-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
162 lines (140 loc) · 6.64 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from typing import Dict, List, Optional, Tuple
import copy
import torch
from torch import nn, Tensor
from torch.nn.init import xavier_normal_
import torch.nn.functional as F
import numpy as np
import random
import json
from numpy.core.numeric import Inf
import math
import torch.nn as nn
class GELU(nn.Module):
"""
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
"""
def forward(self, x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_seq_len=20):
super(PositionalEncoding, self).__init__()
position_encoding = np.array([
[pos / np.power(10000, 2.0 * (j // 2) / d_model) for j in range(d_model)]
for pos in range(max_seq_len)])
position_encoding[:, 0::2] = np.sin(position_encoding[:, 0::2])
position_encoding[:, 1::2] = np.cos(position_encoding[:, 1::2])
pad_row = torch.zeros([1, d_model], dtype=torch.float)
position_encoding = torch.tensor(position_encoding, dtype=torch.float)
position_encoding = torch.cat((pad_row, position_encoding), dim=0)
self.position_encoding = nn.Embedding(max_seq_len + 1, d_model)
self.position_encoding.weight = nn.Parameter(position_encoding, requires_grad=True)
def forward(self, batch_len, start, seq_len):
"""
:param batch_len: scalar
:param seq_len: scalar
:return: [batch, time, dim]
"""
input_pos = torch.tensor([list(range(start + 1, start + seq_len + 1)) for _ in range(batch_len)]).cuda()
return self.position_encoding(input_pos).transpose(0, 1)
class PositionalEncoding1(nn.Module):
r"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, d_model, dropout=0.1, max_len=20):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
r"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class TransformerModel(nn.Module):
"""Container module with an encoder, a recurrent or transformer module, and a decoder."""
def __init__(self, args, dictionary, true_triples=None):
super(TransformerModel, self).__init__()
try:
from torch.nn import TransformerEncoder, TransformerEncoderLayer, Transformer
except:
raise ImportError('Transformer module does not exist in PyTorch 1.1 or lower.')
self.model_type = 'Transformer'
self.src_mask = None
self.ninp = args.embedding_dim
self.args = args
self.pos_encoder = PositionalEncoding(self.ninp)
encoder_layers = nn.TransformerEncoderLayer(d_model=args.embedding_dim, nhead=4, dim_feedforward=args.hidden_size, dropout=args.dropout)
self.enencoder = nn.TransformerEncoder(encoder_layers, args.num_layers)
self.ntoken = len(dictionary)
self.padding_idx = dictionary.pad()
self.encoder = nn.Embedding(self.ntoken, self.ninp)
self.fc = torch.nn.Linear(self.ninp, self.ninp)
self.dictionary = dictionary
self.glue = GELU()
self.label_smooth = args.label_smooth
self.init_weights()
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
xavier_normal_(self.encoder.weight.data)
def logits(self, source, prev_outputs, **unused):
bsz, src_len = source.shape
out_len = prev_outputs.size(1)
device = source.device
source = source.transpose(0, 1)
source = self.encoder(source)
source += self.pos_encoder(bsz, 0, src_len)
mask = self._generate_square_subsequent_mask(prev_outputs.size(-1))
prev_outputs = prev_outputs.transpose(0, 1)
prev_outputs = self.encoder(prev_outputs)
prev_outputs += self.pos_encoder(bsz, src_len, out_len)
if self.args.encoder:
enmask = torch.zeros(out_len + src_len, out_len + src_len)
enmask[:, src_len:] = float("-inf")
enmask[src_len:, src_len:] = mask
enmask = enmask.to(device)
output = self.enencoder(torch.cat((source, prev_outputs), dim=0), mask=enmask)[src_len:, :, :].transpose(0, 1)
else:
mask = mask.to(device)
output = self.endecoder(source, prev_outputs, tgt_mask=mask).transpose(0, 1)
logits = torch.mm(self.glue(self.fc(output)).view(-1, self.ninp), self.encoder.weight.transpose(0, 1)).view(bsz, out_len, -1)
return logits
def get_loss(self, source, prev_outputs, target, mask, **unused):
device = source.device
bsz = prev_outputs.size(0)
seq_len = prev_outputs.size(1)
logits = self.logits(source, prev_outputs)
# label-smoothing
lprobs = F.log_softmax(logits, dim=-1)
loss = -(self.label_smooth * torch.gather(input=lprobs, dim=-1, index=target.unsqueeze(-1)).squeeze() \
+ (1 - self.label_smooth) / (self.ntoken - 1) * lprobs.sum(dim=-1)) * mask
loss = loss.sum() / mask.sum()
return loss