-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_func.py
536 lines (414 loc) · 17.4 KB
/
config_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import numpy
import config
import os
from glob import glob
import numpy as np
import keras
import random
from sklearn.metrics import classification_report, confusion_matrix, balanced_accuracy_score
import matplotlib.pyplot as plt
import itertools
import glob
import math
import cv2
from exceptions import CustomError
import pandas
from keras.models import Model as mp
from keras.layers import Average, Input
from models import Model
def getImages(directory):
'''
THIS FUNTION RETRIEVES ALL IMAGES FILES
:param directory: str --> dict/*.jpg
:return: list of all jpg files
'''
try:
return sorted(glob.glob(directory))
except:
raise
def addNewColumn_Populate_DataFrame(dataFrame, name_new_column, dataToPopulate):
'''
THIS FUNCTION IS USED TO ADD NEW COLUMN TO DATAFRAME, AND POPULATE COLUMN WITH DATA
:param dataFrame: dataFrame --> dataFrame to apply changes
:param name_new_column: str --> name of new column
:param dataToPopulate: List (str) --> strings to populate data
:return: dataFrame changed
'''
try:
dataFrame[name_new_column] = dataToPopulate
return dataFrame
except:
raise
def getX_Y_Image(image_path : str):
'''
THIS FUCNTION IS USED TO RETIEVE X (pixel RGB VALUES) of an image
:param image_path: str --> image path of image
:return: X: numpy array --> RGB VALUES OF IMAGE
'''
try:
image = cv2.imread(image_path)
X = cv2.resize(image, (config.HEIGHT, config.WIDTH), interpolation=cv2.INTER_CUBIC)
return X
except:
raise
def getDataFromImages(dataframe : pandas.DataFrame, size):
'''
THIS FUNCTION IS USED TO RETRIEVE X and Y data inherent from all images
:param dataframe: Pandas Dataframe --> with all images path's and correspondent targets
:param size: integer --> this values is <= than total_images
e.g = total images equals to 10000 and user only wants 5000
note: stratify option is used to continue with respective perecntage of samples by class
:return: X : numpy array --> Data from images (pixels from images)
:return Y: numpy array --> targets for each image
'''
try:
##GET TOTAL IMAGES
number_images = dataframe.shape[0]
X = []
Y = []
d = dict(enumerate(dataframe.dx.cat.categories))
#print(d)
numeric_targets = dataframe.dx.cat.codes.values
#unique, counts = numpy.unique(numeric_targets, return_counts=True)
#samples_per_label = dict(zip(unique, counts))
#print(samples_per_label)
if size > number_images:
raise
elif size < number_images:
## GET PERCENTAGE OF IMAGES BY CLASS
images_by_class = [int(round(((dataframe.loc[dataframe.dx == config.DICT_TARGETS[i], config.DX].count()) / number_images)*size))
for i in range(len(dataframe.dx.unique()))]
counter_by_class = [config.DICT_TARGETS[i] for i in range(len(dataframe.dx.unique()))]
for i in range(dataframe.shape[0]):
target = dataframe.at[i, config.DX] # GET TARGET OF THIS IMAGE
index_target_counter = counter_by_class.index(target) # CORRESPONDENT INDEX BETWEEN CLASS AND NUMBER OF PERMITTED IMAGES FOR THIS CLASS
if images_by_class[index_target_counter] != 0: ## IF THIS CLASS STILL ALLOWS TO PUT IMAGES
X.append(getX_Y_Image(dataframe.at[i, config.PATH]))
Y.append(numeric_targets[i])
images_by_class[index_target_counter] = images_by_class[index_target_counter] - 1 # DECREASE NUMBER OF IMAGES ALLOWED FOR THIS CLASS
else:
continue
if all(images_by_class[i] == 0 for i in range(len(images_by_class))): ## IF JOB IS FINISHED --> ALREADY HAVE STRATIFIED IMAGES FOR ALL CLASSES
break
return np.array(X), np.array(Y)
else: ## size == number_images, i want all images
for i in range(dataframe.shape[0]):
X.append(getX_Y_Image(dataframe.at[i, config.PATH]))
Y.append(numeric_targets[i])
return np.array(X), np.array(Y)
except:
raise CustomError.ErrorCreationModel(config.ERROR_ON_GET_DATA)
def impute_null_values(dataFrame, column, mean=True):
'''
THIS FUNCTION IS USED TO RETRIEVE NULL VALUES ON DATAFRAME
:param dataFrame: dataFrame
:param column: str --> name of column to impute null values
:param mean: boolean (Default = True) --> if True impute with mean of column, if False apply median to null values
:return: DataFrame --> changed DataFrame
'''
try:
series_column = dataFrame[column] ## GET SERIES COLUMN
if len(series_column) == 0: ## INVALID COLUMN NAME --> len is more quickly than empty
return dataFrame
if mean == True:
column_mean = series_column.mean() ## GET MEAN OF COLUMN
mean = math.trunc(column_mean)
dataFrame = dataFrame.fillna(mean)
return dataFrame
column_median = series_column.median()
median = math.trunc(column_median)
dataFrame = dataFrame.fillna(median)
return dataFrame
except:
raise
def resize_images(width, height, data):
'''
:param width: int --> pixel width to resize image
:param height: int --> pixel height to resize image
:param data: dataframe --> shape ["id", "image_path", "target"]
:return x: numpy array --> shape (number images, width, height)
:return y: numpy array --> shape (number images, target)
'''
try:
x = []
y = []
for i in range(len(data[config.ID])):
image = cv2.imread(data.at[i, config.IMAGE_PATH])
x.append(cv2.resize(image, (width, height)))
y.append(data.at[i, config.TARGET])
return numpy.array(x), numpy.array(y)
except:
raise
def normalize(X_train, X_val, X_test):
'''
#REF https://forums.fast.ai/t/images-normalization/4058/8
:param X_train: numpy array representing training data
:param X_val: numpy array representing validation data
:param X_test: numpy array representing test data
:return X_train: numpy array normalized
:return X_val: numpy array normalized
:return X_X_test: numpy array normalized
'''
try:
mean = np.mean(X_train, axis=config.STANDARDIZE_AXIS_CHANNELS) #STANDARDIZE BY CHANNELS
std = np.std(X_train, axis=config.STANDARDIZE_AXIS_CHANNELS) #STANDARDIZE BY CHANNELS
print(mean)
print(std)
X_train = (X_train-mean)/(std+1e-7)
X_val = (X_val-mean)/(std+1e-7)
X_test = (X_test-mean)/(std+1e-7)
# transform float64 numpy arrays to float32, in order to reduce memory usage
X_train = X_train.astype(np.float32)
X_val = X_val.astype(np.float32)
X_test = X_test.astype(np.float32)
# minmax_scale = preprocessing.MinMaxScaler().fit(X_train)
# X_train = minmax_scale.transform(X_train)
# X_val = minmax_scale.transform(X_val)
# X_test = minmax_scale.transform(X_test)
#
# #RESHAPE AGAIN TO 4D
# shape_data = (X_train.shape[0], config.WIDTH, config.HEIGHT, config.CHANNELS)
# X_train = X_train.reshape(shape_data)
# shape_data = (X_val.shape[0], config.WIDTH, config.HEIGHT, config.CHANNELS)
# X_val = X_val.reshape(shape_data)
# shape_data = (X_test.shape[0], config.WIDTH, config.HEIGHT, config.CHANNELS)
# X_test = X_test.reshape(shape_data)
return X_train, X_val, X_test
except:
raise
def one_hot_encoding(y_train, y_val, y_test):
'''
:param y_train: numpy array with training targets
:param y_val: numpy array with validation targets
:param y_test: numpy array with test targets
:return y_train: numpy array categorized [1 0] --> class 0 or [0 1] --> class 1
:return y_val: numpy array categorized
:return y_test: numpy array categorized
'''
try:
y_train = keras.utils.to_categorical(y_train, config.NUMBER_CLASSES)
y_val = keras.utils.to_categorical(y_val, config.NUMBER_CLASSES)
y_test = keras.utils.to_categorical(y_test, config.NUMBER_CLASSES)
return y_train, y_val, y_test
except:
raise
def decode_array(array):
'''
THIS FUNCTION IS USED TO DECODE ENCODING ARRAY'S LIKE PREDICTIONS RESULTED FROM MODEL PREDICT
e.g : array[[0 1]
[1 0]]
return array[[1]
[0]]
:param array: numpy array
:return: numpy array --> decoded array
'''
try:
decoded_array = np.argmax(array, axis=1) #RETURNS A LIST
return decoded_array
except:
raise
def getConfusionMatrix(predictions, y_test, dict):
'''
THIS FUNCTION IS USED IN ORDER TO SHOW MAIN RESULTS OF MODEL EVALUATION (ACCURACY, RECALL, PRECISION OR F-SCORE)
:param predictions: numpy array --> model predictions
:param y_test: numpy array --> real targets of test data
:return: report: dict --> with metrics results (ACCURACY, RECALL, PRECISION OR F-SCORE)
:return: confusion_mat: ndarray (n_classes, n_classes)
'''
try:
#CREATE REPORT
if dict == True:
report = classification_report(y_test, predictions, target_names=config.DICT_TARGETS,
output_dict=True) # returns a dict with metrics to access easily, important in optimizer
else:
report = classification_report(y_test, predictions, target_names=config.DICT_TARGETS)
#CREATION OF CONFUSION MATRIX
confusion_mat = confusion_matrix(y_test, predictions)
return report, confusion_mat
except:
raise
def plot_cost_history(history):
'''
THIS FUNNCTION PLOTS COST HISTORY
:param history: history object resulted from train
:return: none --> only plt show
'''
try:
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
except:
raise
def plot_accuracy_plot(history):
'''
THIS FUNNCTION PLOTS ACCURACY HISTORY
:param history: history object resulted from train
:return:
'''
try:
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
except:
raise
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
def lr_scheduler(epoch):
return config.LEARNING_RATE * (0.5 ** (epoch // config.DECAY))
def defineMask(maskValues):
'''
THIS FUNCTION IS USED TO CREATE BLACK/WHITE MASKS TO AN IMAGE
:param maskValues: numpy array --> predicted image mask values (pixel)
:return: black/white mask corresponding to the image predicted defined before (on model.predict --> to specific image)
'''
try:
for i in range(maskValues.shape[0]):
for j in range(maskValues.shape[1]):
if maskValues[i][j] > 0.5:
maskValues[i][j] = 1
else:
maskValues[i][j] = 0
return maskValues
except:
raise
def concate_image_mask(image, mask):
try:
## reshape to 2d
mask = np.array(mask.reshape(config.WIDTH, config.HEIGHT), dtype=np.uint8)
## bitwise image and mask
res = cv2.bitwise_and(image, image, mask=mask)
return res
except:
raise
def ensemble(models):
'''
THIS FUNCTION IS USED TO ENSEMBLE OUTPUT OF A LIST OF MODELS, CONSIDERING ITS AVERAGE
:param models: List Models : models used (AlexNet, VGGNet, ResNet)
:return: model: model with average outputs of all models considered
'''
try:
## get outputs of each model
input_shape = (config.WIDTH, config.HEIGHT, config.CHANNELS)
input_model = Input(input_shape)
models_out = [i(input_model) for i in models]
## get average of each model (ensemble)
average = Average() (models_out)
## define model with new outputs
model = mp(input_model, average, name='ensemble')
return model
except:
raise
def show_predict_per_class(prediction):
'''
This function shows the percentage by class in a prediction
:param prediction: numpy array with a prediction of a simple sample
:return: dict of shape: {class1: percentage, class2: percentage, ...}
'''
try:
# define empty dictionary
predict_by_class = {}
# dictionary definition
for i, j in zip(prediction, range(len(prediction))):
predict_by_class[config.DICT_TARGETS[j]] = i
return predict_by_class
except:
raise
def print_final_results(y_test, predictions, history, dict=False):
'''
THIS FUNCTION IS USED TO PRINT ANND PLOT FINAL RESULTS OF MODEL EVALUATION
:param y_test: real predictions of test
:param predictions: numpy array : predictions of model
:param history: History.history : history of train (validation and train along epochs)
:return: nothing only print's and plot's
'''
try:
if history != None:
print(plot_cost_history(history))
print(plot_accuracy_plot(history))
predictions = decode_array(predictions) # DECODE ONE-HOT ENCODING PREDICTIONS ARRAY
y_test_decoded = decode_array(y_test) # DECODE ONE-HOT ENCODING y_test ARRAY
report, confusion_mat = getConfusionMatrix(predictions, y_test_decoded, dict)
print(report)
plt.figure()
plot_confusion_matrix(confusion_mat, config.DICT_TARGETS)
print(balanced_accuracy_score(y_test_decoded, predictions))
except:
raise
def print_Best_Position_PSO(dimensions, modelType):
'''
This function prints convert float dimensions position of best particle
:param dimensions: numpy array of shape (dimensions of model, )
:param modelType: str --> model type
:return:
'''
try:
if modelType == config.ALEX_NET:
print("Nº normal conv's: {}".format(math.trunc(dimensions[0])))
print("Nº stack conv's: {}".format(math.trunc(dimensions[1])))
print("Initial nº of feature maps: {}".format(math.trunc(dimensions[2])))
print("Growth rate: {}".format(math.trunc(dimensions[3])))
print("Nº Dense layers: {}".format(math.trunc(dimensions[4])))
print("Number of Feature Maps on Dense layers: {}".format(math.trunc(dimensions[5])))
print("Batch Size: {}".format(math.trunc(dimensions[6])))
elif modelType == config.VGG_NET:
print("Nº stack conv's: {}".format(math.trunc(dimensions[0])))
print("Initial nº of feature maps: {}".format(math.trunc(dimensions[1])))
print("Growth rate: {}".format(math.trunc(dimensions[2])))
print("Nº Dense layers: {}".format(math.trunc(dimensions[3])))
print("Number of Feature Maps on Dense layers: {}".format(math.trunc(dimensions[4])))
print("Batch Size: {}".format(math.trunc(dimensions[5])))
elif modelType == config.RES_NET:
print("Initial nº of feature maps: {}".format(math.trunc(dimensions[0])))
print("Number of Convolutional Blocks: {}".format(math.trunc(dimensions[1])))
print("Number Residual Blocks: {}".format(math.trunc(dimensions[2])))
print("Growth rate: {}".format(math.trunc(dimensions[3])))
print("Batch Size: {}".format(math.trunc(dimensions[4])))
else:
print("Initial nº of feature maps: {}".format(math.trunc(dimensions[0])))
print("Number Dense Blocks: {}".format(math.trunc(dimensions[1])))
print("Number Composite Blocks: {}".format(math.trunc(dimensions[2])))
print("Growth rate: {}".format(math.trunc(dimensions[3])))
print("Compression rate: {}".format(dimensions[4]))
print("Batch Size: {}".format(math.trunc(dimensions[5])))
except:
raise
def print_log_message():
CRED = '\033[91m'
CBOLD = '\33[1m'
CEND = '\033[0m'
print("\n"+CRED+ CBOLD +"Seq: {}".format(next(config.counter_iterations))+CEND)