-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
869 lines (747 loc) · 38.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
import os
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.cuda.amp as amp
from torch.nn import functional as nnf
from torch.utils.data import Dataset, DataLoader
from enum import Enum
from transformers import GPT2Tokenizer, AdamW, get_linear_schedule_with_warmup
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from tf_adpt import GPT2LMHeadModel
from tqdm import tqdm
import random
import pickle
import sys
import argparse
import json
from typing import Tuple, Optional, Union
from clip1 import clip
from clip1.clip import _transform
import math
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
import skimage.io as io1
from PIL import Image
from PIL import ImageFile
from timm.models.layers import trunc_normal_
ImageFile.LOAD_TRUNCATED_IMAGES = True
import numpy as np
from lr_scheduler import build_scheduler
from misc import generate2_adpt_if, evaluate_on_coco_caption
import torch.nn.functional as F
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def log_1_min_a(a):
return torch.log(1 - a.exp() + 1e-40)
def log_add_exp(a, b):
maximum = torch.max(a, b)
return maximum + torch.log(torch.exp(a - maximum) + torch.exp(b - maximum))
def index_to_log_onehot(x, num_classes):
assert x.max().item() < num_classes, \
f'Error: {x.max().item()} >= {num_classes}'
x_onehot = F.one_hot(x, num_classes)
permute_order = (0, -1) + tuple(range(1, len(x.size())))
x_onehot = x_onehot.permute(permute_order)
log_x = torch.log(x_onehot.float().clamp(min=1e-30))
return log_x
def log_onehot_to_index(log_x):
return log_x.argmax(1)
class MappingType(Enum):
MLP = 'mlp'
Transformer = 'transformer'
def setup_for_distributed(is_master):
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
class ClipCocoDataset(Dataset):
def __len__(self) -> int:
return len(self.captions_tokens)
def pad_tokens(self, item: int):
tokens = torch.cat((self.captions_tokens[item], torch.tensor(self.tokenizer.encode('<|endoftext|>'))), dim=0)
gt = torch.cat((self.captions_tokens[item], torch.tensor(self.tokenizer.encode('<|endoftext|>'))), dim=0)
padding = self.max_seq_len - tokens.shape[0]
if padding > 0:
tokens = torch.cat((tokens, torch.zeros(padding, dtype=torch.int64) - 1))
gt = torch.cat((gt, torch.zeros(padding, dtype=torch.int64) - 1)) # we set target == -1 as ignore target
elif padding < 0:
tokens = tokens[:self.max_seq_len]
gt = gt[:self.max_seq_len]
mask = tokens.ge(0) # mask is zero where we out of sequence
tokens[~mask] = 0
mask = mask.float()
return tokens, mask, gt
def __getitem__(self, item: int) -> Tuple[torch.Tensor, ...]:
tokens, mask, gt = self.pad_tokens(item)
img_id = self.image_ids[item]
# train+restval
filename = f"{self.data_root}/train2014/COCO_train2014_{int(img_id):012d}.jpg"
try:
image = io1.imread(filename)
except:
filename = f"{self.data_root}/val2014/COCO_val2014_{int(img_id):012d}.jpg"
image = io1.imread(filename)
image = Image.fromarray(image)
image = self.preprocess(image)
## this is for pre-computed clip feature
prefix = self.prefixes[self.caption2embedding[item]]
if self.normalize_prefix:
prefix = prefix.float()
prefix = prefix / prefix.norm(2, -1)
return tokens, mask, image, gt
def __init__(self, data_root: str, data_path: str, gpt2_type: str = "gpt2", len_seq=20, normalize_prefix=False):
self.data_root = data_root
self.tokenizer = GPT2Tokenizer.from_pretrained(gpt2_type)
self.normalize_prefix = normalize_prefix
self.preprocess = _transform(224)
with open(data_path, 'rb') as f:
all_data = pickle.load(f)
print("Data size is %0d" % len(all_data["clip_embedding"]))
sys.stdout.flush()
self.prefixes = all_data["clip_embedding"]
captions_raw = all_data["captions"]
self.image_ids = [caption["image_id"] for caption in captions_raw]
self.captions = [caption['caption'] for caption in captions_raw]
if os.path.isfile(f"{data_path[:-4]}_tokens.pkl"):
with open(f"{data_path[:-4]}_tokens.pkl", 'rb') as f:
self.captions_tokens, self.caption2embedding, self.max_seq_len = pickle.load(f)
else:
self.captions_tokens = []
self.caption2embedding = []
max_seq_len = 0
for caption in captions_raw:
self.captions_tokens.append(torch.tensor(self.tokenizer.encode(caption['caption']), dtype=torch.int64))
self.caption2embedding.append(caption["clip_embedding"]) # just index
max_seq_len = max(max_seq_len, self.captions_tokens[-1].shape[0])
# self.max_seq_len = max_seq_len
with open(f"{data_path[:-4]}_tokens.pkl", 'wb') as f:
pickle.dump([self.captions_tokens, self.caption2embedding, max_seq_len], f)
all_len = torch.tensor([len(self.captions_tokens[i]) for i in range(len(self))]).float()
## notice current one is 40
# self.max_seq_len = min(int(all_len.mean() + all_len.std() * 10), int(all_len.max()))
self.max_seq_len = len_seq
class ClipCocoValDataset(Dataset):
def __len__(self) -> int:
return len(self.files)
def __getitem__(self, item: int):
_filename = self.files[item]
filename = f"{self.data_root}/val2014/{_filename}"
for x in self.annotation:
if 'COCO_val2014_' + str(x['image_id']).zfill(12) + '.jpg' == _filename:
caption = x['caption']
break
tokens = torch.tensor(self.tokenizer.encode(caption), dtype=torch.int64)
tokens = torch.cat((tokens, torch.tensor(self.tokenizer.encode('<|endoftext|>'))), dim=0)
gt = torch.clone(tokens)
padding = self.max_seq_len - tokens.shape[0]
if padding > 0:
tokens = torch.cat((tokens, torch.zeros(padding, dtype=torch.int64) - 1))
gt = torch.cat((gt, torch.zeros(padding, dtype=torch.int64) - 1)) # we set target == -1 as ignore target
elif padding < 0:
tokens = tokens[:self.max_seq_len]
gt = gt[:self.max_seq_len]
mask = tokens.ge(0) # mask is zero where we out of sequence
tokens[~mask] = 0
mask = mask.float()
image = io1.imread(filename)
image = Image.fromarray(image)
image = self.preprocess(image)
return image, _filename, tokens, gt, mask
def __init__(self, data_root: str):
self.data_root = data_root
self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
self.annotation = json.load(open("./MSCOCO_Caption/annotations/captions_val2014.json", "r"))["annotations"]
with open('captioneval/coco_test.txt') as f:
self.files = f.read().splitlines()
self.preprocess = _transform(224)
self.max_seq_len = 20
class MLP(nn.Module):
def _trunc_normal_(self, tensor, mean=0., std=1.):
trunc_normal_(tensor, mean=mean, std=std)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
self._trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
self._trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
super(MLP, self).__init__()
layers = []
for i in range(len(sizes) - 1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
for m in self.modules():
self._init_weights(m)
class MlpTransformer(nn.Module):
def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.):
super().__init__()
out_d = out_d if out_d is not None else in_dim
self.fc1 = nn.Linear(in_dim, h_dim)
self.act = act
self.fc2 = nn.Linear(h_dim, out_d)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim_self // num_heads
self.scale = head_dim ** -0.5
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias)
self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias)
self.project = nn.Linear(dim_self, dim_self)
self.dropout = nn.Dropout(dropout)
def forward(self, x, y=None, mask=None):
y = y if y is not None else x
b, n, c = x.shape
_, m, d = y.shape
# b n h dh
queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads)
# b m 2 h dh
keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads)
keys, values = keys_values[:, :, 0], keys_values[:, :, 1]
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale
if mask is not None:
if mask.dim() == 2:
mask = mask.unsqueeze(1)
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf"))
attention = attention.softmax(dim=2)
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c)
out = self.project(out)
return out, attention
class TransformerLayer(nn.Module):
def forward_with_attention(self, x, y=None, mask=None):
x_, attention = self.attn(self.norm1(x), y, mask)
x = x + x_
x = x + self.mlp(self.norm2(x))
return x, attention
def forward(self, x, y=None, mask=None):
x = x + self.attn(self.norm1(x), y, mask)[0]
x = x + self.mlp(self.norm2(x))
return x
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu,
norm_layer: nn.Module = nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim_self)
self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout)
self.norm2 = norm_layer(dim_self)
self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout)
class Transformer(nn.Module):
def forward_with_attention(self, x, y=None, mask=None):
attentions = []
for layer in self.layers:
x, att = layer.forward_with_attention(x, y, mask)
attentions.append(att)
return x, attentions
def forward(self, x, y=None, mask=None):
for i, layer in enumerate(self.layers):
if i % 2 == 0 and self.enc_dec: # cross
x = layer(x, y)
elif self.enc_dec: # self
x = layer(x, x, mask)
else: # self or cross
x = layer(x, y, mask)
return x
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None,
mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False):
super(Transformer, self).__init__()
dim_ref = dim_ref if dim_ref is not None else dim_self
self.enc_dec = enc_dec
if enc_dec:
num_layers = num_layers * 2
layers = []
for i in range(num_layers):
if i % 2 == 0 and enc_dec: # cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
elif enc_dec: # self
layers.append(
TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
else: # self or cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
self.layers = nn.ModuleList(layers)
class TransformerMapper(nn.Module):
def forward(self, x):
x = self.linear(x).view(x.shape[0], self.clip_length, -1)
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape)
prefix = torch.cat((x, prefix), dim=1)
out = self.transformer(prefix)[:, self.clip_length:]
return out
def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int, clip_length: int, num_layers: int = 8):
super(TransformerMapper, self).__init__()
self.clip_length = clip_length
self.transformer = Transformer(dim_embedding, 8, num_layers)
self.linear = nn.Linear(dim_clip, clip_length * dim_embedding)
self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True)
class ClipCaptionModel(nn.Module):
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
def forward(self, tokens: torch.Tensor, mask_tokens: torch.Tensor, prefix: torch.Tensor,
mask: Optional[torch.Tensor] = None, t = None,
labels: Optional[torch.Tensor] = None):
self.clip_model.eval()
# tokens = torch.where(mask_tokens == 50257, tokens, mask_tokens) # if you want to use beta, add this line
embedding_text = self.gpt.transformer.wte(tokens)
batch_size = embedding_text.size()[0]
seq_len = embedding_text.size()[1]
bos_token_embedding = self.bos_embedding.unsqueeze(0).unsqueeze(0).repeat_interleave(repeats=batch_size, dim=0)
bos_token_embedding = bos_token_embedding.repeat_interleave(repeats=seq_len, dim=1)
mask_tokens = mask_tokens.unsqueeze(dim=2).repeat_interleave(repeats=self.gpt_embedding_size, dim=2)
embedding_text = torch.where(mask_tokens == 50257, bos_token_embedding, embedding_text)
with torch.no_grad():
prefix, len_cls = self.image_encode(prefix)
prefix_projections = self.clip_project(prefix)
if self.training:
empty_idx = int(self.if_drop_rate * batch_size)
for i_image in range(empty_idx):
prefix_projections[i_image,:,:] = self.pad_embedding
if labels is not None:
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
labels = torch.cat((dummy_token, tokens), dim=1)
out = self.gpt(t=t, inputs_embeds=embedding_text, labels=labels, attention_mask=mask,
encoder_hidden_states=prefix_projections)
return out, self.len_head(len_cls)
def __init__(self, prefix_length: int, clip_length: Optional[int] = None, prefix_size: int = 512,
num_layers: int = 8, mapping_type: MappingType = MappingType.MLP, Timestep: int = 20, if_drop_rate=0.02):
super(ClipCaptionModel, self).__init__()
self.prefix_length = prefix_length
# self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
configuration = GPT2Config.from_pretrained('gpt2')
configuration = configuration.__dict__.copy()
configuration.update({'scale_attn_by_inverse_layer_idx': False})
configuration.update({'reorder_and_upcast_attn': False})
configuration = GPT2Config(**configuration)
self.gpt = GPT2LMHeadModel(configuration)
self.clip_model, _ = clip.load("ViT-B/16", device='cpu', jit=False)
self.clip_model.requires_grad_(False)
self.image_encode = self.clip_model.encode_image
self.time_step = Timestep
self.if_drop_rate = if_drop_rate
self.num_classes = configuration.vocab_size + 1
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
self.bos_embedding = nn.Parameter(torch.randn(self.gpt_embedding_size)) # used as the vector of mask token
self.pad_embedding = nn.Parameter(torch.randn(size=(196, 768), requires_grad=True, dtype=torch.float64)) # image free vector
self.len_head = MLP((512, self.gpt_embedding_size // 2, 20))
if mapping_type == MappingType.MLP:
self.clip_project = MLP((768, self.gpt_embedding_size // 2,
self.gpt_embedding_size))
else:
self.clip_project = TransformerMapper(prefix_size, self.gpt_embedding_size, prefix_length,
clip_length, num_layers)
at, bt, ct, att, btt, ctt = alpha_schedule(self.time_step, N=self.num_classes) # alpha schedule
at = torch.tensor(at.astype('float64'))
bt = torch.tensor(bt.astype('float64'))
ct = torch.tensor(ct.astype('float64'))
log_at = torch.log(at)
log_bt = torch.log(bt)
log_ct = torch.log(ct)
att = torch.tensor(att.astype('float64'))
btt = torch.tensor(btt.astype('float64'))
ctt = torch.tensor(ctt.astype('float64'))
log_cumprod_at = torch.log(att)
log_cumprod_bt = torch.log(btt)
log_cumprod_ct = torch.log(ctt)
log_1_min_ct = log_1_min_a(log_ct)
log_1_min_cumprod_ct = log_1_min_a(log_cumprod_ct)
assert log_add_exp(log_ct, log_1_min_ct).abs().sum().item() < 1.e-5
assert log_add_exp(log_cumprod_ct, log_1_min_cumprod_ct).abs().sum().item() < 1.e-5
self.diffusion_acc_list = [0] * self.time_step
self.diffusion_keep_list = [0] * self.time_step
# Convert to float32 and register buffers.
self.register_buffer('log_at', log_at.float())
self.register_buffer('log_bt', log_bt.float())
self.register_buffer('log_ct', log_ct.float())
self.register_buffer('log_cumprod_at', log_cumprod_at.float())
self.register_buffer('log_cumprod_bt', log_cumprod_bt.float())
self.register_buffer('log_cumprod_ct', log_cumprod_ct.float())
self.register_buffer('log_1_min_ct', log_1_min_ct.float())
self.register_buffer('log_1_min_cumprod_ct', log_1_min_cumprod_ct.float())
def q_pred(self, log_x_start, t): # q(xt|x0)
# log_x_start can be onehot or not
t = (t + (self.time_step + 1)) % (self.time_step + 1)
log_cumprod_at = extract(self.log_cumprod_at, t, log_x_start.shape) # at~
log_cumprod_bt = extract(self.log_cumprod_bt, t, log_x_start.shape) # bt~
log_cumprod_ct = extract(self.log_cumprod_ct, t, log_x_start.shape) # ct~
log_1_min_cumprod_ct = extract(self.log_1_min_cumprod_ct, t, log_x_start.shape) # 1-ct~
# log_probs = torch.zeros(log_x_start.size()).type_as(log_x_start)
p1 = log_add_exp(log_x_start[:, :-1, :] + log_cumprod_at, log_cumprod_bt)
p2 = log_add_exp(log_x_start[:, -1:, :] + log_1_min_cumprod_ct, log_cumprod_ct)
return torch.cat([p1, p2], dim=1)
def log_sample_categorical(self, logits): # use gumbel to sample onehot vector from log probability
uniform = torch.rand_like(logits)
gumbel_noise = -torch.log(-torch.log(uniform + 1e-30) + 1e-30)
sample = (gumbel_noise + logits).argmax(dim=1)
log_sample = index_to_log_onehot(sample, self.num_classes)
return log_sample
def q_sample(self, log_x_start, t): # diffusion step, q(xt|x0) and sample xt
log_EV_qxt_x0 = self.q_pred(log_x_start, t)
log_sample = self.log_sample_categorical(log_EV_qxt_x0)
return log_sample
def q_posterior(self, log_x_start, log_x_t, t): # p_theta(xt_1|xt) = sum(q(xt-1|xt,x0)*p(x0|xt))
# notice that log_x_t is onehot
# log(p_theta(xt_1|xt)) = log(q(xt-1|xt,x0)) + log(p(x0|xt))
# = log(p(x0|xt)) + log(q(xt|xt_1,x0)) + log(q(xt_1|x0)) - log(q(xt|x0)) (*)
assert t.min().item() >= 0 and t.max().item() < self.time_step
batch_size = log_x_start.size()[0]
onehot_x_t = log_onehot_to_index(log_x_t)
mask = (onehot_x_t == self.num_classes - 1).unsqueeze(1)
log_one_vector = torch.zeros(batch_size, 1, 1).type_as(log_x_t)
log_zero_vector = torch.log(log_one_vector + 1.0e-30).expand(-1, -1, log_x_start.size(-1))
# log(q(xt|x0))
log_qt = self.q_pred(log_x_t, t)
log_qt = torch.cat((log_qt[:, :-1, :], log_zero_vector), dim=1)
log_cumprod_ct = extract(self.log_cumprod_ct, t, log_x_start.shape) # ct~
ct_cumprod_vector = log_cumprod_ct.expand(-1, self.num_classes - 1, -1)
ct_cumprod_vector = torch.cat((ct_cumprod_vector, log_one_vector), dim=1)
log_qt = (~mask) * log_qt + mask * ct_cumprod_vector
# log(q(xt|xt_1,x0))
log_qt_one_timestep = self.q_pred_one_timestep(log_x_t, t) # q(xt|xt_1)
log_qt_one_timestep = torch.cat((log_qt_one_timestep[:, :-1, :], log_zero_vector), dim=1)
log_ct = extract(self.log_ct, t, log_x_start.shape) # ct
ct_vector = log_ct.expand(-1, self.num_classes - 1, -1)
ct_vector = torch.cat((ct_vector, log_one_vector), dim=1)
log_qt_one_timestep = (~mask) * log_qt_one_timestep + mask * ct_vector
q = log_x_start - log_qt # log(p(x0|xt)/q(xt|x0))
q_log_sum_exp = torch.logsumexp(q, dim=1, keepdim=True)
q = q - q_log_sum_exp # norm(log(p(x0|xt)/q(xt|x0))) to leverage self.q_pred
log_EV_xtmin_given_xt_given_xstart = self.q_pred(q,
t - 1) + log_qt_one_timestep + q_log_sum_exp # get (*), last term is re-norm
return torch.clamp(log_EV_xtmin_given_xt_given_xstart, -70, 0)
def q_pred_one_timestep(self, log_x_t, t): # q(xt|xt_1)
log_at = extract(self.log_at, t, log_x_t.shape) # at
log_bt = extract(self.log_bt, t, log_x_t.shape) # bt
log_ct = extract(self.log_ct, t, log_x_t.shape) # ct
log_1_min_ct = extract(self.log_1_min_ct, t, log_x_t.shape) # 1-ct
# log_probs = torch.zeros(log_x_t.size()).type_as(log_x_t)
p1 = log_add_exp(log_x_t[:, :-1, :] + log_at, log_bt)
p2 = log_add_exp(log_x_t[:, -1:, :] + log_1_min_ct, log_ct)
return torch.cat([p1, p2], dim=1)
def alpha_schedule(time_step, N=100, att_1=0.99999, att_T=0.000009, ctt_1=0.000009, ctt_T=0.99999):
att = np.arange(0, time_step) / (time_step - 1) * (att_T - att_1) + att_1
att = np.concatenate(([1], att))
at = att[1:] / att[:-1]
ctt = np.arange(0, time_step) / (time_step - 1) * (ctt_T - ctt_1) + ctt_1
ctt = np.concatenate(([0], ctt))
one_minus_ctt = 1 - ctt
one_minus_ct = one_minus_ctt[1:] / one_minus_ctt[:-1]
ct = 1 - one_minus_ct
bt = (1 - at - ct) / N
att = np.concatenate((att[1:], [1]))
ctt = np.concatenate((ctt[1:], [0]))
btt = (1 - att - ctt) / N
return at, bt, ct, att, btt, ctt
class ClipCaptionPrefix(ClipCaptionModel):
def parameters(self, recurse: bool = True):
return self.clip_project.parameters()
def train(self, mode: bool = True):
super(ClipCaptionPrefix, self).train(mode)
self.gpt.eval()
return self
def save_config(args: argparse.Namespace):
config = {}
for key, item in args._get_kwargs():
config[key] = item
out_path = os.path.join(args.out_dir, f"{args.tag}-args.json")
if args.local_rank == 0:
with open(out_path, 'w') as outfile:
json.dump(config, outfile)
def load_model(model, args, epoch_or_latest: Union[str, int] = '_latest'):
# with open(config_path) as f:
# config = json.load(f)
# parser = argparse.ArgumentParser()
# parser.set_defaults(**config)
# args = parser.parse_args()
if type(epoch_or_latest) is int:
epoch_or_latest = f"-{epoch_or_latest:03d}"
model_path = os.path.join(args.out_dir, f"{args.tag}{epoch_or_latest}.pt")
if os.path.isfile(model_path):
print(f"loading model from {model_path}")
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))["model"])
else:
print(f"{model_path} is not exist")
return model
def check_keywords_in_name(name, keywords=()):
isin = False
for keyword in keywords:
if keyword in name:
isin = True
return isin
def get_pretrain_param_groups(model, clip_lr, skip_list=(), skip_keywords=()):
has_decay = []
no_decay = []
has_decay_name = []
no_decay_name = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
if len(param.shape) == 1 or name.endswith(".bias") or (name in skip_list) or \
check_keywords_in_name(name, skip_keywords):
no_decay.append(param)
no_decay_name.append(name)
else:
has_decay.append(param)
has_decay_name.append(name)
print(f'No decay params: {no_decay_name}')
print(f'Has decay params: {has_decay_name}')
return [{'params': has_decay},
{'params': no_decay, 'weight_decay': 0.}
]
@torch.no_grad()
def val(model, epoch, val_dataloader, args):
model.eval()
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
print(f">>> Evaling epoch {epoch}")
sys.stdout.flush()
progress = tqdm(total=len(val_dataloader), desc=args.tag)
result_all = []
val_loss_all = {}
for i_vl in range(model.module.time_step):
val_loss_all[f'vl_loss_{i_vl}'] = []
for idx, (image, image_path, tokens, gt, mask) in enumerate(val_dataloader):
image = image.cuda(non_blocking=True)
tokens = tokens.cuda(non_blocking=True)
mask = mask.cuda(non_blocking=True)
gt = gt.cuda(non_blocking=True)
for i_t in range(0, model.module.time_step):
b, device = mask.size()[0], mask.device
t = torch.tensor(i_t, device=device).long().repeat_interleave(repeats=b)
log_x_start = index_to_log_onehot(tokens, model.module.num_classes)
log_xt = model.module.q_sample(log_x_start=log_x_start, t=t)
xt = log_onehot_to_index(log_xt)
mask_tokens = xt
ex_mask = torch.zeros_like(mask_tokens) - 10000
ex_nomask = torch.zeros_like(mask_tokens)
all_mask = torch.where(mask_tokens == 50257, ex_mask, ex_nomask)
all_mask = all_mask.unsqueeze(dim=1).repeat_interleave(repeats=mask_tokens.size(1), dim=1)
for each_b in range(all_mask.size(0)):
for each_token in range(all_mask[each_b].size(0)):
all_mask[each_b, each_token, each_token] = 0
padding_mask = mask.unsqueeze(dim=1)
padding_mask = (1.0 - padding_mask.long()) * -10000
all_mask = torch.clamp(all_mask + padding_mask, -10000, 0)
outputs, len_out = model(tokens, mask_tokens, image, all_mask, t)
logits = outputs.logits
loss_len = nnf.cross_entropy(len_out, mask.sum(dim=-1).to(torch.long) - 1)
loss = nnf.cross_entropy(logits.reshape(-1, logits.shape[-1]), gt.flatten(), ignore_index=-1)
val_loss_all[f'vl_loss_{i_t}'].append(loss)
prefix, len_cls = model.module.image_encode(image)
prefix_embed = model.module.clip_project(prefix)
len_pre = model.module.len_head(len_cls)
if args.use_beam_search:
assert False, "Not check beam search for now"
generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0]
else:
generated_text_prefix = generate2_adpt_if(model, tokenizer, embed=prefix_embed, len_pre=len_pre.argmax(-1) + 1)
torch.cuda.synchronize()
progress.update()
r = [{'image_id': _image_path, 'result': _text} for _image_path, _text in
zip(image_path, generated_text_prefix)]
result_all.extend(r)
progress.close()
os.makedirs(f'.cache/{args.tag}', exist_ok=True)
json.dump(result_all, open(f".cache/{args.tag}/tmp-results-{dist.get_rank()}.json", "w"))
torch.distributed.barrier()
if dist.get_rank() == 0:
result_all = []
ra_id = []
for i in range(dist.get_world_size()):
part_result = json.load(open(f".cache/{args.tag}/tmp-results-{i}.json"))
for ep in part_result:
if ep['image_id'] not in ra_id:
ra_id.append(ep['image_id'])
result_all.append(ep)
result = evaluate_on_coco_caption(result_all,
os.path.join(args.out_dir, f"{args.tag}-{epoch:03d}-results.json"),
os.path.join(args.data_root, 'annotations/captions_val2014.json'))
else:
result = None
torch.distributed.barrier()
if dist.get_rank() == 0:
log_dict = {}
for key in val_loss_all.keys():
log_dict[key] = torch.tensor(val_loss_all[key]).mean().item()
print(log_dict)
return result
def sample_time(b, num_timesteps, device):
t = torch.randint(0, num_timesteps, (b,), device=device).long()
pt = torch.ones_like(t).float() / num_timesteps
return t, pt
def multinomial_kl(log_prob1, log_prob2): # compute KL loss on log_prob
kl = (log_prob1.exp() * (log_prob1 - log_prob2)).sum(dim=1)
return kl
def sum_except_batch(x, num_dims=1):
return x.reshape(*x.shape[:num_dims], -1).sum(-1)
def log_categorical(log_x_start, log_prob):
return (log_x_start.exp() * log_prob).sum(dim=1)
def train(model, epoch, train_dataloader, optimizer, lr_scheduler, scaler, args,
output_dir: str = ".", output_prefix: str = ""):
model.train()
num_steps = len(train_dataloader)
train_dataloader.sampler.set_epoch(epoch)
print(f">>> Training epoch {epoch}")
sys.stdout.flush()
progress = tqdm(total=len(train_dataloader), desc=output_prefix)
for idx, (tokens, mask, prefix, gt) in enumerate(train_dataloader):
# prefix is raw images
tokens = tokens.cuda(non_blocking=True)
mask = mask.cuda(non_blocking=True)
prefix = prefix.cuda(non_blocking=True)
gt = gt.cuda(non_blocking=True)
b, device = mask.size()[0], mask.device
t, pt = sample_time(b, torch.tensor(args.time_step).to(torch.int), device)
# add noise
log_x_start = index_to_log_onehot(tokens, model.module.num_classes)
log_xt = model.module.q_sample(log_x_start=log_x_start, t=t)
xt = log_onehot_to_index(log_xt)
mask_tokens = xt
# generate concentrate mask attention
ex_mask = torch.zeros_like(mask_tokens) - 10000
ex_nomask = torch.zeros_like(mask_tokens)
all_mask = torch.where(mask_tokens == 50257, ex_mask, ex_nomask)
all_mask = all_mask.unsqueeze(dim=1).repeat_interleave(repeats=mask_tokens.size(1), dim=1)
for each_b in range(all_mask.size(0)):
for each_token in range(all_mask[each_b].size(0)):
all_mask[each_b, each_token, each_token] = 0
padding_mask = mask.unsqueeze(dim=1)
padding_mask = (1.0 - padding_mask.long()) * -10000
all_mask = torch.clamp(all_mask + padding_mask, -10000, 0)
# predict x0
with amp.autocast(enabled=args.enable_amp):
outputs, len_out = model(tokens, mask_tokens, prefix, all_mask, t)
logits = outputs.logits
loss_len = nnf.cross_entropy(len_out, mask.sum(dim=-1).to(torch.long) - 1)
loss = nnf.cross_entropy(logits.reshape(-1, logits.shape[-1]), gt.flatten(), ignore_index=-1)
loss = loss + loss_len
optimizer.zero_grad()
scaler.scale(loss).backward() # loss.backward()
scaler.step(optimizer) # optimizer.step()
scaler.update()
lr_scheduler.step_update(epoch * num_steps + idx)
torch.cuda.synchronize()
progress.set_postfix({"loss": loss.item() - loss_len.item(), 'lr': optimizer.param_groups[0]['lr'], 'loss_len':loss_len.item(), "loss_all": loss.item()})
progress.update()
progress.close()
return model
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data', default='./data/coco/oscar_split_ViT-B_32_train_512.pkl')
parser.add_argument('--data_root', default='./MSCOCO_Caption/', help='raw coco training image path')
parser.add_argument('--out_dir', default='./checkpoints')
parser.add_argument('--epochs', type=int, default=30)
parser.add_argument('--save_every', type=int, default=1)
parser.add_argument('--prefix_length', type=int, default=10)
parser.add_argument('--prefix_length_clip', type=int, default=10)
parser.add_argument('--bs', type=int, default=64)
parser.add_argument('--lr', type=float, default=2e-4)
parser.add_argument('--wd', type=float, default=0.01)
parser.add_argument('--only_prefix', dest='only_prefix', action='store_true')
parser.add_argument('--mapping_type', type=str, default='mlp', help='mlp/transformer')
parser.add_argument('--num_layers', type=int, default=8)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--tag', default='debug',
help='tag of job, used for wandb and output')
parser.add_argument('--is_rn', dest='is_rn', action='store_true')
parser.add_argument('--normalize_prefix', dest='normalize_prefix', action='store_true')
parser.add_argument('--use_beam_search', action='store_true')
parser.add_argument('--enable-amp', action='store_true')
parser.add_argument('--time_step', type=int, default=20)
parser.add_argument('--loss_weight', type=float, default=[0.5, 0.5])
parser.add_argument('--if_drop_rate', type=float, default=0.1)
parser.add_argument('--disable-amp', action='store_false', dest='enable_amp')
parser.set_defaults(enable_amp=True)
parser.add_argument("--local_rank", type=int, required=True, help='local rank for DistributedDataParallel')
args = parser.parse_args()
args.out_dir = os.path.join(args.out_dir, args.tag)
os.makedirs(args.out_dir, exist_ok=True)
save_config(args)
return args
def main(args):
prefix_dim = 640 if args.is_rn else 512
args.mapping_type = {'mlp': MappingType.MLP, 'transformer': MappingType.Transformer}[args.mapping_type]
if args.only_prefix:
model = ClipCaptionPrefix(args.prefix_length, clip_length=args.prefix_length_clip, prefix_size=prefix_dim,
num_layers=args.num_layers, mapping_type=args.mapping_type, Timestep=args.time_step,
if_drop_rate=args.if_drop_rate)
print("Train only prefix")
else:
model = ClipCaptionModel(args.prefix_length, clip_length=args.prefix_length_clip, prefix_size=prefix_dim,
num_layers=args.num_layers, mapping_type=args.mapping_type, Timestep=args.time_step,
if_drop_rate=args.if_drop_rate)
print("Train both prefix and GPT")
sys.stdout.flush()
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'{total_params:,} total parameters')
local_rank = args.local_rank
torch.cuda.set_device(local_rank)
# ckpt = torch.load('caption_diff_pretrain_CC-018.pt', map_location="cpu")
# model.load_state_dict(ckpt["model"])
model = model.cuda()
parameters = get_pretrain_param_groups(model, args.lr * 0.1)
optimizer = AdamW(parameters, lr=args.lr, weight_decay=args.wd)
scaler = amp.GradScaler()
model = DDP(model, device_ids=[local_rank], broadcast_buffers=False)
dataset = ClipCocoDataset(args.data_root, args.data, normalize_prefix=args.normalize_prefix)
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
train_dataloader = DataLoader(dataset, batch_size=args.bs, sampler=train_sampler, num_workers=8, pin_memory=True, drop_last=True)
val_dataset = ClipCocoValDataset(args.data_root)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False)
val_dataloader = DataLoader(val_dataset, batch_size=args.bs, sampler=val_sampler, num_workers=8, pin_memory=True, drop_last=False)
lr_args = {"LR_SCHEDULER_NAME": "cosine", "EPOCHS": args.epochs, "WARMUP_EPOCHS": 5, "MIN_LR": 1e-6,
"WARMUP_LR": 1e-7}
lr_scheduler = build_scheduler(lr_args, optimizer, len(train_dataloader))
best_cider = 0
for epoch in range(args.epochs):
_ = train(model, epoch, train_dataloader, optimizer, lr_scheduler, scaler, args, output_dir=args.out_dir, output_prefix=args.tag)
result = val(model, epoch, val_dataloader, args)
if epoch % args.save_every == 0 or epoch == args.epochs - 1:
if dist.get_rank() == 0:
torch.save(
{'model':model.module.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'optimizer': optimizer.state_dict(), 'scaler': scaler.state_dict()},
os.path.join(args.out_dir, f"{args.tag}-{epoch:03d}.pt"),
)
if dist.get_rank() == 0 and result['CIDEr'] > best_cider:
best_cider = result['CIDEr']
torch.save(
{'model':model.module.state_dict()},
os.path.join(args.out_dir, f"{args.tag}-best.pt"),
)
if __name__ == '__main__':
# command: python -m torch.distributed.launch --nproc_per_node 4 train.py --data ./oscar_split_ViT-B_32_train_512.pkl --out_dir ./output --bs 32
args = parse_args()
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
else:
rank = -1
world_size = -1
dist.init_process_group("nccl", init_method='env://', rank=args.local_rank, world_size=world_size)
torch.distributed.barrier()
setup_for_distributed(args.local_rank == 0) ##### HERE
seed = dist.get_rank() + args.seed
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
main(args)