{
<<options>>
}
"cuda" : true,
"num_epochs" : 200,
"report_frequency" : 32,
"save_frequency" : 1,
save_frequency
represents every nth epoch, when the model is
checked for being saved.
"network" : "resnet18",
"weights_file" : "/home/bvr/data/pytocone/save-20180427-114144/model_best.pth.tar",
"weights_key" : "state_dict",
"model" : "feature_pair",
"model_params" : {
"fc" : null,
"feat_len" : 512
},
model
may be one of:
"all_models" : [ "feature_pair",
"feature_triple",
"concat_pair",
"concat_triple"
],
fc
stands for fully connected layers. The value may either be null
which is interpreted as Identity
, or a list of output sizes for a
series of fully connected layers in an artificial neural network.
For example,
"fc" : [128, 2]
feat_len
is the output size of the base network (expected to be
flattened).
"dataset" : "pairwise",
"dataset_params" : {
"adjacency" : "/path/to/adjacency.json",
"image_list" : "/path/to/image_list.json",
"labels" : [0, 1],
"transform" : "sketch_transform"
},
"dataloader_params" : {
"batch_size" : 256,
"shuffle" : true,
"num_workers" : 7
},
dataset
may be one of:
"all_dataset" : [ "pairwise",
"triplet"],
"criterion" : "contrastive",
"criterion_params" : {
"distance" : "euclidean" ,
"margin" : 2.0
},
criterion
may be one of:
"all_criteria" : [ "contrastive",
"triplet",
"bce",
"bce_triplet"
],
distance
may be one of:
"all_distances" : [ "euclidean",
"kldiv"
],
where kldiv
stands for KLDivergence
"optimizer" : "Adam",
"optimizer_params" : {
"weight_decay" : 0.1
},
optimizer
may be one of:
"all_optimizers" : [ "Adadelta",
"Adagrad",
"Adam",
"SparseAdam",
"Adamax",
"ASGD",
"LBFGS",
"RMSprop",
"Rprop",
"SGD"
],
"lr_adjuster" : "ReduceLROnPlateau",
"lr_adjuster_params" : {
"eps" : 1e-4
},
lr_adjuster
may be one of :
"all_lr_adjusters" : [ "LambdaLR",
"StepLR",
"MultiStepLR",
"ExponentialLR",
"CosineAnnealingLR",
"ReduceLROnPlateau"
],
"accuracy_transform" : "loss_interpreter",
"accuracy_transform_params" : {},
accuracy_transform
may be one of:
"all_accuracy_transform" : [ "loss_interpreter"
]
"save_location" : ".",
"saver_current" : "checkpoint.pth.tar",
"saver_best" : "model_best.pth.tar",
"reporters" : [ "log_average"
]
reporters
may once include either of:
"all_reporters" : [ "log_average",
"grapher"
],