-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuckley_report.aux
220 lines (220 loc) · 23.7 KB
/
buckley_report.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\@writefile{toc}{\contentsline {section}{\numberline {1}Problem Set 1 - Mission Setup and Details.}{2}{section.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Project Overview}{2}{subsection.1.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces ISS component breakdown.\relax }}{3}{figure.caption.2}}
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{1:config}{{1}{3}{ISS component breakdown.\relax }{figure.caption.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Child creation code.\relax }}{4}{figure.caption.3}}
\newlabel{1:code1}{{2}{4}{Child creation code.\relax }{figure.caption.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Simulink model of the orbit propagator. Drag and J2 perturbation are included.\relax }}{5}{figure.caption.4}}
\newlabel{1:orbit}{{3}{5}{Simulink model of the orbit propagator. Drag and J2 perturbation are included.\relax }{figure.caption.4}{}}
\newlabel{1:inertia1}{{1}{5}{Project Overview}{equation.1.1}{}}
\newlabel{1:eig1}{{2}{5}{Project Overview}{equation.1.2}{}}
\newlabel{1:eqJ}{{3}{6}{Project Overview}{equation.1.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Model of the ISS. Shown in blue, green, and red is the unit triad from body to principle.\relax }}{6}{figure.caption.5}}
\newlabel{1:iss}{{4}{6}{Model of the ISS. Shown in blue, green, and red is the unit triad from body to principle.\relax }{figure.caption.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces The surface normals for each child are shown.\relax }}{7}{figure.caption.6}}
\newlabel{1:iss_normal}{{5}{7}{The surface normals for each child are shown.\relax }{figure.caption.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Orbit propagation of ISS in LEO.\relax }}{8}{figure.caption.7}}
\newlabel{1:orbit2}{{6}{8}{Orbit propagation of ISS in LEO.\relax }{figure.caption.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Problem Set 2 - Conservation Laws, Ellipsoids of Rotational Motion, Euler equations}{8}{section.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Simulink model for the Euler equations.\relax }}{9}{figure.caption.10}}
\newlabel{2:eulerSim}{{7}{9}{Simulink model for the Euler equations.\relax }{figure.caption.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Rotation about arbitary direction}{9}{subsection.2.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Ang vel. and rotational energy.\relax }}{10}{figure.caption.13}}
\newlabel{(2:angVelEnergy)}{{8}{10}{Ang vel. and rotational energy.\relax }{figure.caption.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Momentum and energy ellipsoids. The intersection is physically realizable.\relax }}{10}{figure.caption.14}}
\newlabel{2:ellipsoids}{{9}{10}{Momentum and energy ellipsoids. The intersection is physically realizable.\relax }{figure.caption.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Polhode in each plane.\relax }}{11}{figure.caption.15}}
\newlabel{2:polhodePlanes}{{10}{11}{Polhode in each plane.\relax }{figure.caption.15}{}}
\newlabel{2:p1}{{4}{11}{Rotation about arbitary direction}{equation.2.4}{}}
\newlabel{2:p2}{{5}{11}{Rotation about arbitary direction}{equation.2.5}{}}
\newlabel{2:p3}{{6}{11}{Rotation about arbitary direction}{equation.2.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Phase plane in each direction.\relax }}{11}{figure.caption.16}}
\newlabel{2:phaseplane}{{11}{11}{Phase plane in each direction.\relax }{figure.caption.16}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Rotation along principle direction}{11}{subsection.2.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Ang. vel. and energy when rotating about principle axes.\relax }}{12}{figure.caption.17}}
\newlabel{(2:angVel2)}{{12}{12}{Ang. vel. and energy when rotating about principle axes.\relax }{figure.caption.17}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Ellipsoids and polhode in principle axes.\relax }}{12}{figure.caption.18}}
\newlabel{2:polhode2}{{13}{12}{Ellipsoids and polhode in principle axes.\relax }{figure.caption.18}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Comparison to analytic solution for axi-symmetric satellites}{13}{subsection.2.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Reduced Euler equations.\relax }}{13}{figure.caption.19}}
\newlabel{2:reducedEuler}{{14}{13}{Reduced Euler equations.\relax }{figure.caption.19}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Code for ode113.\relax }}{13}{figure.caption.20}}
\newlabel{2:codeEuler}{{15}{13}{Code for ode113.\relax }{figure.caption.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Numerical accuracy of the Euler equation propagator.\relax }}{14}{figure.caption.21}}
\newlabel{2:error}{{16}{14}{Numerical accuracy of the Euler equation propagator.\relax }{figure.caption.21}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3}Problem Set 3 - Kinematic Equations \& Stability}{14}{section.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Direction Cosine Matrix}{14}{subsection.3.1}}
\newlabel{3:wx}{{7}{15}{Direction Cosine Matrix}{equation.3.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Quaternions}{15}{subsection.3.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Analysis of momentum in inertial frame.}{16}{subsection.3.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Ang. mom. vector and ang. vel. herpolhode.\relax }}{16}{figure.caption.26}}
\newlabel{3:herpolhode}{{17}{16}{Ang. mom. vector and ang. vel. herpolhode.\relax }{figure.caption.26}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Normalized herpholhode relative to angular momentum vector.\relax }}{17}{figure.caption.27}}
\newlabel{3:normHerpol}{{18}{17}{Normalized herpholhode relative to angular momentum vector.\relax }{figure.caption.27}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Direction cosine matrices over time. Left is inertial-to-principle, right is inertial-to-body.\relax }}{17}{figure.caption.28}}
\newlabel{3:dcmplot}{{19}{17}{Direction cosine matrices over time. Left is inertial-to-principle, right is inertial-to-body.\relax }{figure.caption.28}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Equilibrium Test}{18}{subsection.3.4}}
\@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Ang. vel. and principle axes over time.\relax }}{18}{figure.caption.29}}
\newlabel{3:5a}{{20}{18}{Ang. vel. and principle axes over time.\relax }{figure.caption.29}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Attitude in DCM (left) and quaternions (right).\relax }}{19}{figure.caption.30}}
\newlabel{3:attitude}{{21}{19}{Attitude in DCM (left) and quaternions (right).\relax }{figure.caption.30}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Equilibrium in RTN frame}{19}{subsection.3.5}}
\@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Position in RTN frame.\relax }}{19}{figure.caption.31}}
\newlabel{3:RTN}{{22}{19}{Position in RTN frame.\relax }{figure.caption.31}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4}Problem Set 4 - Gravity Gradient and Rotational Stability}{20}{section.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Derivation for single-spin}{20}{subsection.4.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Derivation for dual-spin}{21}{subsection.4.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces Satellite with spinning internal rotor.\relax }}{21}{figure.caption.35}}
\newlabel{4:dual}{{23}{21}{Satellite with spinning internal rotor.\relax }{figure.caption.35}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Simulations with no momentum wheel}{22}{subsection.4.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Ang. vel. when the x-axis is non-zero.\relax }}{22}{figure.caption.40}}
\newlabel{(4:xangvel1)}{{24}{22}{Ang. vel. when the x-axis is non-zero.\relax }{figure.caption.40}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {25}{\ignorespaces Ang. vel. when the y-axis is non-zero.\relax }}{23}{figure.caption.41}}
\newlabel{(4:yangvel1)}{{25}{23}{Ang. vel. when the y-axis is non-zero.\relax }{figure.caption.41}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {26}{\ignorespaces Ang. vel. when the z-axis is non-zero.\relax }}{23}{figure.caption.42}}
\newlabel{(4:zangvel1)}{{26}{23}{Ang. vel. when the z-axis is non-zero.\relax }{figure.caption.42}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {27}{\ignorespaces Constant rot. energy and mom. ellipsoid.\relax }}{24}{figure.caption.43}}
\newlabel{(4:pol1)}{{27}{24}{Constant rot. energy and mom. ellipsoid.\relax }{figure.caption.43}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Simulations with momentum wheel}{24}{subsection.4.4}}
\@writefile{lof}{\contentsline {figure}{\numberline {28}{\ignorespaces Ang. vel. when the x-axis is non-zero.\relax }}{25}{figure.caption.45}}
\newlabel{(4:x2)}{{28}{25}{Ang. vel. when the x-axis is non-zero.\relax }{figure.caption.45}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {29}{\ignorespaces Ang. vel. when the y-axis is non-zero.\relax }}{25}{figure.caption.46}}
\newlabel{(4:y2)}{{29}{25}{Ang. vel. when the y-axis is non-zero.\relax }{figure.caption.46}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {30}{\ignorespaces Ang. vel. when the z-axis is non-zero.\relax }}{26}{figure.caption.47}}
\newlabel{(4:z2)}{{30}{26}{Ang. vel. when the z-axis is non-zero.\relax }{figure.caption.47}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.5}Gravity gradient}{26}{subsection.4.5}}
\@writefile{lof}{\contentsline {figure}{\numberline {31}{\ignorespaces Distributed mass causing moments about the CM\relax }}{26}{figure.caption.48}}
\newlabel{4:grav1}{{31}{26}{Distributed mass causing moments about the CM\relax }{figure.caption.48}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {32}{\ignorespaces Moments and position when aligned with RTN frame.\relax }}{28}{figure.caption.53}}
\newlabel{(4:mom1)}{{32}{28}{Moments and position when aligned with RTN frame.\relax }{figure.caption.53}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {33}{\ignorespaces Moments and euler angles after starting aligned with inertial axis.\relax }}{28}{figure.caption.54}}
\newlabel{(4:mom2)}{{33}{28}{Moments and euler angles after starting aligned with inertial axis.\relax }{figure.caption.54}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.6}Gravity gradient stability analysis}{28}{subsection.4.6}}
\@writefile{lof}{\contentsline {figure}{\numberline {34}{\ignorespaces Stability under gravity gradient.\relax }}{30}{figure.caption.60}}
\newlabel{4:stableGrav}{{34}{30}{Stability under gravity gradient.\relax }{figure.caption.60}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {35}{\ignorespaces Euler angles with and without being perturbed by gravity gradient.\relax }}{30}{figure.caption.61}}
\newlabel{4:eulerGrav}{{35}{30}{Euler angles with and without being perturbed by gravity gradient.\relax }{figure.caption.61}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5}Problem Set 5 - Perturbations and Attitude Control Errors}{31}{section.5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Magnetic torque}{31}{subsection.5.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {36}{\ignorespaces IGRF coefficients for Epoch 1975\relax }}{32}{figure.caption.65}}
\newlabel{5:mag1}{{36}{32}{IGRF coefficients for Epoch 1975\relax }{figure.caption.65}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Atmospheric drag}{33}{subsection.5.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {37}{\ignorespaces Depiction of the drag force on a component's surface\relax }}{33}{figure.caption.67}}
\newlabel{5:drag1}{{37}{33}{Depiction of the drag force on a component's surface\relax }{figure.caption.67}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Simulation}{34}{subsection.5.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {38}{\ignorespaces Simulink block for calculating GMST.\relax }}{34}{figure.caption.70}}
\newlabel{5:gmst}{{38}{34}{Simulink block for calculating GMST.\relax }{figure.caption.70}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {39}{\ignorespaces Simulink block for modeled perturbations.\relax }}{35}{figure.caption.71}}
\newlabel{5:perturb}{{39}{35}{Simulink block for modeled perturbations.\relax }{figure.caption.71}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {40}{\ignorespaces Moments generated by perturbations.\relax }}{36}{figure.caption.72}}
\newlabel{5:01}{{40}{36}{Moments generated by perturbations.\relax }{figure.caption.72}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {41}{\ignorespaces Total external moments on the vehicle.\relax }}{36}{figure.caption.73}}
\newlabel{5:02}{{41}{36}{Total external moments on the vehicle.\relax }{figure.caption.73}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {42}{\ignorespaces The position subject to perturbations. The reference frame is RTN.\relax }}{37}{figure.caption.74}}
\newlabel{5:pos}{{42}{37}{The position subject to perturbations. The reference frame is RTN.\relax }{figure.caption.74}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {43}{\ignorespaces Attitude over time subject to full perturbations.\relax }}{37}{figure.caption.75}}
\newlabel{5:05}{{43}{37}{Attitude over time subject to full perturbations.\relax }{figure.caption.75}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Attitude error}{38}{subsection.5.4}}
\@writefile{lof}{\contentsline {figure}{\numberline {44}{\ignorespaces RTN frame.\relax }}{38}{figure.caption.76}}
\newlabel{5:rtn}{{44}{38}{RTN frame.\relax }{figure.caption.76}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {45}{\ignorespaces Attitude control error in the form of a DCM from principle to RTN frames.\relax }}{39}{figure.caption.77}}
\newlabel{5:06}{{45}{39}{Attitude control error in the form of a DCM from principle to RTN frames.\relax }{figure.caption.77}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {46}{\ignorespaces Error in Euler angles.\relax }}{39}{figure.caption.78}}
\newlabel{5:07}{{46}{39}{Error in Euler angles.\relax }{figure.caption.78}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6}Problem Set 6 - Attitude Determination with Sensor Errors}{40}{section.6}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Algebraic Approach}{40}{subsection.6.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Algebraic with error reduction}{41}{subsection.6.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}Statistical Approach}{41}{subsection.6.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Simulation - no noise}{42}{subsection.6.4}}
\@writefile{lof}{\contentsline {figure}{\numberline {47}{\ignorespaces Attitude is estimated correctly when no noise is present.\relax }}{42}{figure.caption.88}}
\newlabel{6:01}{{47}{42}{Attitude is estimated correctly when no noise is present.\relax }{figure.caption.88}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {48}{\ignorespaces Error in measured attitude for each system.\relax }}{43}{figure.caption.89}}
\newlabel{6:02}{{48}{43}{Error in measured attitude for each system.\relax }{figure.caption.89}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.5}Simulation - with noise}{43}{subsection.6.5}}
\@writefile{lof}{\contentsline {figure}{\numberline {49}{\ignorespaces Estimated error with sensor errors.\relax }}{44}{figure.caption.90}}
\newlabel{6:03}{{49}{44}{Estimated error with sensor errors.\relax }{figure.caption.90}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {50}{\ignorespaces Error in measured attitude for each system with noise.\relax }}{45}{figure.caption.91}}
\newlabel{6:04}{{50}{45}{Error in measured attitude for each system with noise.\relax }{figure.caption.91}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.6}Attitude control error with sensing errors}{45}{subsection.6.6}}
\@writefile{lof}{\contentsline {figure}{\numberline {51}{\ignorespaces Attitude control error with noise.\relax }}{46}{figure.caption.92}}
\newlabel{6:05}{{51}{46}{Attitude control error with noise.\relax }{figure.caption.92}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {52}{\ignorespaces Euler angle error with noise.\relax }}{46}{figure.caption.93}}
\newlabel{6:06}{{52}{46}{Euler angle error with noise.\relax }{figure.caption.93}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7}Problem Set 7 - Implement Extended Kalman Filter (EKF)}{47}{section.7}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1}Theory}{47}{subsection.7.1}}
\newlabel{7:1}{{9}{47}{Theory}{equation.7.9}{}}
\newlabel{7:2}{{10}{47}{Theory}{equation.7.10}{}}
\newlabel{7:3.5}{{11}{47}{Theory}{equation.7.11}{}}
\newlabel{7:3}{{12}{48}{Theory}{equation.7.12}{}}
\newlabel{7:4}{{13}{48}{Theory}{equation.7.13}{}}
\newlabel{7:4.5}{{14}{48}{Theory}{equation.7.14}{}}
\newlabel{7:5}{{15}{48}{Theory}{equation.7.15}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {53}{\ignorespaces Visualization of the EKF.\relax }}{48}{figure.caption.95}}
\newlabel{7:ekf1}{{53}{48}{Visualization of the EKF.\relax }{figure.caption.95}{}}
\newlabel{7:discreteEuler}{{16}{49}{Theory}{equation.7.16}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.2}Simulation}{49}{subsection.7.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {54}{\ignorespaces EKF implemented in code.\relax }}{49}{figure.caption.96}}
\newlabel{7:ekf3}{{54}{49}{EKF implemented in code.\relax }{figure.caption.96}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {55}{\ignorespaces The true x-velocity is compared against the EKF.\relax }}{50}{figure.caption.97}}
\newlabel{7:ekfx}{{55}{50}{The true x-velocity is compared against the EKF.\relax }{figure.caption.97}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {56}{\ignorespaces The true y-velocity is compared against the EKF.\relax }}{50}{figure.caption.98}}
\newlabel{7:ekfy}{{56}{50}{The true y-velocity is compared against the EKF.\relax }{figure.caption.98}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {57}{\ignorespaces The true z-velocity is compared against the EKF.\relax }}{51}{figure.caption.99}}
\newlabel{7:ekfz}{{57}{51}{The true z-velocity is compared against the EKF.\relax }{figure.caption.99}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {58}{\ignorespaces Comparison of residuals.\relax }}{52}{figure.caption.100}}
\newlabel{7:04}{{58}{52}{Comparison of residuals.\relax }{figure.caption.100}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {59}{\ignorespaces EKF performance.\relax }}{52}{figure.caption.101}}
\newlabel{7:05}{{59}{52}{EKF performance.\relax }{figure.caption.101}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {60}{\ignorespaces Evolution of P matrix.\relax }}{53}{figure.caption.102}}
\newlabel{7:ekf}{{60}{53}{Evolution of P matrix.\relax }{figure.caption.102}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8}Problem Set 8 - Implement Actuators and Controllers}{53}{section.8}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.1}Actuators}{53}{subsection.8.1}}
\newlabel{8:eq1}{{17}{54}{Actuators}{equation.8.17}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.2}Controller implementation using LQR}{54}{subsection.8.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {61}{\ignorespaces Block diagram for the controller used onboard the satellite. Two LQR's are utilized, one for attitude and the other for a lower-level ang. vel. controller.\relax }}{54}{figure.caption.103}}
\newlabel{8:controller}{{61}{54}{Block diagram for the controller used onboard the satellite. Two LQR's are utilized, one for attitude and the other for a lower-level ang. vel. controller.\relax }{figure.caption.103}{}}
\newlabel{8:discrete}{{18}{54}{Controller implementation using LQR}{equation.8.18}{}}
\newlabel{8:lqr}{{19}{54}{Controller implementation using LQR}{equation.8.19}{}}
\newlabel{8:lqrCost}{{\caption@xref {8:lqrCost}{ on input line 1259}}{55}{Controller implementation using LQR}{figure.caption.104}{}}
\newlabel{8:taylor}{{\caption@xref {8:taylor}{ on input line 1268}}{55}{Controller implementation using LQR}{figure.caption.105}{}}
\newlabel{8:discreteQuat}{{20}{55}{Controller implementation using LQR}{equation.8.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {62}{\ignorespaces Control loop code.\relax }}{56}{figure.caption.106}}
\newlabel{8:code}{{62}{56}{Control loop code.\relax }{figure.caption.106}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.3}Simulation}{56}{subsection.8.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {63}{\ignorespaces Angular velocity with and without control.\relax }}{57}{figure.caption.107}}
\newlabel{8:angvel}{{63}{57}{Angular velocity with and without control.\relax }{figure.caption.107}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {64}{\ignorespaces EKF performance.\relax }}{58}{figure.caption.108}}
\newlabel{8:ekf}{{64}{58}{EKF performance.\relax }{figure.caption.108}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {65}{\ignorespaces Error in attitude control between principle and RTN frames.\relax }}{59}{figure.caption.109}}
\newlabel{8:attError}{{65}{59}{Error in attitude control between principle and RTN frames.\relax }{figure.caption.109}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {66}{\ignorespaces Angular velocity while de-tumbling.\relax }}{60}{figure.caption.110}}
\newlabel{8:angvel}{{66}{60}{Angular velocity while de-tumbling.\relax }{figure.caption.110}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {67}{\ignorespaces Angular velocity while de-tumbling.\relax }}{60}{figure.caption.111}}
\newlabel{8:angvel}{{67}{60}{Angular velocity while de-tumbling.\relax }{figure.caption.111}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9}Problem Set 9 - Define and Execute a Slew Maneuver}{61}{section.9}}
\@writefile{lof}{\contentsline {figure}{\numberline {68}{\ignorespaces Angular velocity while de-tumbling.\relax }}{61}{figure.caption.112}}
\newlabel{9:angvel}{{68}{61}{Angular velocity while de-tumbling.\relax }{figure.caption.112}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {69}{\ignorespaces The position during a de-tumble. The Target is earth-facing in the RTN frame.\relax }}{62}{figure.caption.113}}
\newlabel{(9:pos)}{{69}{62}{The position during a de-tumble. The Target is earth-facing in the RTN frame.\relax }{figure.caption.113}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {70}{\ignorespaces Attitude control error until convergence.\relax }}{62}{figure.caption.114}}
\newlabel{9:atterror}{{70}{62}{Attitude control error until convergence.\relax }{figure.caption.114}{}}
\@writefile{toc}{\contentsline {section}{\numberline {10}Appendices A - Matlab Code for setting up the satellite}{63}{section.10}}