-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain.py
333 lines (285 loc) · 11.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import argparse
from math import sqrt
import numpy as np
import tensorflow as tf
import tensorflow_addons as tfa
from sklearn.metrics import log_loss, roc_auc_score
from clip import cow_clip
from data_utils import load_data, load_feature_name
from deepctr.feature_column import DenseFeat, SparseFeat, get_feature_names
from deepctr.models import DCN, WDL, DCNMix, DeepFM
from deepctr.models.widefm import wideFM
from utils import auc, create_logdir, print_curtime, tf_allow_growth, num_params
def parseargs():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", default=1235, type=int) # 1234, 1235, 1236
parser.add_argument("--dataset", default="criteo_kaggle",
choices=["criteo_kaggle", "avazu"], type=str)
parser.add_argument("--split", default="rand",
choices=["rand", "seq", "highfreq"])
parser.add_argument(
"--model", choices=["LR", "FM", "WD", "DeepFM", "xDeepFM", "DCN", "DCNv2"], default="DeepFM")
# Debug
parser.add_argument("--eager", action="store_true")
parser.add_argument("--log", action="store_true")
parser.add_argument("--log_freq", default=100, type=int)
parser.add_argument("--profile", action="store_true")
# Hyperparemters
parser.add_argument("--epoch", default=10, type=int)
parser.add_argument("--sparse_embed_dim", type=int, default=10)
parser.add_argument("--dropout", type=float, default=0)
# HPs
parser.add_argument("--bs", default=1024, type=int)
parser.add_argument("--lr", default=1e-4, type=float)
parser.add_argument("--lr_embed", default=1e-4, type=float)
parser.add_argument("--l2", type=float, default=1e-5)
# HPs
parser.add_argument("--opt", type=str, default="adam")
parser.add_argument("--clip", type=float, default=0)
parser.add_argument("--warmup", type=float, default=0)
parser.add_argument("--init_stddev", type=float, default=1e-4)
parser.add_argument("--bound", type=float, default=0)
args = parser.parse_args()
return args
def get_feature_column(data, sparse_features, dense_features):
sparse_feature_columns = [
SparseFeat(
feat,
vocabulary_size=data[feat].max() + 1,
embedding_dim=args.sparse_embed_dim,
embeddings_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=args.init_stddev, seed=2020)
)
for feat in sparse_features
]
dense_feature_columns = [DenseFeat(feat, 1) for feat in dense_features]
fixlen_feature_columns = sparse_feature_columns + dense_feature_columns
dnn_feature_columns = linear_feature_columns = fixlen_feature_columns
feature_names = get_feature_names(
linear_feature_columns + dnn_feature_columns)
return feature_names, dnn_feature_columns, linear_feature_columns
def run_test(model, test_model_input, y_test):
pred_ans = model.predict(test_model_input, batch_size=args.bs)
pred_ans = pred_ans.astype(np.float64)
return round(log_loss(y_test, pred_ans), 5), round(
roc_auc_score(y_test, pred_ans), 5
)
class CustomModel(tf.keras.Model):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.cur_step = tf.Variable(0, trainable=False, dtype=tf.int64)
def train_step(self, data):
ret = dict()
# log setting
self.cur_step.assign_add(1)
def should_record(): return tf.equal(
tf.math.floormod(self.cur_step, args.log_freq), 0
)
record_env = tf.summary.record_if(should_record)
tf.summary.experimental.set_step(self.cur_step)
# assist vars
name_to_layer = {x.name: x for x in self.trainable_variables}
uniq_ids, uniq_cnt = dict(), dict()
for k, v in data[0].items():
if k[0] != "I":
y, _, count = tf.unique_with_counts(v)
uniq_ids[k] = y
uniq_cnt[k] = count
# main
x, y = data
with tf.GradientTape() as tape:
y_pred = self(x, training=True)
# loss = self.compiled_loss(y, y_pred)
loss = self.compiled_loss(
y, y_pred, regularization_losses=self.losses)
trainable_vars = self.trainable_variables
gradients = tape.gradient(loss, trainable_vars)
# clip
name_to_gradient = {
x.name: g for x, g in zip(self.trainable_variables, gradients)
}
embed_index = [
i for i, x in enumerate(trainable_vars) if "embeddings" in x.name
]
dense_index = [i for i in range(
len(trainable_vars)) if i not in embed_index]
embed_vars = [trainable_vars[i] for i in embed_index]
dense_vars = [trainable_vars[i] for i in dense_index]
embed_gradients = [gradients[i] for i in embed_index]
dense_gradients = [gradients[i] for i in dense_index]
# CowClip
if args.clip > 0:
lower_bound = args.clip * sqrt(args.sparse_embed_dim) * args.bound
embed_gradients_clipped = []
for w, g in zip(embed_vars, embed_gradients):
if 'linear' in w.name:
embed_gradients_clipped.append(g)
continue
prefix = "sparse_emb_"
col_name = w.name[
w.name.find(prefix) + len(prefix): w.name.find("/")
]
g_clipped = cow_clip(w, g, ratio=args.clip,
ids=uniq_ids[col_name], cnts=uniq_cnt[col_name], min_w=lower_bound)
embed_gradients_clipped.append(g_clipped)
embed_gradients = embed_gradients_clipped
gradients = embed_gradients + dense_gradients
# update
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
# =====
# Logging
# =====
embed_gradients = [gradients[i] for i in embed_index]
dense_gradients = [gradients[i] for i in dense_index]
with record_env:
tf.summary.scalar(
"lr/dense", self.optimizer.optimizer_specs[1]['optimizer']._decayed_lr('float32'))
tf.summary.scalar("loss/loss", loss)
tf.summary.scalar("global_norm/global",
tf.linalg.global_norm(gradients))
tf.summary.scalar("global_norm/dense",
tf.linalg.global_norm(dense_gradients))
tf.summary.scalar("global_norm/embed",
tf.linalg.global_norm(embed_vars))
tf.summary.scalar("global_norm/var_dense",
tf.linalg.global_norm(dense_vars))
tf.summary.scalar("global_norm/var_embed",
tf.linalg.global_norm(embed_gradients))
if args.log:
for i, (variable, gradient) in enumerate(
zip(trainable_vars, gradients)
):
name = variable.name
opt_index = 0 if i in embed_index else 1
m = self.optimizer.optimizer_specs[opt_index]["optimizer"].get_slot(
variable, "m"
)
v = self.optimizer.optimizer_specs[opt_index]["optimizer"].get_slot(
variable, "v"
)
layer_norm = tf.norm(variable)
grad_norm = tf.norm(gradient)
m_norm = tf.norm(m)
v_norm = tf.norm(v)
tf.summary.scalar("layer_norm/" + name, layer_norm)
tf.summary.scalar("grad_norm/" + name, grad_norm)
tf.summary.scalar("m_norm/" + name, m_norm)
tf.summary.scalar("v_norm/" + name, v_norm)
self.compiled_metrics.update_state(y, y_pred)
for m in self.metrics:
ret[m.name] = m.result()
return ret
if __name__ == "__main__":
print_curtime("Program Start")
args = parseargs()
print(args)
tf.random.set_seed(args.seed)
np.random.seed(args.seed)
tf_allow_growth()
log_dir = create_logdir(args=args)
sparse_features, dense_features, target = load_feature_name(args.dataset)
train, test = load_data(args.dataset, split=args.split)
# Define feature
feature_names, dnn_feature_columns, linear_feature_columns = get_feature_column(
train, sparse_features, dense_features
)
train_model_input = {name: train[name] for name in feature_names}
test_model_input = {name: test[name] for name in feature_names}
y_train = train[target].values
y_test = test[target].values.astype(np.float64)
# =====
# Model
# =====
model_args = dict(
dnn_hidden_units=(400, 400, 400),
dnn_dropout=args.dropout,
l2_reg_linear=args.l2,
l2_reg_embedding=args.l2,
keras_model=CustomModel,
seed=args.seed,
)
if args.model == "FM":
model_class = wideFM
elif args.model == "DeepFM":
model_class = DeepFM
elif args.model == "WD":
model_class = WDL
elif args.model == "DCN":
model_class = DCN
model_args['cross_num'] = 3
elif args.model == "DCNv2":
model_class = DCNMix
model_args['cross_num'] = 3
mirrored_strategy = tf.distribute.MirroredStrategy()
with mirrored_strategy.scope():
model = model_class(linear_feature_columns,
dnn_feature_columns, **model_args)
num_params(model)
# =====
# Optimizer
# =====
layers = [
[
x
for x in model.layers
if "sparse_emb_" in x.name or "linear0sparse_emb_" in x.name
],
[
x
for x in model.layers
if "sparse_emb_" not in x.name and "linear0sparse_emb_" not in x.name
],
]
num_step_per_epoch = int(len(y_train) / args.bs)
if args.warmup > 0:
learning_rate_fn = args.lr_embed
lr_fn = tf.keras.optimizers.schedules.PolynomialDecay(
1e-8, int(args.warmup * num_step_per_epoch), args.lr, power=1
)
else:
learning_rate_fn = args.lr_embed
lr_fn = args.lr
if args.opt == "adam":
optimizers = [
tf.keras.optimizers.Adam(learning_rate=learning_rate_fn),
tf.keras.optimizers.Adam(learning_rate=lr_fn),
]
else:
raise NotImplementedError
optimizers_and_layers = list(zip(optimizers, layers))
optimizer = tfa.optimizers.MultiOptimizer(optimizers_and_layers)
# =====
# Training
# =====
model.compile(
optimizer,
tf.keras.losses.BinaryCrossentropy(
reduction=tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE
),
metrics=["binary_crossentropy", auc],
run_eagerly=args.eager,
)
# tensorboard logger
tbcb_args = dict(write_graph=False, update_freq=args.log_freq)
if args.profile:
tbcb_args['histogram_freq'] = 1
tbcb_args['profile_batch'] = '80,100'
cb = tf.keras.callbacks.TensorBoard(
log_dir, **tbcb_args
)
print_curtime("Start Training")
model.fit(
train_model_input,
y_train,
batch_size=args.bs,
epochs=args.epoch,
verbose=1,
validation_data=(test_model_input, y_test),
callbacks=[cb],
)
# =====
# Test
# =====
logloss, auc = run_test(model, test_model_input, y_test)
print(f"[Test] LogLoss = {logloss}, AUC = {auc}")
print_curtime("Program Ended")