ -602,13 +602,13 @@ files = [ [[package]] name = "exceptiongroup" -version = "1.2.0" +version = "1.2.1" description = "Backport of PEP 654 (exception groups)" optional = false python-versions = ">=3.7" files = [ - {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, - {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, + {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"}, + {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"}, ] [package.extras] @@ -775,13 +775,13 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipython" -version = "8.23.0" +version = "8.24.0" description = "IPython: Productive Interactive Computing" optional = false python-versions = ">=3.10" files = [ - {file = "ipython-8.23.0-py3-none-any.whl", hash = "sha256:07232af52a5ba146dc3372c7bf52a0f890a23edf38d77caef8d53f9cdc2584c1"}, - {file = "ipython-8.23.0.tar.gz", hash = "sha256:7468edaf4f6de3e1b912e57f66c241e6fd3c7099f2ec2136e239e142e800274d"}, + {file = "ipython-8.24.0-py3-none-any.whl", hash = "sha256:d7bf2f6c4314984e3e02393213bab8703cf163ede39672ce5918c51fe253a2a3"}, + {file = "ipython-8.24.0.tar.gz", hash = "sha256:010db3f8a728a578bb641fdd06c063b9fb8e96a9464c63aec6310fbcb5e80501"}, ] [package.dependencies] @@ -795,7 +795,7 @@ prompt-toolkit = ">=3.0.41,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5.13.0" -typing-extensions = {version = "*", markers = "python_version < \"3.12\""} +typing-extensions = {version = ">=4.6", markers = "python_version < \"3.12\""} [package.extras] all = ["ipython[black,doc,kernel,matplotlib,nbconvert,nbformat,notebook,parallel,qtconsole]", "ipython[test,test-extra]"] @@ -808,7 +808,7 @@ nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] -test = ["pickleshare", "pytest (<8)", "pytest-asyncio (<0.22)", "testpath"] +test = ["pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] test-extra = ["curio", "ipython[test]", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.23)", "pandas", "trio"] [[package]] @@ -846,13 +846,13 @@ testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] [[package]] name = "jinja2" -version = "3.1.3" +version = "3.1.4" description = "A very fast and expressive template engine." optional = false python-versions = ">=3.7" files = [ - {file = "Jinja2-3.1.3-py3-none-any.whl", hash = "sha256:7d6d50dd97d52cbc355597bd845fabfbac3f551e1f99619e39a35ce8c370b5fa"}, - {file = "Jinja2-3.1.3.tar.gz", hash = "sha256:ac8bd6544d4bb2c9792bf3a159e80bba8fda7f07e81bc3aed565432d5925ba90"}, + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, ] [package.dependencies] @@ -863,13 +863,13 @@ i18n = ["Babel (>=2.7)"] [[package]] name = "jsonschema" -version = "4.21.1" +version = "4.22.0" description = "An implementation of JSON Schema validation for Python" optional = false python-versions = ">=3.8" files = [ - {file = "jsonschema-4.21.1-py3-none-any.whl", hash = "sha256:7996507afae316306f9e2290407761157c6f78002dcf7419acb99822143d1c6f"}, - {file = "jsonschema-4.21.1.tar.gz", hash = "sha256:85727c00279f5fa6bedbe6238d2aa6403bedd8b4864ab11207d07df3cc1b2ee5"}, + {file = "jsonschema-4.22.0-py3-none-any.whl", hash = "sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802"}, + {file = "jsonschema-4.22.0.tar.gz", hash = "sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7"}, ] [package.dependencies] @@ -1181,13 +1181,13 @@ python-dateutil = ">=2.7" [[package]] name = "matplotlib-inline" -version = "0.1.6" +version = "0.1.7" description = "Inline Matplotlib backend for Jupyter" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, - {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, ] [package.dependencies] @@ -1206,38 +1206,38 @@ files = [ [[package]] name = "mypy" -version = "1.9.0" +version = "1.10.0" description = "Optional static typing for Python" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f8a67616990062232ee4c3952f41c779afac41405806042a8126fe96e098419f"}, - {file = "mypy-1.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d357423fa57a489e8c47b7c85dfb96698caba13d66e086b412298a1a0ea3b0ed"}, - {file = "mypy-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49c87c15aed320de9b438ae7b00c1ac91cd393c1b854c2ce538e2a72d55df150"}, - {file = "mypy-1.9.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:48533cdd345c3c2e5ef48ba3b0d3880b257b423e7995dada04248725c6f77374"}, - {file = "mypy-1.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:4d3dbd346cfec7cb98e6cbb6e0f3c23618af826316188d587d1c1bc34f0ede03"}, - {file = "mypy-1.9.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:653265f9a2784db65bfca694d1edd23093ce49740b2244cde583aeb134c008f3"}, - {file = "mypy-1.9.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3a3c007ff3ee90f69cf0a15cbcdf0995749569b86b6d2f327af01fd1b8aee9dc"}, - {file = "mypy-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2418488264eb41f69cc64a69a745fad4a8f86649af4b1041a4c64ee61fc61129"}, - {file = "mypy-1.9.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:68edad3dc7d70f2f17ae4c6c1b9471a56138ca22722487eebacfd1eb5321d612"}, - {file = "mypy-1.9.0-cp311-cp311-win_amd64.whl", hash = "sha256:85ca5fcc24f0b4aeedc1d02f93707bccc04733f21d41c88334c5482219b1ccb3"}, - {file = "mypy-1.9.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aceb1db093b04db5cd390821464504111b8ec3e351eb85afd1433490163d60cd"}, - {file = "mypy-1.9.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0235391f1c6f6ce487b23b9dbd1327b4ec33bb93934aa986efe8a9563d9349e6"}, - {file = "mypy-1.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4d5ddc13421ba3e2e082a6c2d74c2ddb3979c39b582dacd53dd5d9431237185"}, - {file = "mypy-1.9.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:190da1ee69b427d7efa8aa0d5e5ccd67a4fb04038c380237a0d96829cb157913"}, - {file = "mypy-1.9.0-cp312-cp312-win_amd64.whl", hash = "sha256:fe28657de3bfec596bbeef01cb219833ad9d38dd5393fc649f4b366840baefe6"}, - {file = "mypy-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e54396d70be04b34f31d2edf3362c1edd023246c82f1730bbf8768c28db5361b"}, - {file = "mypy-1.9.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5e6061f44f2313b94f920e91b204ec600982961e07a17e0f6cd83371cb23f5c2"}, - {file = "mypy-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81a10926e5473c5fc3da8abb04119a1f5811a236dc3a38d92015cb1e6ba4cb9e"}, - {file = "mypy-1.9.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b685154e22e4e9199fc95f298661deea28aaede5ae16ccc8cbb1045e716b3e04"}, - {file = "mypy-1.9.0-cp38-cp38-win_amd64.whl", hash = "sha256:5d741d3fc7c4da608764073089e5f58ef6352bedc223ff58f2f038c2c4698a89"}, - {file = "mypy-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:587ce887f75dd9700252a3abbc9c97bbe165a4a630597845c61279cf32dfbf02"}, - {file = "mypy-1.9.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f88566144752999351725ac623471661c9d1cd8caa0134ff98cceeea181789f4"}, - {file = "mypy-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61758fabd58ce4b0720ae1e2fea5cfd4431591d6d590b197775329264f86311d"}, - {file = "mypy-1.9.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e49499be624dead83927e70c756970a0bc8240e9f769389cdf5714b0784ca6bf"}, - {file = "mypy-1.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:571741dc4194b4f82d344b15e8837e8c5fcc462d66d076748142327626a1b6e9"}, - {file = "mypy-1.9.0-py3-none-any.whl", hash = "sha256:a260627a570559181a9ea5de61ac6297aa5af202f06fd7ab093ce74e7181e43e"}, - {file = "mypy-1.9.0.tar.gz", hash = "sha256:3cc5da0127e6a478cddd906068496a97a7618a21ce9b54bde5bf7e539c7af974"}, + {file = "mypy-1.10.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:da1cbf08fb3b851ab3b9523a884c232774008267b1f83371ace57f412fe308c2"}, + {file = "mypy-1.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:12b6bfc1b1a66095ab413160a6e520e1dc076a28f3e22f7fb25ba3b000b4ef99"}, + {file = "mypy-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e36fb078cce9904c7989b9693e41cb9711e0600139ce3970c6ef814b6ebc2b2"}, + {file = "mypy-1.10.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2b0695d605ddcd3eb2f736cd8b4e388288c21e7de85001e9f85df9187f2b50f9"}, + {file = "mypy-1.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:cd777b780312ddb135bceb9bc8722a73ec95e042f911cc279e2ec3c667076051"}, + {file = "mypy-1.10.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3be66771aa5c97602f382230165b856c231d1277c511c9a8dd058be4784472e1"}, + {file = "mypy-1.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8b2cbaca148d0754a54d44121b5825ae71868c7592a53b7292eeb0f3fdae95ee"}, + {file = "mypy-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ec404a7cbe9fc0e92cb0e67f55ce0c025014e26d33e54d9e506a0f2d07fe5de"}, + {file = "mypy-1.10.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e22e1527dc3d4aa94311d246b59e47f6455b8729f4968765ac1eacf9a4760bc7"}, + {file = "mypy-1.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:a87dbfa85971e8d59c9cc1fcf534efe664d8949e4c0b6b44e8ca548e746a8d53"}, + {file = "mypy-1.10.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a781f6ad4bab20eef8b65174a57e5203f4be627b46291f4589879bf4e257b97b"}, + {file = "mypy-1.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b808e12113505b97d9023b0b5e0c0705a90571c6feefc6f215c1df9381256e30"}, + {file = "mypy-1.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f55583b12156c399dce2df7d16f8a5095291354f1e839c252ec6c0611e86e2e"}, + {file = "mypy-1.10.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4cf18f9d0efa1b16478c4c129eabec36148032575391095f73cae2e722fcf9d5"}, + {file = "mypy-1.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:bc6ac273b23c6b82da3bb25f4136c4fd42665f17f2cd850771cb600bdd2ebeda"}, + {file = "mypy-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9fd50226364cd2737351c79807775136b0abe084433b55b2e29181a4c3c878c0"}, + {file = "mypy-1.10.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f90cff89eea89273727d8783fef5d4a934be2fdca11b47def50cf5d311aff727"}, + {file = "mypy-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fcfc70599efde5c67862a07a1aaf50e55bce629ace26bb19dc17cece5dd31ca4"}, + {file = "mypy-1.10.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:075cbf81f3e134eadaf247de187bd604748171d6b79736fa9b6c9685b4083061"}, + {file = "mypy-1.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:3f298531bca95ff615b6e9f2fc0333aae27fa48052903a0ac90215021cdcfa4f"}, + {file = "mypy-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fa7ef5244615a2523b56c034becde4e9e3f9b034854c93639adb667ec9ec2976"}, + {file = "mypy-1.10.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3236a4c8f535a0631f85f5fcdffba71c7feeef76a6002fcba7c1a8e57c8be1ec"}, + {file = "mypy-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a2b5cdbb5dd35aa08ea9114436e0d79aceb2f38e32c21684dcf8e24e1e92821"}, + {file = "mypy-1.10.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92f93b21c0fe73dc00abf91022234c79d793318b8a96faac147cd579c1671746"}, + {file = "mypy-1.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:28d0e038361b45f099cc086d9dd99c15ff14d0188f44ac883010e172ce86c38a"}, + {file = "mypy-1.10.0-py3-none-any.whl", hash = "sha256:f8c083976eb530019175aabadb60921e73b4f45736760826aa1689dda8208aee"}, + {file = "mypy-1.10.0.tar.gz", hash = "sha256:3d087fcbec056c4ee34974da493a826ce316947485cef3901f511848e687c131"}, ] [package.dependencies] @@ -1286,13 +1286,13 @@ test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>= [[package]] name = "nbconvert" -version = "7.16.3" +version = "7.16.4" description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)." optional = false python-versions = ">=3.8" files = [ - {file = "nbconvert-7.16.3-py3-none-any.whl", hash = "sha256:ddeff14beeeedf3dd0bc506623e41e4507e551736de59df69a91f86700292b3b"}, - {file = "nbconvert-7.16.3.tar.gz", hash = "sha256:a6733b78ce3d47c3f85e504998495b07e6ea9cf9bf6ec1c98dda63ec6ad19142"}, + {file = "nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3"}, + {file = "nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4"}, ] [package.dependencies] @@ -1313,9 +1313,9 @@ tinycss2 = "*" traitlets = ">=5.1" [package.extras] -all = ["nbconvert[docs,qtpdf,serve,test,webpdf]"] +all = ["flaky", "ipykernel", "ipython", "ipywidgets (>=7.5)", "myst-parser", "nbsphinx (>=0.2.12)", "playwright", "pydata-sphinx-theme", "pyqtwebengine (>=5.15)", "pytest (>=7)", "sphinx (==5.0.2)", "sphinxcontrib-spelling", "tornado (>=6.1)"] docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] -qtpdf = ["nbconvert[qtpng]"] +qtpdf = ["pyqtwebengine (>=5.15)"] qtpng = ["pyqtwebengine (>=5.15)"] serve = ["tornado (>=6.1)"] test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest (>=7)"] @@ -1344,19 +1344,19 @@ test = ["pep440", "pre-commit", "pytest", "testpath"] [[package]] name = "nbsphinx" -version = "0.9.3" +version = "0.9.4" description = "Jupyter Notebook Tools for Sphinx" optional = false python-versions = ">=3.6" files = [ - {file = "nbsphinx-0.9.3-py3-none-any.whl", hash = "sha256:6e805e9627f4a358bd5720d5cbf8bf48853989c79af557afd91a5f22e163029f"}, - {file = "nbsphinx-0.9.3.tar.gz", hash = "sha256:ec339c8691b688f8676104a367a4b8cf3ea01fd089dc28d24dec22d563b11562"}, + {file = "nbsphinx-0.9.4-py3-none-any.whl", hash = "sha256:22cb1d974a8300e8118ca71aea1f649553743c0c5830a54129dcd446e6a8ba17"}, + {file = "nbsphinx-0.9.4.tar.gz", hash = "sha256:042a60806fc23d519bc5bef59d95570713913fe442fda759d53e3aaf62104794"}, ] [package.dependencies] -docutils = "*" +docutils = ">=0.18.1" jinja2 = "*" -nbconvert = "!=5.4" +nbconvert = ">=5.3,<5.4 || >5.4" nbformat = "*" sphinx = ">=1.8" traitlets = ">=5" @@ -1668,28 +1668,29 @@ xmp = ["defusedxml"] [[package]] name = "platformdirs" -version = "4.2.0" -description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +version = "4.2.1" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.0-py3-none-any.whl", hash = "sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068"}, - {file = "platformdirs-4.2.0.tar.gz", hash = "sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768"}, + {file = "platformdirs-4.2.1-py3-none-any.whl", hash = "sha256:17d5a1161b3fd67b390023cb2d3b026bbd40abde6fdb052dfbd3a29c3ba22ee1"}, + {file = "platformdirs-4.2.1.tar.gz", hash = "sha256:031cd18d4ec63ec53e82dceaac0417d218a6863f7745dfcc9efe7793b7039bdf"}, ] [package.extras] docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] +type = ["mypy (>=1.8)"] [[package]] name = "plotly" -version = "5.20.0" +version = "5.22.0" description = "An open-source, interactive data visualization library for Python" optional = false python-versions = ">=3.8" files = [ - {file = "plotly-5.20.0-py3-none-any.whl", hash = "sha256:837a9c8aa90f2c0a2f0d747b82544d014dc2a2bdde967b5bb1da25b53932d1a9"}, - {file = "plotly-5.20.0.tar.gz", hash = "sha256:bf901c805d22032cfa534b2ff7c5aa6b0659e037f19ec1e0cca7f585918b5c89"}, + {file = "plotly-5.22.0-py3-none-any.whl", hash = "sha256:68fc1901f098daeb233cc3dd44ec9dc31fb3ca4f4e53189344199c43496ed006"}, + {file = "plotly-5.22.0.tar.gz", hash = "sha256:859fdadbd86b5770ae2466e542b761b247d1c6b49daed765b95bb8c7063e7469"}, ] [package.dependencies] @@ -1698,13 +1699,13 @@ tenacity = ">=6.2.0" [[package]] name = "pluggy" -version = "1.4.0" +version = "1.5.0" description = "plugin and hook calling mechanisms for python" optional = false python-versions = ">=3.8" files = [ - {file = "pluggy-1.4.0-py3-none-any.whl", hash = "sha256:7db9f7b503d67d1c5b95f59773ebb58a8c1c288129a88665838012cfb07b8981"}, - {file = "pluggy-1.4.0.tar.gz", hash = "sha256:8c85c2876142a764e5b7548e7d9a0e0ddb46f5185161049a79b7e974454223be"}, + {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"}, + {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"}, ] [package.extras] @@ -1789,34 +1790,18 @@ files = [ {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, ] -[[package]] -name = "pyfeng" -version = "0.2.6" -description = "Python Financial Engineering" -optional = false -python-versions = "*" -files = [ - {file = "pyfeng-0.2.6-py3-none-any.whl", hash = "sha256:1f6ce226bf637ed59f7bd7169b60954beccca847666a919f8a260e5354848231"}, - {file = "pyfeng-0.2.6.tar.gz", hash = "sha256:8d37004b5946ccfe5b63b6b0cc02268d2311de5ff79b4097133a119ef0394408"}, -] - -[package.dependencies] -numpy = "*" -scipy = "*" - [[package]] name = "pygments" -version = "2.17.2" +version = "2.18.0" description = "Pygments is a syntax highlighting package written in Python." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "pygments-2.17.2-py3-none-any.whl", hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c"}, - {file = "pygments-2.17.2.tar.gz", hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367"}, + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, ] [package.extras] -plugins = ["importlib-metadata"] windows-terminal = ["colorama (>=0.4.6)"] [[package]] @@ -1835,13 +1820,13 @@ diagrams = ["jinja2", "railroad-diagrams"] [[package]] name = "pytest" -version = "8.1.1" +version = "8.2.0" description = "pytest: simple powerful testing with Python" optional = false python-versions = ">=3.8" files = [ - {file = "pytest-8.1.1-py3-none-any.whl", hash = "sha256:2a8386cfc11fa9d2c50ee7b2a57e7d898ef90470a7a34c4b949ff59662bb78b7"}, - {file = "pytest-8.1.1.tar.gz", hash = "sha256:ac978141a75948948817d360297b7aae0fcb9d6ff6bc9ec6d514b85d5a65c044"}, + {file = "pytest-8.2.0-py3-none-any.whl", hash = "sha256:1733f0620f6cda4095bbf0d9ff8022486e91892245bb9e7d5542c018f612f233"}, + {file = "pytest-8.2.0.tar.gz", hash = "sha256:d507d4482197eac0ba2bae2e9babf0672eb333017bcedaa5fb1a3d42c1174b3f"}, ] [package.dependencies] @@ -1849,11 +1834,11 @@ colorama = {version = "*", markers = "sys_platform == \"win32\""} exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} iniconfig = "*" packaging = "*" -pluggy = ">=1.4,<2.0" +pluggy = ">=1.5,<2.0" tomli = {version = ">=1", markers = "python_version < \"3.11\""} [package.extras] -testing = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] +dev = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] [[package]] name = "python-dateutil" @@ -1905,104 +1890,99 @@ files = [ [[package]] name = "pyzmq" -version = "25.1.2" +version = "26.0.3" description = "Python bindings for 0MQ" optional = false -python-versions = ">=3.6" +python-versions = ">=3.7" files = [ - {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4"}, - {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08"}, - {file = "pyzmq-25.1.2-cp310-cp310-win32.whl", hash = "sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886"}, - {file = "pyzmq-25.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6"}, - {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c"}, - {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3"}, - {file = "pyzmq-25.1.2-cp311-cp311-win32.whl", hash = "sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097"}, - {file = "pyzmq-25.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9"}, - {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a"}, - {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737"}, - {file = "pyzmq-25.1.2-cp312-cp312-win32.whl", hash = "sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d"}, - {file = "pyzmq-25.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7"}, - {file = "pyzmq-25.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16"}, - {file = "pyzmq-25.1.2-cp36-cp36m-win32.whl", hash = "sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc"}, - {file = "pyzmq-25.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68"}, - {file = "pyzmq-25.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b"}, - {file = "pyzmq-25.1.2-cp37-cp37m-win32.whl", hash = "sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7"}, - {file = "pyzmq-25.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd"}, - {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41"}, - {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755"}, - {file = "pyzmq-25.1.2-cp38-cp38-win32.whl", hash = "sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07"}, - {file = "pyzmq-25.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088"}, - {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6"}, - {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2"}, - {file = "pyzmq-25.1.2-cp39-cp39-win32.whl", hash = "sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289"}, - {file = "pyzmq-25.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314"}, - {file = "pyzmq-25.1.2.tar.gz", hash = "sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226"}, + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:44dd6fc3034f1eaa72ece33588867df9e006a7303725a12d64c3dff92330f625"}, + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:acb704195a71ac5ea5ecf2811c9ee19ecdc62b91878528302dd0be1b9451cc90"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dbb9c997932473a27afa93954bb77a9f9b786b4ccf718d903f35da3232317de"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6bcb34f869d431799c3ee7d516554797f7760cb2198ecaa89c3f176f72d062be"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ece17ec5f20d7d9b442e5174ae9f020365d01ba7c112205a4d59cf19dc38ee"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:ba6e5e6588e49139a0979d03a7deb9c734bde647b9a8808f26acf9c547cab1bf"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3bf8b000a4e2967e6dfdd8656cd0757d18c7e5ce3d16339e550bd462f4857e59"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2136f64fbb86451dbbf70223635a468272dd20075f988a102bf8a3f194a411dc"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8918973fbd34e7814f59143c5f600ecd38b8038161239fd1a3d33d5817a38b8"}, + {file = "pyzmq-26.0.3-cp310-cp310-win32.whl", hash = "sha256:0aaf982e68a7ac284377d051c742610220fd06d330dcd4c4dbb4cdd77c22a537"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:f1a9b7d00fdf60b4039f4455afd031fe85ee8305b019334b72dcf73c567edc47"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_arm64.whl", hash = "sha256:80b12f25d805a919d53efc0a5ad7c0c0326f13b4eae981a5d7b7cc343318ebb7"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:a72a84570f84c374b4c287183debc776dc319d3e8ce6b6a0041ce2e400de3f32"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ca684ee649b55fd8f378127ac8462fb6c85f251c2fb027eb3c887e8ee347bcd"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e222562dc0f38571c8b1ffdae9d7adb866363134299264a1958d077800b193b7"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f17cde1db0754c35a91ac00b22b25c11da6eec5746431d6e5092f0cd31a3fea9"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b7c0c0b3244bb2275abe255d4a30c050d541c6cb18b870975553f1fb6f37527"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ac97a21de3712afe6a6c071abfad40a6224fd14fa6ff0ff8d0c6e6cd4e2f807a"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:88b88282e55fa39dd556d7fc04160bcf39dea015f78e0cecec8ff4f06c1fc2b5"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:72b67f966b57dbd18dcc7efbc1c7fc9f5f983e572db1877081f075004614fcdd"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f4b6cecbbf3b7380f3b61de3a7b93cb721125dc125c854c14ddc91225ba52f83"}, + {file = "pyzmq-26.0.3-cp311-cp311-win32.whl", hash = "sha256:eed56b6a39216d31ff8cd2f1d048b5bf1700e4b32a01b14379c3b6dde9ce3aa3"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:3191d312c73e3cfd0f0afdf51df8405aafeb0bad71e7ed8f68b24b63c4f36500"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_arm64.whl", hash = "sha256:b6907da3017ef55139cf0e417c5123a84c7332520e73a6902ff1f79046cd3b94"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:068ca17214038ae986d68f4a7021f97e187ed278ab6dccb79f837d765a54d753"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7821d44fe07335bea256b9f1f41474a642ca55fa671dfd9f00af8d68a920c2d4"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb438a26d87c123bb318e5f2b3d86a36060b01f22fbdffd8cf247d52f7c9a2b"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:69ea9d6d9baa25a4dc9cef5e2b77b8537827b122214f210dd925132e34ae9b12"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7daa3e1369355766dea11f1d8ef829905c3b9da886ea3152788dc25ee6079e02"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6ca7a9a06b52d0e38ccf6bca1aeff7be178917893f3883f37b75589d42c4ac20"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1b7d0e124948daa4d9686d421ef5087c0516bc6179fdcf8828b8444f8e461a77"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e746524418b70f38550f2190eeee834db8850088c834d4c8406fbb9bc1ae10b2"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6b3146f9ae6af82c47a5282ac8803523d381b3b21caeae0327ed2f7ecb718798"}, + {file = "pyzmq-26.0.3-cp312-cp312-win32.whl", hash = "sha256:2b291d1230845871c00c8462c50565a9cd6026fe1228e77ca934470bb7d70ea0"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:926838a535c2c1ea21c903f909a9a54e675c2126728c21381a94ddf37c3cbddf"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:5bf6c237f8c681dfb91b17f8435b2735951f0d1fad10cc5dfd96db110243370b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c0991f5a96a8e620f7691e61178cd8f457b49e17b7d9cfa2067e2a0a89fc1d5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dbf012d8fcb9f2cf0643b65df3b355fdd74fc0035d70bb5c845e9e30a3a4654b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:01fbfbeb8249a68d257f601deb50c70c929dc2dfe683b754659569e502fbd3aa"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c8eb19abe87029c18f226d42b8a2c9efdd139d08f8bf6e085dd9075446db450"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5344b896e79800af86ad643408ca9aa303a017f6ebff8cee5a3163c1e9aec987"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:204e0f176fd1d067671157d049466869b3ae1fc51e354708b0dc41cf94e23a3a"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a42db008d58530efa3b881eeee4991146de0b790e095f7ae43ba5cc612decbc5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win32.whl", hash = "sha256:8d7a498671ca87e32b54cb47c82a92b40130a26c5197d392720a1bce1b3c77cf"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:3b4032a96410bdc760061b14ed6a33613ffb7f702181ba999df5d16fb96ba16a"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2cc4e280098c1b192c42a849de8de2c8e0f3a84086a76ec5b07bfee29bda7d18"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bde86a2ed3ce587fa2b207424ce15b9a83a9fa14422dcc1c5356a13aed3df9d"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:34106f68e20e6ff253c9f596ea50397dbd8699828d55e8fa18bd4323d8d966e6"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ebbbd0e728af5db9b04e56389e2299a57ea8b9dd15c9759153ee2455b32be6ad"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b1d1c631e5940cac5a0b22c5379c86e8df6a4ec277c7a856b714021ab6cfad"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e891ce81edd463b3b4c3b885c5603c00141151dd9c6936d98a680c8c72fe5c67"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9b273ecfbc590a1b98f014ae41e5cf723932f3b53ba9367cfb676f838038b32c"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b32bff85fb02a75ea0b68f21e2412255b5731f3f389ed9aecc13a6752f58ac97"}, + {file = "pyzmq-26.0.3-cp38-cp38-win32.whl", hash = "sha256:f6c21c00478a7bea93caaaef9e7629145d4153b15a8653e8bb4609d4bc70dbfc"}, + {file = "pyzmq-26.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:3401613148d93ef0fd9aabdbddb212de3db7a4475367f49f590c837355343972"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:2ed8357f4c6e0daa4f3baf31832df8a33334e0fe5b020a61bc8b345a3db7a606"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c1c8f2a2ca45292084c75bb6d3a25545cff0ed931ed228d3a1810ae3758f975f"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:b63731993cdddcc8e087c64e9cf003f909262b359110070183d7f3025d1c56b5"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b3cd31f859b662ac5d7f4226ec7d8bd60384fa037fc02aee6ff0b53ba29a3ba8"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:115f8359402fa527cf47708d6f8a0f8234f0e9ca0cab7c18c9c189c194dbf620"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:715bdf952b9533ba13dfcf1f431a8f49e63cecc31d91d007bc1deb914f47d0e4"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:e1258c639e00bf5e8a522fec6c3eaa3e30cf1c23a2f21a586be7e04d50c9acab"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:15c59e780be8f30a60816a9adab900c12a58d79c1ac742b4a8df044ab2a6d920"}, + {file = "pyzmq-26.0.3-cp39-cp39-win32.whl", hash = "sha256:d0cdde3c78d8ab5b46595054e5def32a755fc028685add5ddc7403e9f6de9879"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:ce828058d482ef860746bf532822842e0ff484e27f540ef5c813d516dd8896d2"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_arm64.whl", hash = "sha256:788f15721c64109cf720791714dc14afd0f449d63f3a5487724f024345067381"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c18645ef6294d99b256806e34653e86236eb266278c8ec8112622b61db255de"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e6bc96ebe49604df3ec2c6389cc3876cabe475e6bfc84ced1bf4e630662cb35"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:971e8990c5cc4ddcff26e149398fc7b0f6a042306e82500f5e8db3b10ce69f84"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8416c23161abd94cc7da80c734ad7c9f5dbebdadfdaa77dad78244457448223"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:082a2988364b60bb5de809373098361cf1dbb239623e39e46cb18bc035ed9c0c"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d57dfbf9737763b3a60d26e6800e02e04284926329aee8fb01049635e957fe81"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:77a85dca4c2430ac04dc2a2185c2deb3858a34fe7f403d0a946fa56970cf60a1"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c82a6d952a1d555bf4be42b6532927d2a5686dd3c3e280e5f63225ab47ac1f5"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4496b1282c70c442809fc1b151977c3d967bfb33e4e17cedbf226d97de18f709"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:e4946d6bdb7ba972dfda282f9127e5756d4f299028b1566d1245fa0d438847e6"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:03c0ae165e700364b266876d712acb1ac02693acd920afa67da2ebb91a0b3c09"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3e3070e680f79887d60feeda051a58d0ac36622e1759f305a41059eff62c6da7"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6ca08b840fe95d1c2bd9ab92dac5685f949fc6f9ae820ec16193e5ddf603c3b2"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76654e9dbfb835b3518f9938e565c7806976c07b37c33526b574cc1a1050480"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:871587bdadd1075b112e697173e946a07d722459d20716ceb3d1bd6c64bd08ce"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d0a2d1bd63a4ad79483049b26514e70fa618ce6115220da9efdff63688808b17"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0270b49b6847f0d106d64b5086e9ad5dc8a902413b5dbbb15d12b60f9c1747a4"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:703c60b9910488d3d0954ca585c34f541e506a091a41930e663a098d3b794c67"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74423631b6be371edfbf7eabb02ab995c2563fee60a80a30829176842e71722a"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4adfbb5451196842a88fda3612e2c0414134874bffb1c2ce83ab4242ec9e027d"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3516119f4f9b8671083a70b6afaa0a070f5683e431ab3dc26e9215620d7ca1ad"}, + {file = "pyzmq-26.0.3.tar.gz", hash = "sha256:dba7d9f2e047dfa2bca3b01f4f84aa5246725203d6284e3790f2ca15fba6b40a"}, ] [package.dependencies] @@ -2039,13 +2019,13 @@ files = [ [[package]] name = "referencing" -version = "0.34.0" +version = "0.35.1" description = "JSON Referencing + Python" optional = false python-versions = ">=3.8" files = [ - {file = "referencing-0.34.0-py3-none-any.whl", hash = "sha256:d53ae300ceddd3169f1ffa9caf2cb7b769e92657e4fafb23d34b93679116dfd4"}, - {file = "referencing-0.34.0.tar.gz", hash = "sha256:5773bd84ef41799a5a8ca72dc34590c041eb01bf9aa02632b4a973fb0181a844"}, + {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, + {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, ] [package.dependencies] @@ -2075,110 +2055,110 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "rpds-py" -version = "0.18.0" +version = "0.18.1" description = "Python bindings to Rust's persistent data structures (rpds)" optional = false python-versions = ">=3.8" files = [ - {file = "rpds_py-0.18.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:5b4e7d8d6c9b2e8ee2d55c90b59c707ca59bc30058269b3db7b1f8df5763557e"}, - {file = "rpds_py-0.18.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c463ed05f9dfb9baebef68048aed8dcdc94411e4bf3d33a39ba97e271624f8f7"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01e36a39af54a30f28b73096dd39b6802eddd04c90dbe161c1b8dbe22353189f"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d62dec4976954a23d7f91f2f4530852b0c7608116c257833922a896101336c51"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dd18772815d5f008fa03d2b9a681ae38d5ae9f0e599f7dda233c439fcaa00d40"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:923d39efa3cfb7279a0327e337a7958bff00cc447fd07a25cddb0a1cc9a6d2da"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39514da80f971362f9267c600b6d459bfbbc549cffc2cef8e47474fddc9b45b1"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a34d557a42aa28bd5c48a023c570219ba2593bcbbb8dc1b98d8cf5d529ab1434"}, - {file = "rpds_py-0.18.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:93df1de2f7f7239dc9cc5a4a12408ee1598725036bd2dedadc14d94525192fc3"}, - {file = "rpds_py-0.18.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:34b18ba135c687f4dac449aa5157d36e2cbb7c03cbea4ddbd88604e076aa836e"}, - {file = "rpds_py-0.18.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:c0b5dcf9193625afd8ecc92312d6ed78781c46ecbf39af9ad4681fc9f464af88"}, - {file = "rpds_py-0.18.0-cp310-none-win32.whl", hash = "sha256:c4325ff0442a12113a6379af66978c3fe562f846763287ef66bdc1d57925d337"}, - {file = "rpds_py-0.18.0-cp310-none-win_amd64.whl", hash = "sha256:7223a2a5fe0d217e60a60cdae28d6949140dde9c3bcc714063c5b463065e3d66"}, - {file = "rpds_py-0.18.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:3a96e0c6a41dcdba3a0a581bbf6c44bb863f27c541547fb4b9711fd8cf0ffad4"}, - {file = "rpds_py-0.18.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30f43887bbae0d49113cbaab729a112251a940e9b274536613097ab8b4899cf6"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fcb25daa9219b4cf3a0ab24b0eb9a5cc8949ed4dc72acb8fa16b7e1681aa3c58"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d68c93e381010662ab873fea609bf6c0f428b6d0bb00f2c6939782e0818d37bf"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b34b7aa8b261c1dbf7720b5d6f01f38243e9b9daf7e6b8bc1fd4657000062f2c"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2e6d75ab12b0bbab7215e5d40f1e5b738aa539598db27ef83b2ec46747df90e1"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b8612cd233543a3781bc659c731b9d607de65890085098986dfd573fc2befe5"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aec493917dd45e3c69d00a8874e7cbed844efd935595ef78a0f25f14312e33c6"}, - {file = "rpds_py-0.18.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:661d25cbffaf8cc42e971dd570d87cb29a665f49f4abe1f9e76be9a5182c4688"}, - {file = "rpds_py-0.18.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:1df3659d26f539ac74fb3b0c481cdf9d725386e3552c6fa2974f4d33d78e544b"}, - {file = "rpds_py-0.18.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a1ce3ba137ed54f83e56fb983a5859a27d43a40188ba798993812fed73c70836"}, - {file = "rpds_py-0.18.0-cp311-none-win32.whl", hash = "sha256:69e64831e22a6b377772e7fb337533c365085b31619005802a79242fee620bc1"}, - {file = "rpds_py-0.18.0-cp311-none-win_amd64.whl", hash = "sha256:998e33ad22dc7ec7e030b3df701c43630b5bc0d8fbc2267653577e3fec279afa"}, - {file = "rpds_py-0.18.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:7f2facbd386dd60cbbf1a794181e6aa0bd429bd78bfdf775436020172e2a23f0"}, - {file = "rpds_py-0.18.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1d9a5be316c15ffb2b3c405c4ff14448c36b4435be062a7f578ccd8b01f0c4d8"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cd5bf1af8efe569654bbef5a3e0a56eca45f87cfcffab31dd8dde70da5982475"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5417558f6887e9b6b65b4527232553c139b57ec42c64570569b155262ac0754f"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:56a737287efecafc16f6d067c2ea0117abadcd078d58721f967952db329a3e5c"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8f03bccbd8586e9dd37219bce4d4e0d3ab492e6b3b533e973fa08a112cb2ffc9"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4457a94da0d5c53dc4b3e4de1158bdab077db23c53232f37a3cb7afdb053a4e3"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0ab39c1ba9023914297dd88ec3b3b3c3f33671baeb6acf82ad7ce883f6e8e157"}, - {file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9d54553c1136b50fd12cc17e5b11ad07374c316df307e4cfd6441bea5fb68496"}, - {file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0af039631b6de0397ab2ba16eaf2872e9f8fca391b44d3d8cac317860a700a3f"}, - {file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:84ffab12db93b5f6bad84c712c92060a2d321b35c3c9960b43d08d0f639d60d7"}, - {file = "rpds_py-0.18.0-cp312-none-win32.whl", hash = "sha256:685537e07897f173abcf67258bee3c05c374fa6fff89d4c7e42fb391b0605e98"}, - {file = "rpds_py-0.18.0-cp312-none-win_amd64.whl", hash = "sha256:e003b002ec72c8d5a3e3da2989c7d6065b47d9eaa70cd8808b5384fbb970f4ec"}, - {file = "rpds_py-0.18.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:08f9ad53c3f31dfb4baa00da22f1e862900f45908383c062c27628754af2e88e"}, - {file = "rpds_py-0.18.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c0013fe6b46aa496a6749c77e00a3eb07952832ad6166bd481c74bda0dcb6d58"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e32a92116d4f2a80b629778280103d2a510a5b3f6314ceccd6e38006b5e92dcb"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e541ec6f2ec456934fd279a3120f856cd0aedd209fc3852eca563f81738f6861"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bed88b9a458e354014d662d47e7a5baafd7ff81c780fd91584a10d6ec842cb73"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2644e47de560eb7bd55c20fc59f6daa04682655c58d08185a9b95c1970fa1e07"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e8916ae4c720529e18afa0b879473049e95949bf97042e938530e072fde061d"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:465a3eb5659338cf2a9243e50ad9b2296fa15061736d6e26240e713522b6235c"}, - {file = "rpds_py-0.18.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ea7d4a99f3b38c37eac212dbd6ec42b7a5ec51e2c74b5d3223e43c811609e65f"}, - {file = "rpds_py-0.18.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:67071a6171e92b6da534b8ae326505f7c18022c6f19072a81dcf40db2638767c"}, - {file = "rpds_py-0.18.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:41ef53e7c58aa4ef281da975f62c258950f54b76ec8e45941e93a3d1d8580594"}, - {file = "rpds_py-0.18.0-cp38-none-win32.whl", hash = "sha256:fdea4952db2793c4ad0bdccd27c1d8fdd1423a92f04598bc39425bcc2b8ee46e"}, - {file = "rpds_py-0.18.0-cp38-none-win_amd64.whl", hash = "sha256:7cd863afe7336c62ec78d7d1349a2f34c007a3cc6c2369d667c65aeec412a5b1"}, - {file = "rpds_py-0.18.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:5307def11a35f5ae4581a0b658b0af8178c65c530e94893345bebf41cc139d33"}, - {file = "rpds_py-0.18.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:77f195baa60a54ef9d2de16fbbfd3ff8b04edc0c0140a761b56c267ac11aa467"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39f5441553f1c2aed4de4377178ad8ff8f9d733723d6c66d983d75341de265ab"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9a00312dea9310d4cb7dbd7787e722d2e86a95c2db92fbd7d0155f97127bcb40"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f2fc11e8fe034ee3c34d316d0ad8808f45bc3b9ce5857ff29d513f3ff2923a1"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:586f8204935b9ec884500498ccc91aa869fc652c40c093bd9e1471fbcc25c022"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddc2f4dfd396c7bfa18e6ce371cba60e4cf9d2e5cdb71376aa2da264605b60b9"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5ddcba87675b6d509139d1b521e0c8250e967e63b5909a7e8f8944d0f90ff36f"}, - {file = "rpds_py-0.18.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:7bd339195d84439cbe5771546fe8a4e8a7a045417d8f9de9a368c434e42a721e"}, - {file = "rpds_py-0.18.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:d7c36232a90d4755b720fbd76739d8891732b18cf240a9c645d75f00639a9024"}, - {file = "rpds_py-0.18.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6b0817e34942b2ca527b0e9298373e7cc75f429e8da2055607f4931fded23e20"}, - {file = "rpds_py-0.18.0-cp39-none-win32.whl", hash = "sha256:99f70b740dc04d09e6b2699b675874367885217a2e9f782bdf5395632ac663b7"}, - {file = "rpds_py-0.18.0-cp39-none-win_amd64.whl", hash = "sha256:6ef687afab047554a2d366e112dd187b62d261d49eb79b77e386f94644363294"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:ad36cfb355e24f1bd37cac88c112cd7730873f20fb0bdaf8ba59eedf8216079f"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:36b3ee798c58ace201289024b52788161e1ea133e4ac93fba7d49da5fec0ef9e"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8a2f084546cc59ea99fda8e070be2fd140c3092dc11524a71aa8f0f3d5a55ca"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e4461d0f003a0aa9be2bdd1b798a041f177189c1a0f7619fe8c95ad08d9a45d7"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8db715ebe3bb7d86d77ac1826f7d67ec11a70dbd2376b7cc214199360517b641"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:793968759cd0d96cac1e367afd70c235867831983f876a53389ad869b043c948"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66e6a3af5a75363d2c9a48b07cb27c4ea542938b1a2e93b15a503cdfa8490795"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ef0befbb5d79cf32d0266f5cff01545602344eda89480e1dd88aca964260b18"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1d4acf42190d449d5e89654d5c1ed3a4f17925eec71f05e2a41414689cda02d1"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:a5f446dd5055667aabaee78487f2b5ab72e244f9bc0b2ffebfeec79051679984"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:9dbbeb27f4e70bfd9eec1be5477517365afe05a9b2c441a0b21929ee61048124"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:22806714311a69fd0af9b35b7be97c18a0fc2826e6827dbb3a8c94eac6cf7eeb"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:b34ae4636dfc4e76a438ab826a0d1eed2589ca7d9a1b2d5bb546978ac6485461"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c8370641f1a7f0e0669ddccca22f1da893cef7628396431eb445d46d893e5cd"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c8362467a0fdeccd47935f22c256bec5e6abe543bf0d66e3d3d57a8fb5731863"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11a8c85ef4a07a7638180bf04fe189d12757c696eb41f310d2426895356dcf05"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b316144e85316da2723f9d8dc75bada12fa58489a527091fa1d5a612643d1a0e"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf1ea2e34868f6fbf070e1af291c8180480310173de0b0c43fc38a02929fc0e3"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e546e768d08ad55b20b11dbb78a745151acbd938f8f00d0cfbabe8b0199b9880"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:4901165d170a5fde6f589acb90a6b33629ad1ec976d4529e769c6f3d885e3e80"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:618a3d6cae6ef8ec88bb76dd80b83cfe415ad4f1d942ca2a903bf6b6ff97a2da"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:ed4eb745efbff0a8e9587d22a84be94a5eb7d2d99c02dacf7bd0911713ed14dd"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6c81e5f372cd0dc5dc4809553d34f832f60a46034a5f187756d9b90586c2c307"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:43fbac5f22e25bee1d482c97474f930a353542855f05c1161fd804c9dc74a09d"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d7faa6f14017c0b1e69f5e2c357b998731ea75a442ab3841c0dbbbfe902d2c4"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:08231ac30a842bd04daabc4d71fddd7e6d26189406d5a69535638e4dcb88fe76"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:044a3e61a7c2dafacae99d1e722cc2d4c05280790ec5a05031b3876809d89a5c"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3f26b5bd1079acdb0c7a5645e350fe54d16b17bfc5e71f371c449383d3342e17"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:482103aed1dfe2f3b71a58eff35ba105289b8d862551ea576bd15479aba01f66"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1374f4129f9bcca53a1bba0bb86bf78325a0374577cf7e9e4cd046b1e6f20e24"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:635dc434ff724b178cb192c70016cc0ad25a275228f749ee0daf0eddbc8183b1"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:bc362ee4e314870a70f4ae88772d72d877246537d9f8cb8f7eacf10884862432"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:4832d7d380477521a8c1644bbab6588dfedea5e30a7d967b5fb75977c45fd77f"}, - {file = "rpds_py-0.18.0.tar.gz", hash = "sha256:42821446ee7a76f5d9f71f9e33a4fb2ffd724bb3e7f93386150b61a43115788d"}, + {file = "rpds_py-0.18.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:d31dea506d718693b6b2cffc0648a8929bdc51c70a311b2770f09611caa10d53"}, + {file = "rpds_py-0.18.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:732672fbc449bab754e0b15356c077cc31566df874964d4801ab14f71951ea80"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a98a1f0552b5f227a3d6422dbd61bc6f30db170939bd87ed14f3c339aa6c7c9"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f1944ce16401aad1e3f7d312247b3d5de7981f634dc9dfe90da72b87d37887d"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38e14fb4e370885c4ecd734f093a2225ee52dc384b86fa55fe3f74638b2cfb09"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08d74b184f9ab6289b87b19fe6a6d1a97fbfea84b8a3e745e87a5de3029bf944"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d70129cef4a8d979caa37e7fe957202e7eee8ea02c5e16455bc9808a59c6b2f0"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ce0bb20e3a11bd04461324a6a798af34d503f8d6f1aa3d2aa8901ceaf039176d"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:81c5196a790032e0fc2464c0b4ab95f8610f96f1f2fa3d4deacce6a79852da60"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:f3027be483868c99b4985fda802a57a67fdf30c5d9a50338d9db646d590198da"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d44607f98caa2961bab4fa3c4309724b185b464cdc3ba6f3d7340bac3ec97cc1"}, + {file = "rpds_py-0.18.1-cp310-none-win32.whl", hash = "sha256:c273e795e7a0f1fddd46e1e3cb8be15634c29ae8ff31c196debb620e1edb9333"}, + {file = "rpds_py-0.18.1-cp310-none-win_amd64.whl", hash = "sha256:8352f48d511de5f973e4f2f9412736d7dea76c69faa6d36bcf885b50c758ab9a"}, + {file = "rpds_py-0.18.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6b5ff7e1d63a8281654b5e2896d7f08799378e594f09cf3674e832ecaf396ce8"}, + {file = "rpds_py-0.18.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8927638a4d4137a289e41d0fd631551e89fa346d6dbcfc31ad627557d03ceb6d"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:154bf5c93d79558b44e5b50cc354aa0459e518e83677791e6adb0b039b7aa6a7"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:07f2139741e5deb2c5154a7b9629bc5aa48c766b643c1a6750d16f865a82c5fc"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c7672e9fba7425f79019db9945b16e308ed8bc89348c23d955c8c0540da0a07"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:489bdfe1abd0406eba6b3bb4fdc87c7fa40f1031de073d0cfb744634cc8fa261"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c20f05e8e3d4fc76875fc9cb8cf24b90a63f5a1b4c5b9273f0e8225e169b100"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:967342e045564cef76dfcf1edb700b1e20838d83b1aa02ab313e6a497cf923b8"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2cc7c1a47f3a63282ab0f422d90ddac4aa3034e39fc66a559ab93041e6505da7"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f7afbfee1157e0f9376c00bb232e80a60e59ed716e3211a80cb8506550671e6e"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9e6934d70dc50f9f8ea47081ceafdec09245fd9f6032669c3b45705dea096b88"}, + {file = "rpds_py-0.18.1-cp311-none-win32.whl", hash = "sha256:c69882964516dc143083d3795cb508e806b09fc3800fd0d4cddc1df6c36e76bb"}, + {file = "rpds_py-0.18.1-cp311-none-win_amd64.whl", hash = "sha256:70a838f7754483bcdc830444952fd89645569e7452e3226de4a613a4c1793fb2"}, + {file = "rpds_py-0.18.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:3dd3cd86e1db5aadd334e011eba4e29d37a104b403e8ca24dcd6703c68ca55b3"}, + {file = "rpds_py-0.18.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:05f3d615099bd9b13ecf2fc9cf2d839ad3f20239c678f461c753e93755d629ee"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35b2b771b13eee8729a5049c976197ff58a27a3829c018a04341bcf1ae409b2b"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ee17cd26b97d537af8f33635ef38be873073d516fd425e80559f4585a7b90c43"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b646bf655b135ccf4522ed43d6902af37d3f5dbcf0da66c769a2b3938b9d8184"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19ba472b9606c36716062c023afa2484d1e4220548751bda14f725a7de17b4f6"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e30ac5e329098903262dc5bdd7e2086e0256aa762cc8b744f9e7bf2a427d3f8"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d58ad6317d188c43750cb76e9deacf6051d0f884d87dc6518e0280438648a9ac"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e1735502458621921cee039c47318cb90b51d532c2766593be6207eec53e5c4c"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:f5bab211605d91db0e2995a17b5c6ee5edec1270e46223e513eaa20da20076ac"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2fc24a329a717f9e2448f8cd1f960f9dac4e45b6224d60734edeb67499bab03a"}, + {file = "rpds_py-0.18.1-cp312-none-win32.whl", hash = "sha256:1805d5901779662d599d0e2e4159d8a82c0b05faa86ef9222bf974572286b2b6"}, + {file = "rpds_py-0.18.1-cp312-none-win_amd64.whl", hash = "sha256:720edcb916df872d80f80a1cc5ea9058300b97721efda8651efcd938a9c70a72"}, + {file = "rpds_py-0.18.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:c827576e2fa017a081346dce87d532a5310241648eb3700af9a571a6e9fc7e74"}, + {file = "rpds_py-0.18.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:aa3679e751408d75a0b4d8d26d6647b6d9326f5e35c00a7ccd82b78ef64f65f8"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0abeee75434e2ee2d142d650d1e54ac1f8b01e6e6abdde8ffd6eeac6e9c38e20"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed402d6153c5d519a0faf1bb69898e97fb31613b49da27a84a13935ea9164dfc"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:338dee44b0cef8b70fd2ef54b4e09bb1b97fc6c3a58fea5db6cc083fd9fc2724"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7750569d9526199c5b97e5a9f8d96a13300950d910cf04a861d96f4273d5b104"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:607345bd5912aacc0c5a63d45a1f73fef29e697884f7e861094e443187c02be5"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:207c82978115baa1fd8d706d720b4a4d2b0913df1c78c85ba73fe6c5804505f0"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:6d1e42d2735d437e7e80bab4d78eb2e459af48c0a46e686ea35f690b93db792d"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5463c47c08630007dc0fe99fb480ea4f34a89712410592380425a9b4e1611d8e"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:06d218939e1bf2ca50e6b0ec700ffe755e5216a8230ab3e87c059ebb4ea06afc"}, + {file = "rpds_py-0.18.1-cp38-none-win32.whl", hash = "sha256:312fe69b4fe1ffbe76520a7676b1e5ac06ddf7826d764cc10265c3b53f96dbe9"}, + {file = "rpds_py-0.18.1-cp38-none-win_amd64.whl", hash = "sha256:9437ca26784120a279f3137ee080b0e717012c42921eb07861b412340f85bae2"}, + {file = "rpds_py-0.18.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:19e515b78c3fc1039dd7da0a33c28c3154458f947f4dc198d3c72db2b6b5dc93"}, + {file = "rpds_py-0.18.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a7b28c5b066bca9a4eb4e2f2663012debe680f097979d880657f00e1c30875a0"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:673fdbbf668dd958eff750e500495ef3f611e2ecc209464f661bc82e9838991e"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d960de62227635d2e61068f42a6cb6aae91a7fe00fca0e3aeed17667c8a34611"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:352a88dc7892f1da66b6027af06a2e7e5d53fe05924cc2cfc56495b586a10b72"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4e0ee01ad8260184db21468a6e1c37afa0529acc12c3a697ee498d3c2c4dcaf3"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4c39ad2f512b4041343ea3c7894339e4ca7839ac38ca83d68a832fc8b3748ab"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aaa71ee43a703c321906813bb252f69524f02aa05bf4eec85f0c41d5d62d0f4c"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:6cd8098517c64a85e790657e7b1e509b9fe07487fd358e19431cb120f7d96338"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:4adec039b8e2928983f885c53b7cc4cda8965b62b6596501a0308d2703f8af1b"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:32b7daaa3e9389db3695964ce8e566e3413b0c43e3394c05e4b243a4cd7bef26"}, + {file = "rpds_py-0.18.1-cp39-none-win32.whl", hash = "sha256:2625f03b105328729f9450c8badda34d5243231eef6535f80064d57035738360"}, + {file = "rpds_py-0.18.1-cp39-none-win_amd64.whl", hash = "sha256:bf18932d0003c8c4d51a39f244231986ab23ee057d235a12b2684ea26a353590"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cbfbea39ba64f5e53ae2915de36f130588bba71245b418060ec3330ebf85678e"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:a3d456ff2a6a4d2adcdf3c1c960a36f4fd2fec6e3b4902a42a384d17cf4e7a65"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7700936ef9d006b7ef605dc53aa364da2de5a3aa65516a1f3ce73bf82ecfc7ae"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:51584acc5916212e1bf45edd17f3a6b05fe0cbb40482d25e619f824dccb679de"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:942695a206a58d2575033ff1e42b12b2aece98d6003c6bc739fbf33d1773b12f"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b906b5f58892813e5ba5c6056d6a5ad08f358ba49f046d910ad992196ea61397"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f8e3fecca256fefc91bb6765a693d96692459d7d4c644660a9fff32e517843"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7732770412bab81c5a9f6d20aeb60ae943a9b36dcd990d876a773526468e7163"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bd1105b50ede37461c1d51b9698c4f4be6e13e69a908ab7751e3807985fc0346"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:618916f5535784960f3ecf8111581f4ad31d347c3de66d02e728de460a46303c"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:17c6d2155e2423f7e79e3bb18151c686d40db42d8645e7977442170c360194d4"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6c4c4c3f878df21faf5fac86eda32671c27889e13570645a9eea0a1abdd50922"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:fab6ce90574645a0d6c58890e9bcaac8d94dff54fb51c69e5522a7358b80ab64"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531796fb842b53f2695e94dc338929e9f9dbf473b64710c28af5a160b2a8927d"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:740884bc62a5e2bbb31e584f5d23b32320fd75d79f916f15a788d527a5e83644"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:998125738de0158f088aef3cb264a34251908dd2e5d9966774fdab7402edfab7"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e2be6e9dd4111d5b31ba3b74d17da54a8319d8168890fbaea4b9e5c3de630ae5"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0cee71bc618cd93716f3c1bf56653740d2d13ddbd47673efa8bf41435a60daa"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2c3caec4ec5cd1d18e5dd6ae5194d24ed12785212a90b37f5f7f06b8bedd7139"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:27bba383e8c5231cd559affe169ca0b96ec78d39909ffd817f28b166d7ddd4d8"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:a888e8bdb45916234b99da2d859566f1e8a1d2275a801bb8e4a9644e3c7e7909"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:6031b25fb1b06327b43d841f33842b383beba399884f8228a6bb3df3088485ff"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:48c2faaa8adfacefcbfdb5f2e2e7bdad081e5ace8d182e5f4ade971f128e6bb3"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:d85164315bd68c0806768dc6bb0429c6f95c354f87485ee3593c4f6b14def2bd"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6afd80f6c79893cfc0574956f78a0add8c76e3696f2d6a15bca2c66c415cf2d4"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fa242ac1ff583e4ec7771141606aafc92b361cd90a05c30d93e343a0c2d82a89"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21be4770ff4e08698e1e8e0bce06edb6ea0626e7c8f560bc08222880aca6a6f"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c45a639e93a0c5d4b788b2613bd637468edd62f8f95ebc6fcc303d58ab3f0a8"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:910e71711d1055b2768181efa0a17537b2622afeb0424116619817007f8a2b10"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b9bb1f182a97880f6078283b3505a707057c42bf55d8fca604f70dedfdc0772a"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1d54f74f40b1f7aaa595a02ff42ef38ca654b1469bef7d52867da474243cc633"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8d2e182c9ee01135e11e9676e9a62dfad791a7a467738f06726872374a83db49"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:636a15acc588f70fda1661234761f9ed9ad79ebed3f2125d44be0862708b666e"}, + {file = "rpds_py-0.18.1.tar.gz", hash = "sha256:dc48b479d540770c811fbd1eb9ba2bb66951863e448efec2e2c102625328e92f"}, ] [[package]] @@ -2225,13 +2205,13 @@ test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "po [[package]] name = "setuptools" -version = "69.5.0" +version = "69.5.1" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-69.5.0-py3-none-any.whl", hash = "sha256:3b2dbd8f63dcc6b7c327d0243c2d7dc8c96cc507c016f09221f3787e6e528719"}, - {file = "setuptools-69.5.0.tar.gz", hash = "sha256:8d881f842bfc0e29e93bc98a2e650e8845609adff4d2989ba6c748e67b09d5be"}, + {file = "setuptools-69.5.1-py3-none-any.whl", hash = "sha256:c636ac361bc47580504644275c9ad802c50415c7522212252c033bd15f301f32"}, + {file = "setuptools-69.5.1.tar.gz", hash = "sha256:6c1fccdac05a97e598fb0ae3bbed5904ccb317337a51139dcd51453611bbb987"}, ] [package.extras] @@ -2468,27 +2448,28 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "tenacity" -version = "8.2.3" +version = "8.3.0" description = "Retry code until it succeeds" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tenacity-8.2.3-py3-none-any.whl", hash = "sha256:ce510e327a630c9e1beaf17d42e6ffacc88185044ad85cf74c0a8887c6a0f88c"}, - {file = "tenacity-8.2.3.tar.gz", hash = "sha256:5398ef0d78e63f40007c1fb4c0bff96e1911394d2fa8d194f77619c05ff6cc8a"}, + {file = "tenacity-8.3.0-py3-none-any.whl", hash = "sha256:3649f6443dbc0d9b01b9d8020a9c4ec7a1ff5f6f3c6c8a036ef371f573fe9185"}, + {file = "tenacity-8.3.0.tar.gz", hash = "sha256:953d4e6ad24357bceffbc9707bc74349aca9d245f68eb65419cf0c249a1949a2"}, ] [package.extras] -doc = ["reno", "sphinx", "tornado (>=4.5)"] +doc = ["reno", "sphinx"] +test = ["pytest", "tornado (>=4.5)", "typeguard"] [[package]] name = "tinycss2" -version = "1.2.1" +version = "1.3.0" description = "A tiny CSS parser" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tinycss2-1.2.1-py3-none-any.whl", hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847"}, - {file = "tinycss2-1.2.1.tar.gz", hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"}, + {file = "tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7"}, + {file = "tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d"}, ] [package.dependencies] @@ -2496,7 +2477,7 @@ webencodings = ">=0.4" [package.extras] doc = ["sphinx", "sphinx_rtd_theme"] -test = ["flake8", "isort", "pytest"] +test = ["pytest", "ruff"] [[package]] name = "tokenize-rt" @@ -2542,28 +2523,28 @@ files = [ [[package]] name = "traitlets" -version = "5.14.2" +version = "5.14.3" description = "Traitlets Python configuration system" optional = false python-versions = ">=3.8" files = [ - {file = "traitlets-5.14.2-py3-none-any.whl", hash = "sha256:fcdf85684a772ddeba87db2f398ce00b40ff550d1528c03c14dbf6a02003cd80"}, - {file = "traitlets-5.14.2.tar.gz", hash = "sha256:8cdd83c040dab7d1dee822678e5f5d100b514f7b72b01615b26fc5718916fdf9"}, + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, ] [package.extras] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.1)", "pytest-mock", "pytest-mypy-testing"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] [[package]] name = "types-pytz" -version = "2024.1.0.20240203" +version = "2024.1.0.20240417" description = "Typing stubs for pytz" optional = false python-versions = ">=3.8" files = [ - {file = "types-pytz-2024.1.0.20240203.tar.gz", hash = "sha256:c93751ee20dfc6e054a0148f8f5227b9a00b79c90a4d3c9f464711a73179c89e"}, - {file = "types_pytz-2024.1.0.20240203-py3-none-any.whl", hash = "sha256:9679eef0365db3af91ef7722c199dbb75ee5c1b67e3c4dd7bfbeb1b8a71c21a3"}, + {file = "types-pytz-2024.1.0.20240417.tar.gz", hash = "sha256:6810c8a1f68f21fdf0f4f374a432487c77645a0ac0b31de4bf4690cf21ad3981"}, + {file = "types_pytz-2024.1.0.20240417-py3-none-any.whl", hash = "sha256:8335d443310e2db7b74e007414e74c4f53b67452c0cb0d228ca359ccfba59659"}, ] [[package]] @@ -2640,4 +2621,4 @@ files = [ [metadata] lock-version = "2.0" python-versions = "^3.10,<3.13" -content-hash = "a5112fd9438f9b6cd3ca4bd628426ed20778c0d0d58f4c59d1db5c24f6e5f470" +content-hash = "71c2638510a7b3770dda4b7213f0ef4c20fe3bc90f829e88f848d00930637d36" diff --git a/pyproject.toml b/pyproject.toml index 8a8a76c..67b77e6 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -46,12 +46,12 @@ optional = true matplotlib = "^3.6.2" plotly = "^5.10.0" ipykernel = "^6.20.2" -pyfeng = "^0.2.5" nbconvert = "^7.2.9" quantlib = "^1.34" [tool.isort] profile = "black" +skip_glob = [".venv*/*"] [[tool.mypy.overrides]] module = "plotly.*,scipy.*,matplotlib.*" diff --git a/yabte/tests/test_strategy_runner.py b/yabte/tests/test_strategy_runner.py index 59de2a6..ae3f984 100644 --- a/yabte/tests/test_strategy_runner.py +++ b/yabte/tests/test_strategy_runner.py @@ -573,7 +573,6 @@ def on_close(self): ) def test_run_batch(self): - book = Book(name="Main", cash=Decimal("100000")) sr = StrategyRunner(