forked from NVlabs/instant-ngp
-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathtestbed_image.cu
558 lines (452 loc) · 19.3 KB
/
testbed_image.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
*
* NVIDIA CORPORATION and its licensors retain all intellectual property
* and proprietary rights in and to this software, related documentation
* and any modifications thereto. Any use, reproduction, disclosure or
* distribution of this software and related documentation without an express
* license agreement from NVIDIA CORPORATION is strictly prohibited.
*/
/** @file testbed_image.cu
* @author Thomas Müller & Alex Evans, NVIDIA
*/
#include <neural-graphics-primitives/common.h>
#include <neural-graphics-primitives/common_device.cuh>
#include <neural-graphics-primitives/render_buffer.h>
#include <neural-graphics-primitives/testbed.h>
#include <tiny-cuda-nn/gpu_matrix.h>
#include <tiny-cuda-nn/network.h>
#include <tiny-cuda-nn/network_with_input_encoding.h>
#include <tiny-cuda-nn/trainer.h>
#include <fstream>
using namespace Eigen;
using namespace tcnn;
NGP_NAMESPACE_BEGIN
template <uint32_t base>
__host__ __device__ float halton(size_t idx) {
float f = 1;
float result = 0;
while (idx > 0) {
f /= base;
result += f * (idx % base);
idx /= base;
}
return result;
}
__global__ void halton23_kernel(uint32_t n_elements, size_t baseIdx, Vector2f* __restrict__ output) {
uint32_t i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= n_elements) return;
output[i] = {halton<2>(baseIdx+i), halton<3>(baseIdx+i)};
}
__global__ void zip_kernel(uint32_t n_elements, const float* __restrict__ in, Vector2f* __restrict__ output) {
uint32_t i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= n_elements) return;
output[i] = {in[i], in[i+n_elements]};
}
__global__ void stratify2_kernel(uint32_t n_elements, uint32_t log2_batch_size, Vector2f* __restrict__ inout) {
uint32_t i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= n_elements) return;
uint32_t log2Size = log2_batch_size / 2;
uint32_t size = 1 << log2Size;
uint32_t in_batch_index = i & ((1 << log2_batch_size)-1);
uint32_t x = in_batch_index & ((1 << log2Size)-1);
uint32_t y = in_batch_index >> log2Size;
Vector2f val = inout[i];
inout[i] = {val.x() / size + ((float)x/size), val.y() / size + ((float)y/size)};
}
__global__ void init_image_coords(Vector2f* __restrict__ positions, Vector2i resolution, Vector2i image_resolution, float view_dist, Vector2f image_pos, Vector2f screen_center, bool snap_to_pixel_centers, uint32_t spp) {
uint32_t x = threadIdx.x + blockDim.x * blockIdx.x;
uint32_t y = threadIdx.y + blockDim.y * blockIdx.y;
if (x >= resolution.x() || y >= resolution.y()) {
return;
}
Vector2f jit = ld_random_pixel_offset(snap_to_pixel_centers ? 0 : spp, x, y);
Vector2f offset = screen_center.cwiseProduct(resolution.cast<float>()) + jit;
float y_scale = view_dist;
float x_scale = y_scale * resolution.x() / resolution.y();
Vector2f uv = {
((x_scale * (x + offset.x())) / resolution.x() - view_dist * image_pos.x()) / image_resolution.x() * image_resolution.y(),
(y_scale * (y + offset.y())) / resolution.y() - view_dist * image_pos.y()
};
uint32_t idx = x + resolution.x() * y;
positions[idx] = uv;
}
// #define COLOR_SPACE_CONVERT convert to ycrcb experiment - causes some color shift tho it does lead to very slightly sharper edges. not a net win if you like colors :)
#define CHROMA_SCALE 0.2f
__global__ void colorspace_convert_image_half(Vector2i resolution, const char* __restrict__ texture) {
uint32_t x = blockIdx.x * blockDim.x + threadIdx.x;
uint32_t y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= resolution.x() || y >= resolution.y()) return;
__half val[4];
*(int2*)&val[0] = ((int2*)texture)[y * resolution.x() + x];
float R=val[0],G=val[1],B=val[2];
val[0]=(0.2126f * R + 0.7152f * G + 0.0722f * B);
val[1]=((-0.1146f * R - 0.3845f * G + 0.5f * B)+0.f)*CHROMA_SCALE;
val[2]=((0.5f * R - 0.4542f * G - 0.0458f * B)+0.f)*CHROMA_SCALE;
((int2*)texture)[y * resolution.x() + x] = *(int2*)&val[0];
}
__global__ void colorspace_convert_image_float(Vector2i resolution, const char* __restrict__ texture) {
uint32_t x = blockIdx.x * blockDim.x + threadIdx.x;
uint32_t y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= resolution.x() || y >= resolution.y()) return;
float val[4];
*(float4*)&val[0] = ((float4*)texture)[y * resolution.x() + x];
float R=val[0],G=val[1],B=val[2];
val[0]=(0.2126f * R + 0.7152f * G + 0.0722f * B);
val[1]=((-0.1146f * R - 0.3845f * G + 0.5f * B)+0.f)*CHROMA_SCALE;
val[2]=((0.5f * R - 0.4542f * G - 0.0458f * B)+0.f)*CHROMA_SCALE;
((float4*)texture)[y * resolution.x() + x] = *(float4*)&val[0];
}
__global__ void shade_kernel_image(Vector2i resolution, const Vector2f* __restrict__ positions, const Array3f* __restrict__ colors, Array4f* __restrict__ frame_buffer, bool linear_colors) {
uint32_t x = threadIdx.x + blockDim.x * blockIdx.x;
uint32_t y = threadIdx.y + blockDim.y * blockIdx.y;
if (x >= resolution.x() || y >= resolution.y()) {
return;
}
uint32_t idx = x + resolution.x() * y;
auto uv = positions[idx];
if (uv.x() < 0.0f || uv.x() > 1.0f || uv.y() < 0.0f || uv.y() > 1.0f) {
frame_buffer[idx] = Array4f::Zero();
return;
}
Array3f color = colors[idx];
if (!linear_colors) {
color = srgb_to_linear(color);
}
#ifdef COLOR_SPACE_CONVERT
float Y=color.x(), Cb =color.y()*(1.f/CHROMA_SCALE) -0.f, Cr = color.z() * (1.f/CHROMA_SCALE) - 0.f;
float R = Y + 1.5748f * Cr;
float G = Y - 0.1873f * Cb - 0.4681 * Cr;
float B = Y + 1.8556f * Cb;
frame_buffer[idx] = {R, G, B, 1.0f};
#else
frame_buffer[idx] = {color.x(), color.y(), color.z(), 1.0f};
#endif
}
template <typename T, uint32_t stride>
__global__ void eval_image_kernel_and_snap(uint32_t n_elements, const T* __restrict__ texture, Vector2f* __restrict__ positions, Vector2i resolution, float* __restrict__ result, bool snap_to_pixel_centers, bool linear_colors) {
uint32_t i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= n_elements) return;
uint32_t output_idx = i * stride;
Vector2f pos = positions[i];
auto read_val = [&](int x, int y) {
auto val = ((tcnn::vector_t<T, 4>*)texture)[y * resolution.x() + x];
auto result = Array4f(val[0], val[1], val[2], val[3]);
if (!linear_colors) {
result.head<3>() = linear_to_srgb(result.head<3>());
}
return result;
};
Array4f val;
if (snap_to_pixel_centers) {
Vector2i pos_int = pos.cwiseProduct(resolution.cast<float>()).array().floor().matrix().cast<int>();
positions[i] = (pos_int.cast<float>() + Vector2f::Constant(0.5f)).cwiseQuotient(resolution.cast<float>());
pos_int = pos_int.cwiseMax(0).cwiseMin(resolution - Vector2i::Ones());
val = read_val(pos_int.x(), pos_int.y());
} else {
pos = (pos.cwiseProduct(resolution.cast<float>()) - Vector2f::Constant(0.5f)).cwiseMax(0.0f).cwiseMin(resolution.cast<float>() - Vector2f::Constant(1.0f + 1e-4f));
Vector2i pos_int = pos.cast<int>();
auto weight = pos - pos_int.cast<float>();
Vector2i idx = pos_int.cwiseMin(resolution - Vector2i::Constant(2)).cwiseMax(0);
val =
(1 - weight.x()) * (1 - weight.y()) * read_val(idx.x(), idx.y()) +
(weight.x()) * (1 - weight.y()) * read_val(idx.x()+1, idx.y()) +
(1 - weight.x()) * (weight.y()) * read_val(idx.x(), idx.y()+1) +
(weight.x()) * (weight.y()) * read_val(idx.x()+1, idx.y()+1);
}
result[output_idx + 0] = val.x();
result[output_idx + 1] = val.y();
result[output_idx + 2] = val.z();
for (uint32_t i = 3; i < stride; ++i) {
result[output_idx + i] = 1;
}
}
void Testbed::train_image(size_t target_batch_size, size_t n_steps, cudaStream_t stream) {
const uint32_t n_output_dims = 3;
const uint32_t n_input_dims = 2;
// Auxiliary matrices for training
const uint32_t batch_size = (uint32_t)target_batch_size;
const uint32_t n_batches = (uint32_t)n_steps;
const uint32_t GRAPH_SIZE = (uint32_t)std::min((size_t)16, n_steps);
// Permute all training records to de-correlate training data
const uint32_t n_elements = batch_size * n_batches;
m_image.training.positions.enlarge(n_elements);
m_image.training.targets.enlarge(n_elements);
if (m_image.random_mode == ERandomMode::Halton) {
linear_kernel(halton23_kernel, 0, stream, n_elements, (size_t)batch_size * m_training_step, m_image.training.positions.data());
} else if (m_image.random_mode == ERandomMode::Sobol) {
// TODO: use owen scrambled sobol in custom kernel
throw std::runtime_error{"Image: Sobol generation currently unsupported"};
} else {
generate_random_uniform<float>(stream, m_rng, n_elements * n_input_dims, (float*)m_image.training.positions.data());
if (m_image.random_mode == ERandomMode::Stratified) {
uint32_t log2_batch_size = 0;
if (!is_pot(batch_size, &log2_batch_size)) {
tlog::warning() << "Can't stratify a non-pot batch size";
} else if (log2_batch_size % 2 != 0) {
tlog::warning() << "Can't stratify a non-square batch size";
} else {
linear_kernel(stratify2_kernel, 0, stream, n_elements, log2_batch_size, m_image.training.positions.data());
}
}
}
if (m_image.type == EDataType::Float) {
linear_kernel(eval_image_kernel_and_snap<float, 3>, 0, stream,
n_elements,
(float*)m_image.data.data(),
m_image.training.positions.data(),
m_image.resolution,
(float*)m_image.training.targets.data(),
m_image.training.snap_to_pixel_centers,
m_image.training.linear_colors
);
} else {
linear_kernel(eval_image_kernel_and_snap<__half, 3>, 0, stream,
n_elements,
(__half*)m_image.data.data(),
m_image.training.positions.data(),
m_image.resolution,
(float*)m_image.training.targets.data(),
m_image.training.snap_to_pixel_centers,
m_image.training.linear_colors
);
}
float total_loss = 0;
uint32_t n_loss_samples = 0;
for (size_t i = 0; i < n_steps; i += GRAPH_SIZE) {
float loss_value;
for (uint32_t j = 0; j < GRAPH_SIZE; ++j) {
uint32_t training_offset = (uint32_t)((i+j) % n_batches) * batch_size;
GPUMatrix<float> training_batch_matrix((float*)(m_image.training.positions.data()+training_offset), n_input_dims, batch_size);
GPUMatrix<float> training_target_matrix((float*)(m_image.training.targets.data()+training_offset), n_output_dims, batch_size);
float* p_loss = j == (GRAPH_SIZE - 1) ? &loss_value : nullptr;
m_trainer->training_step(stream, training_batch_matrix, training_target_matrix, p_loss);
if (p_loss) {
total_loss += loss_value;
++n_loss_samples;
}
m_training_step++;
}
}
m_loss_scalar = total_loss / (float)n_loss_samples;
update_loss_graph();
}
void Testbed::render_image(CudaRenderBuffer& render_buffer, cudaStream_t stream) {
auto res = render_buffer.resolution();
// Make sure we have enough memory reserved to render at the requested resolution
size_t n_pixels = (size_t)res.x() * res.y();
uint32_t n_elements = next_multiple((uint32_t)n_pixels, BATCH_SIZE_MULTIPLE);
m_image.render_coords.enlarge(n_elements);
m_image.render_out.enlarge(n_elements);
// Generate 2D coords at which to query the network
const dim3 threads = { 16, 8, 1 };
const dim3 blocks = { div_round_up((uint32_t)res.x(), threads.x), div_round_up((uint32_t)res.y(), threads.y), 1 };
init_image_coords<<<blocks, threads, 0, stream>>>(
m_image.render_coords.data(),
res,
m_image.resolution,
m_scale,
m_image.pos,
m_screen_center - Vector2f::Constant(0.5f),
m_snap_to_pixel_centers,
render_buffer.spp()
);
// Obtain colors for each 2D coord
if (m_image.type == EDataType::Float) {
linear_kernel(eval_image_kernel_and_snap<float, 3>, 0, stream,
n_elements,
(float*)m_image.data.data(),
m_image.render_coords.data(),
m_image.resolution,
(float*)m_image.render_out.data(),
m_image.training.snap_to_pixel_centers,
m_image.training.linear_colors
);
} else {
linear_kernel(eval_image_kernel_and_snap<__half, 3>, 0, stream,
n_elements,
(__half*)m_image.data.data(),
m_image.render_coords.data(),
m_image.resolution,
(float*)m_image.render_out.data(),
m_image.training.snap_to_pixel_centers,
m_image.training.linear_colors
);
}
if (!m_render_ground_truth) {
if (m_visualized_dimension >= 0) {
GPUMatrix<float> positions_matrix((float*)m_image.render_coords.data(), 2, n_elements);
GPUMatrix<float> colors_matrix((float*)m_image.render_out.data(), 3, n_elements);
m_network->visualize_activation(stream, m_visualized_layer, m_visualized_dimension, positions_matrix, colors_matrix);
} else {
GPUMatrix<float> positions_matrix((float*)m_image.render_coords.data(), 2, n_elements);
GPUMatrix<float> colors_matrix((float*)m_image.render_out.data(), 3, n_elements);
m_network->inference(stream, positions_matrix, colors_matrix);
}
}
// Splat colors to render texture
shade_kernel_image<<<blocks, threads, 0, stream>>>(
res,
m_image.render_coords.data(),
m_image.render_out.data(),
render_buffer.frame_buffer(),
m_image.training.linear_colors
);
}
void Testbed::load_image() {
if (equals_case_insensitive(m_data_path.extension(), "exr")) {
load_exr_image();
} else if (equals_case_insensitive(m_data_path.extension(), "bin")) {
load_binary_image();
} else {
load_stbi_image();
}
#ifdef COLOR_SPACE_CONVERT
const dim3 threads = { 32, 32, 1 };
const dim3 blocks = { div_round_up((uint32_t)m_image.resolution.x(), threads.x), div_round_up((uint32_t)m_image.resolution.x(), threads.y), 1 };
if (m_image.type == EDataType::Half)
colorspace_convert_image_half<<<blocks, threads, 0>>>(m_image.resolution, m_image.data.data());
else
colorspace_convert_image_float<<<blocks, threads, 0>>>(m_image.resolution, m_image.data.data());
#endif
tlog::success()
<< "Loaded a " << (m_image.type == EDataType::Half ? "half" : "full") << "-precision image with "
<< m_image.resolution.x() << "x" << m_image.resolution.y() << " pixels.";
}
void Testbed::load_exr_image() {
if (!m_data_path.exists()) {
throw std::runtime_error{m_data_path.str() + " does not exist."};
}
tlog::info() << "Loading EXR image from " << m_data_path;
// First step: load an image that we'd like to learn
GPUMemory<float> image = load_exr(m_data_path.str(), m_image.resolution.x(), m_image.resolution.y());
m_image.data.resize(image.size() * sizeof(float));
CUDA_CHECK_THROW(cudaMemcpy(m_image.data.data(), image.data(), image.size() * sizeof(float), cudaMemcpyDeviceToDevice));
m_image.type = EDataType::Float;
}
void Testbed::load_stbi_image() {
if (!m_data_path.exists()) {
throw std::runtime_error{m_data_path.str() + " does not exist."};
}
tlog::info() << "Loading STBI image from " << m_data_path;
// First step: load an image that we'd like to learn
GPUMemory<float> image = load_stbi(m_data_path.str(), m_image.resolution.x(), m_image.resolution.y());
m_image.data.resize(image.size() * sizeof(float));
CUDA_CHECK_THROW(cudaMemcpy(m_image.data.data(), image.data(), image.size() * sizeof(float), cudaMemcpyDeviceToDevice));
m_image.type = EDataType::Float;
}
void Testbed::load_binary_image() {
if (!m_data_path.exists()) {
throw std::runtime_error{m_data_path.str() + " does not exist."};
}
tlog::info() << "Loading binary image from " << m_data_path;
std::ifstream f(m_data_path.str(), std::ios::in | std::ios::binary);
f.read(reinterpret_cast<char*>(&m_image.resolution.y()), sizeof(int));
f.read(reinterpret_cast<char*>(&m_image.resolution.x()), sizeof(int));
size_t n_pixels = (size_t)m_image.resolution.x() * m_image.resolution.y();
m_image.data.resize(n_pixels * 4 * sizeof(__half));
// Can directly copy to GPU memory!
// TODO: uncomment once GDS works everywhere
// {
// int fd = open(m_data_path.string().c_str(), O_DIRECT);
// CUfileError_t status;
// CUfileDescr_t cf_descr;
// CUfileHandle_t cf_handle;
// memset((void *)&cf_descr, 0, sizeof(CUfileDescr_t));
// cf_descr.handle.fd = fd;
// cf_descr.type = CU_FILE_HANDLE_TYPE_OPAQUE_FD;
// status = cuFileHandleRegister(&cf_handle, &cf_descr);
// if (status.err != CU_FILE_SUCCESS) {
// close(fd);
// throw std::runtime_error{std::string{"cuFileHandleRegister fd "} + std::to_string(fd) + " status " + status.err};
// }
// status = cuFileBufRegister(m_image.data.data(), m_image.data.get_bytes(), 0);
// if (status.err != CU_FILE_SUCCESS) {
// cuFileHandleDeregister(cf_handle);
// close(fd);
// throw std::runtime_error{std::string{"buffer registration failed "} + status.err};
// }
// cuFileRead(cf_handle, m_image.data.data(), m_image.data.get_bytes(), 2 * sizeof(int), 0);
// status = cuFileBufDeregister(devPtr_base);
// if (status.err != CU_FILE_SUCCESS) {
// cuFileHandleDeregister(cf_handle);
// close(fd);
// throw std::runtime_error{std::string{"buffer deregistration failed "} + status.err};
// }
// cuFileHandleDeregister(cf_handle);
// close(fd);
// }
std::vector<__half> image(n_pixels * 4);
f.read(reinterpret_cast<char*>(image.data()), sizeof(__half) * image.size());
CUDA_CHECK_THROW(cudaMemcpy(m_image.data.data(), image.data(), image.size() * sizeof(__half), cudaMemcpyHostToDevice));
m_image.type = EDataType::Half;
}
__global__ void image_coords_from_idx(const uint32_t n_elements, uint32_t offset, Vector2f* __restrict__ pos, Vector2i resolution) {
uint32_t i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= n_elements) return;
const uint32_t idx = i + offset;
int x = idx % resolution.x();
int y = idx / resolution.x();
pos[i] = (Vector2i{x, y}.cwiseMax(0).cwiseMin(resolution - Vector2i::Ones()).cast<float>() + Vector2f::Constant(0.5f)).cwiseQuotient(resolution.cast<float>());
}
__global__ void image_mse_kernel(const uint32_t n_elements, const Array3f* __restrict__ target, const Array3f* __restrict__ prediction, float* __restrict__ result) {
uint32_t i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= n_elements) return;
const Array3f diff = target[i] - prediction[i];
result[i] = (diff * diff).mean();
}
float Testbed::compute_image_mse() {
const uint32_t n_output_dims = 3;
const uint32_t n_input_dims = 2;
// Auxiliary matrices for training
const uint32_t n_elements = m_image.resolution.prod();
const uint32_t max_batch_size = 1u<<20;
GPUMemory<float> se(n_elements);
GPUMemory<Vector2f> pos(max_batch_size);
GPUMemory<Array3f> targets(max_batch_size);
GPUMemory<Array3f> predictions(max_batch_size);
const uint32_t n_batches = div_round_up(n_elements, max_batch_size);
for (uint32_t i = 0; i < n_batches; ++i) {
uint32_t offset = i * max_batch_size;
uint32_t batch_size = (std::min(max_batch_size, n_elements - offset) + 255u ) & (~255u);
GPUMatrix<float> pos_matrix((float*)(pos.data()), n_input_dims, batch_size);
GPUMatrix<float> targets_matrix((float*)(targets.data()), n_output_dims, batch_size);
GPUMatrix<float> predictions_matrix((float*)(predictions.data()), n_output_dims, batch_size);
linear_kernel(image_coords_from_idx, 0, nullptr,
batch_size,
offset,
pos.data(),
m_image.resolution
);
if (m_image.type == EDataType::Float) {
linear_kernel(eval_image_kernel_and_snap<float, 3>, 0, nullptr,
batch_size,
(float*)m_image.data.data(),
pos.data(),
m_image.resolution,
(float*)targets.data(),
true,
m_image.training.linear_colors
);
} else {
linear_kernel(eval_image_kernel_and_snap<__half, 3>, 0, nullptr,
batch_size,
(__half*)m_image.data.data(),
pos.data(),
m_image.resolution,
(float*)targets.data(),
true,
m_image.training.linear_colors
);
}
m_network->inference(pos_matrix, predictions_matrix);
linear_kernel(image_mse_kernel, 0, nullptr,
batch_size,
targets.data(),
predictions.data(),
se.data() + offset
);
}
return reduce_sum(se.data(), n_elements, nullptr) / n_elements;
}
NGP_NAMESPACE_END