-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreflex_step4_flood_mapping.py
347 lines (289 loc) · 16.1 KB
/
reflex_step4_flood_mapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#!/usr/bin/env python
"""
REFlEx - Step4 - Flood mapping
__date__ = '20230330'
__version__ = '2.1.0'
__author__ =
'Mauro Arcorace' (mauro.arcorace@cimafoundation.org',
'Alessandro Masoero (alessandro.masoero@cimafoundation.org',
'Valerio Basso,
'Alessia Matanò,
'Andrea Libertino (andrea.libertino@cimafoundation.org',
'Lorenzo Alfieri (lorenzo.alfieri@cimafoundation.org'
'Simone Gabellani (simone.gabellani@cimafoundation.org'
__library__ = 'REFlEx'
General command line:
### python reflex_step4_flood_mapping.py -log_file "/path/to/log.txt" -settings_file "settings.json" -base_path "/path/to/base_folder" (-volumes_file "/path/to/file.csv" -rp "10")
Version(s):
20190220 (1.0.0) --> Beta release
20220406 (2.0.0) --> Full revision
20220913 (2.0.2) --> Add check on channel gradient (GRASS GIS bug for gradients<10E-06)
Add possibility to manually activate coastal expansion
20230330 (2.1.0) --> Add possibility to provide a roughness coefficient for each stream
Break backward compatibility with old static data
"""
# -------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------
# Import python libraries
import logging
from argparse import ArgumentParser
import geopandas as gpd
import numpy as np
import os
import sys
import time
import rioxarray as rxr
import xarray as xr
import shutil
import rasterio as rio
import rasterio.merge as rio_merge
import pandas as pd
from lib.reflex_tools_flooding import optimise_volume
from lib.reflex_tools_utils import Give_Elapsed_Time, Start_GRASS_py3, set_logging, read_file_json
from multiprocessing import Pool, Manager, set_start_method, get_context, cpu_count
from numba import config
# -------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------
# Algorithm information
alg_name = 'REFlEx - STEP 4 - Flood mapping'
alg_version = '2.1.0'
alg_release = '2023-03-30'
# Algorithm parameter(s)
time_format = '%Y%m%d%H%M'
# -------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------
# Script Main
def main():
# -------------------------------------------------------------------------------------
# Get algorithm settings
config_file, alg_log, base_path, discharge_file_name, return_period = get_args()
# Set algorithm settings
data_settings = read_file_json(config_file)
os.makedirs(os.path.dirname(alg_log), exist_ok=True)
set_logging(logger_file=alg_log)
# -------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------
# Info algorithm
logging.info(' ============================================================================ ')
logging.info(' ================ REFlEx - Rapid Estimation od FLood EXtent ================= ')
logging.info(' ==> ' + alg_name + ' (Version: ' + alg_version + ' Release_Date: ' + alg_release + ')')
logging.info(' ==> START ... ')
logging.info(' ')
# -------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------
# GET PARAMETERS FROM CONFIG FILE
# -------------------------------
# Path to executable and version
script_ver = data_settings["algorithm"]["version"]
grass_bin = data_settings["algorithm"]["grass_bin"]
# Domain and DEM info
acp_x = data_settings["domain"]["name"].upper()
domain_name = data_settings["domain"]["name"]
rrs_km = data_settings["domain"]["res_km"]
in_res_DD = data_settings["domain"]["res_deg"]
rrs_m = rrs_km * 1000
rrs = data_settings["domain"]["res_str"]
source_epsg = data_settings["domain"]["source_epsg"]
target_epsg = data_settings["domain"]["target_epsg"]
# Previous steps settings
drain_method_streams = data_settings["step_1"]["stream_definition_method"]
drain_method_hand = data_settings["step_1"]["hand_definition_method"]
buffer_watershed_distance_cell = data_settings["step_2"]["buffer_for_coastal_expansion_cells"]
coastal_expansion_active = data_settings["step_3"]["coastal_expansion"]["enable"]
gradient_limit = data_settings["step_3"]["coastal_expansion"]["gradient_limit"]
try:
manual_ce = data_settings["step_3"]["coastal_expansion"]["manual_activation"]
except:
manual_ce = False
# Step settings
step0_dir_name = data_settings["step_0"]["dir_name"].replace("{base_path}", base_path)
step1_dir_name = data_settings["step_1"]["dir_name"].replace("{base_path}", base_path)
step2_dir_name = data_settings["step_2"]["dir_name"].replace("{base_path}", base_path)
step3_dir_name = data_settings["step_3"]["dir_name"].replace("{base_path}", base_path)
step4_dir_name = data_settings["step_4"]["dir_name"].replace("{base_path}", base_path)
runoff_volume_min = data_settings["step_4"]["minimum_volume_included"]
optimise_setting = data_settings["step_4"]["optimization"]
roughness_coeff = data_settings["step_4"]["roughness_coefficient"]
# Ancillary info (can be provided also by command line)
if return_period is None:
return_period = data_settings["step_4"]["return_period"]
if discharge_file_name is None:
discharge_file_name = data_settings["step_4"]["volume_file_path"]
step4_dir_name = os.path.join(step4_dir_name, "T" + str(return_period),"")
if data_settings["step_4"]["multiprocessing"]["enable"]:
process_max = data_settings["step_3"]["multiprocessing"]["max_cores"]
if process_max is None:
process_max = cpu_count() - 1
else:
process_max = 1
max_maps = data_settings["step_4"]["merging_maps"]["max_maps_opened_together"]
config.THREADING_LAYER_PRIORITY = ["tbb", "omp", "workqueue"]
################################################################################
# Record starting simulation time
code_start_time = time.time()
# Make output folders
os.makedirs(os.path.join(step4_dir_name, 'rst', ''), exist_ok=True)
os.makedirs(os.path.join(step4_dir_name, 'tmp', ''), exist_ok=True)
os.makedirs(os.path.join(step4_dir_name, 'txt', ''), exist_ok=True)
# --------------------------------------------
# Calculate volume
stream_gdf = gpd.read_file(os.path.join(step2_dir_name, 'vct', 'v_' + domain_name + '_' + rrs + '_streams_features.shp')).copy()
volume_table = pd.read_csv(discharge_file_name, sep=',', header=0, index_col='stream')
stream_gdf = stream_gdf.join(volume_table, on='stream', rsuffix='_temp')
if manual_ce is True and "manual_ce" not in stream_gdf.columns:
raise ValueError("ERROR! In coastal expansion manual mode a column named 'manual_ce' should be included in the stream shapefile!")
stream_gdf["V0"] = ((stream_gdf['Q' + str(return_period)] - stream_gdf['Q0']) * (stream_gdf['tconc']) / 2.).round(0)
stream_gdf["Q_p_t"] = stream_gdf["Q" + str(return_period)] - stream_gdf["Q0"]
# Calculate angle of triangular hydrograph
stream_gdf["slope_hydrograph"] = np.arctan2(stream_gdf["Q_p_t"].values,stream_gdf["tconc"].values)
# Remove streams with volume below a treshold
stream_gdf["V0"].values[stream_gdf["V0"].values is None] = -1
stream_gdf["V0"].values[np.isnan(stream_gdf["V0"].values)] = -1
stream_gdf["V0"].values[np.isnan(stream_gdf["V0"].values)] = -1
stream_gdf = stream_gdf.drop(stream_gdf[stream_gdf["V0"].values < runoff_volume_min].index)
# Recompute gradient
stream_gdf["gradient"] = stream_gdf["elev_drop"]/stream_gdf["lenght"]
stream_gdf["gradient"].values[stream_gdf["gradient"].values < (10 ** -4)] = 10 ** -4
stream_ids = stream_gdf["stream"]
optimise_setting["roughness_coeff"] = roughness_coeff
optimise_setting["coastal_expansion_gradient_limit"] = gradient_limit
optimise_setting["coastal_expansion_active"] = coastal_expansion_active
optimise_setting["coastal_expansion_manual"] = manual_ce
optimise_setting["rst_hand"] = os.path.join(step3_dir_name,'rst','{mask_type}','hand_' + drain_method_hand + '_{mask_type}_{stream_id}.tif')
optimise_setting["rst_stream"] = os.path.join(step3_dir_name, 'rst', '{mask_type}', 'stream_{mask_type}_{stream_id}.tif')
optimise_setting["out_path"] = step4_dir_name
optimise_setting["areacell_m"] = (rrs_km * 1000) ** 2
# Optimization loop
logging.info(" --> Launch optimization...")
manager = Manager()
d = manager.dict()
d["streams_gdf"] = stream_gdf
streams_gdf_out = stream_gdf.copy().drop(columns=["geometry"])
streams_gdf_out["V_cut"] = -9999
streams_gdf_out["v_i"] = -9999
streams_gdf_out["diff_final"] = -9999
if process_max > 1:
logging.info(" --> Compute flood maps..")
results = []
exec_pool = get_context('spawn').Pool(process_max)
for stream in stream_ids:
results.append(exec_pool.apply_async(optimise_volume, args=(stream, optimise_setting, d)))
exec_pool.close()
exec_pool.join()
logging.info(" --> Compute flood maps.. DONE")
logging.info(" --> Collecting output..")
for result in results:
res = result.get()
streams_gdf_out.loc[streams_gdf_out["stream"] == res[0], ["V_cut", "v_i", "diff_final"]] = res[1:]
logging.info(" --> Collecting output...DONE!")
else:
for stream in stream_ids:
streams_gdf_out.loc[streams_gdf_out["stream"] == stream, ["V_cut", "v_i", "diff_final"]] = optimise_volume(stream, optimise_setting, d)
# Postprocessing
logging.info(" --> Merging flood maps...")
grid = rxr.open_rasterio(os.path.join(step1_dir_name,'rst','r_' + domain_name + "_" + rrs + "_" + drain_method_streams.lower() + "_streams.tif"))
grid.values = np.zeros(grid.values.shape).astype("float32")
base_map = os.path.join(optimise_setting["out_path"], "tmp", "base_map.tif")
grid.rio.to_raster(base_map, compress="DEFLATE")
src_grid = rio.open(os.path.join(optimise_setting["out_path"], "tmp", "base_map.tif"))
optimise_setting["meta"] = src_grid.meta.copy()
optimise_setting["meta"]["compress"] = "DEFLATE"
chunks = [stream_ids.values[i:i + max_maps] for i in range(0, len(stream_ids.values), max_maps)]
if data_settings["step_4"]["merging_maps"]["multiprocessing_enabled"]:
results =[]
exec_pool = get_context('spawn').Pool(process_max)
for chunk in chunks:
results.append(exec_pool.apply_async(merge_maps_mp, args=(chunk, optimise_setting)))
exec_pool.close()
exec_pool.join()
logging.info(" --> Merge final map")
out_merged_array, out_trans = rio_merge.merge([result.get() for result in results], method=custom_merge)
else:
l_0 = [base_map]
out_merged_array = grid.copy().values
for chunk in chunks:
logging.info(" --> Merge maps for chunk " + str(chunk[0]) + "_" + str(chunk[-1]))
lista = l_0 + [os.path.join(optimise_setting["out_path"], "tmp", "flood_m_bas_" + str(stream_id) + ".tif") for stream_id in chunk]
chunk_max, out_trans = rio_merge.merge(lista, method=custom_merge)
out_merged_array = np.maximum(chunk_max, out_merged_array)
logging.info(" --> Merge maps for chunk " + str(chunk[0]) + "_" + str(chunk[-1]) + "...DONE")
with rio.open(os.path.join(optimise_setting["out_path"], 'rst', 'flood_map_T' + str(return_period) + '_m.tif'), "w", **optimise_setting["meta"]) as dest:
dest.write(out_merged_array)
streams_gdf_out.to_csv(os.path.join(step4_dir_name, 'txt', 'flood_stats_T' + str(return_period) + '_m.csv'))
shutil.rmtree(os.path.join(optimise_setting["out_path"], "tmp"))
# -------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------
# Estimate total execution time
tot_elapsed_time_sec = float(time.time() - code_start_time)
tot_elapsed_time,time_units = Give_Elapsed_Time(tot_elapsed_time_sec)
# Info algorithm
logging.info(' ')
logging.info(' ==> ' + alg_name + ' (Version: ' + alg_version + ' Release_Date: ' + alg_release + ')')
logging.info(' ==> TIME ELAPSED: ' + str(tot_elapsed_time) + time_units)
logging.info(' ==> ... END')
logging.info(' ==> Bye, Bye')
logging.info(' ============================================================================ ')
# -------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------
# Method to get script argument(s)
def get_args():
parser_handle = ArgumentParser()
parser_handle.add_argument('-log_file', action="store", dest="alg_log")
parser_handle.add_argument('-settings_file', action="store", dest="alg_settings")
parser_handle.add_argument('-base_path', action="store", dest="alg_output")
parser_handle.add_argument('-volumes_file', action="store", dest="alg_volumes")
parser_handle.add_argument('-rp', action="store", dest="alg_rp")
parser_values = parser_handle.parse_args()
if parser_values.alg_settings:
alg_settings = parser_values.alg_settings
else:
alg_settings = 'configuration.json'
if parser_values.alg_log:
alg_log = parser_values.alg_log
else:
alg_log = 'log.txt'
if parser_values.alg_output:
alg_output = parser_values.alg_output
else:
alg_output = None
if parser_values.alg_volumes:
alg_volumes = parser_values.alg_volumes
else:
alg_volumes = None
if parser_values.alg_rp:
alg_rp = parser_values.alg_rp
else:
alg_rp = None
return alg_settings, alg_log, alg_output, alg_volumes, alg_rp
# ----------------------------------------------------------------------------
# ----------------------------------------------------------------------------
def fill_input_files(input_files_raw, input_dict):
filled_input = {}
input_dict["stream"] = "{stream}"
for key in input_files_raw.keys():
filled_input[key] = input_files_raw[key].format(**input_dict)
return filled_input
# ----------------------------------------------------------------------------
# ----------------------------------------------------------------------------
def custom_merge(old_data, new_data, old_nodata, new_nodata, index=None, roff=None, coff=None):
old_data[:] = np.fmax(old_data, new_data) # <== NOTE old_data[:] updates the old data array *in place*
# ----------------------------------------------------------------------------
# ----------------------------------------------------------------------------
def merge_maps_mp(chunk, optimise_setting):
print(" --> Merge maps for chunk " + str(chunk[0]) + "_" + str(chunk[-1]))
lista = [os.path.join(optimise_setting["out_path"], "tmp", "base_map.tif")] + [os.path.join(optimise_setting["out_path"], "tmp", "flood_m_bas_" + str(stream_id) + ".tif") for stream_id in chunk]
merged_array, out_trans = rio_merge.merge(lista, method=custom_merge)
out_name = os.path.join(optimise_setting["out_path"], "tmp", "merged_" + str(chunk[0]) + "_" + str(chunk[-1]) + ".tif")
with rio.open(out_name, "w", **optimise_setting["meta"]) as dest:
dest.write(merged_array)
print(" --> Merge maps for chunk " + str(chunk[0]) + "_" + str(chunk[-1]) + "...DONE")
return out_name
# ----------------------------------------------------------------------------
# Call script from external library
if __name__ == "__main__":
sys.stdout.flush()
set_start_method('spawn', force=True)
main()
# ----------------------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------