-
Notifications
You must be signed in to change notification settings - Fork 11
/
seg_cub_device.cu
155 lines (121 loc) · 5.15 KB
/
seg_cub_device.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#define CUB_HALF_OPTIMIZATION 1
#include <benchmark/benchmark.h>
#include "init/init.hpp"
#include "reduction/args.hpp"
#include "utils/utils.hpp"
#include <cub/cub.cuh>
using namespace cub;
static void CUB_DEVICE_SEGMENTED_REDUCTION(benchmark::State &state) {
const size_t num_segments = state.range(0);
const size_t segment_size = state.range(1);
const size_t num_elements = num_segments * segment_size;
int *h_offsets = new int[num_segments + 1];
for (int i = 0; i < num_segments + 1; i++) {
h_offsets[i] = i * segment_size;
}
int *d_offsets = nullptr;
half *d_in_fp16 = nullptr;
half *d_out = nullptr;
cudaEvent_t start, stop;
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
defer(cudaDeviceReset());
try {
PRINT_IF_ERROR(cudaMalloc(&d_offsets, (num_segments + 1) * sizeof(int)));
PRINT_IF_ERROR(cudaMalloc(&d_in_fp16, num_elements * sizeof(half)));
PRINT_IF_ERROR(cudaMalloc(&d_out, num_segments * sizeof(half)));
PRINT_IF_ERROR(cudaMemcpy(d_offsets, h_offsets, (num_segments + 1) * sizeof(int),
cudaMemcpyHostToDevice));
cuda_memory_set(d_in_fp16, 0.001f, num_elements);
PRINT_IF_ERROR(cudaDeviceSynchronize());
PRINT_IF_ERROR(cub::DeviceSegmentedReduce::Sum(d_temp_storage, temp_storage_bytes,
d_in_fp16, d_out, num_segments,
d_offsets, d_offsets + 1));
PRINT_IF_ERROR(cudaMalloc(&d_temp_storage, temp_storage_bytes));
PRINT_IF_ERROR(cudaEventCreate(&start));
PRINT_IF_ERROR(cudaEventCreate(&stop));
defer(cudaEventDestroy(start));
defer(cudaEventDestroy(stop));
for (auto _ : state) {
PRINT_IF_ERROR(cudaEventRecord(start));
PRINT_IF_ERROR(cub::DeviceSegmentedReduce::Sum(d_temp_storage, temp_storage_bytes,
d_in_fp16, d_out, num_segments,
d_offsets, d_offsets + 1));
PRINT_IF_ERROR(cudaEventRecord(stop));
PRINT_IF_ERROR(cudaEventSynchronize(stop));
state.PauseTiming();
float msecTotal = 0.0f;
PRINT_IF_ERROR(cudaEventElapsedTime(&msecTotal, start, stop));
state.SetIterationTime(msecTotal / 1000);
state.ResumeTiming();
}
state.counters.insert({{"num_segments", num_segments},
{"segment_size", segment_size},
{"num_elements", num_segments * segment_size},
{"flops",
{state.iterations() * 1.0 * num_segments * segment_size,
benchmark::Counter::kAvgThreadsRate}}});
#if 0
half *h_out = new half[num_segments];
PRINT_IF_ERROR(cudaMemcpy(h_out, d_out, num_segments * sizeof(half),
cudaMemcpyDeviceToHost));
float correct_segment_sum = 0;
for (int i = 0; i < segment_size; i++) {
correct_segment_sum += h_in[i];
}
int errors = 0;
for (int i = 0; i < num_segments; i++) {
if (fabs(half_to_float(h_out[i]) - correct_segment_sum) > 0.001) {
errors++;
if (errors < 10) {
printf("segment %d has sum %f (expected %f)\n", i,
half_to_float(h_out[i]), correct_segment_sum);
}
}
}
if (errors > 0) {
printf("CUB_DEVICE_SEGMENTED_REDUCTION does not agree with SEQUENTIAL! %d "
"errors!\n",
errors);
} else {
printf("Results verified: they agree.\n\n");
}
delete h_out;
#endif
delete[] h_offsets;
cudaFree(d_offsets);
cudaFree(d_in_fp16);
cudaFree(d_out);
cudaFree(d_temp_storage);
} catch (...) {
delete[] h_offsets;
cudaFree(d_offsets);
cudaFree(d_in_fp16);
cudaFree(d_out);
cudaFree(d_temp_storage);
cudaDeviceReset();
const auto p = std::current_exception();
std::rethrow_exception(p);
}
}
BENCHMARK(CUB_DEVICE_SEGMENTED_REDUCTION)->SEG_16_ARGS()->UseManualTime();
BENCHMARK(CUB_DEVICE_SEGMENTED_REDUCTION)->SEG_32_ARGS()->UseManualTime();
BENCHMARK(CUB_DEVICE_SEGMENTED_REDUCTION)->SEG_64_ARGS()->UseManualTime();
BENCHMARK(CUB_DEVICE_SEGMENTED_REDUCTION)->SEG_128_ARGS()->UseManualTime();
BENCHMARK(CUB_DEVICE_SEGMENTED_REDUCTION)->SEG_256_ARGS()->UseManualTime();
BENCHMARK(CUB_DEVICE_SEGMENTED_REDUCTION)->SEG_512_ARGS()->UseManualTime();
BENCHMARK(CUB_DEVICE_SEGMENTED_REDUCTION)->SEG_1024_ARGS()->UseManualTime();
BENCHMARK(CUB_DEVICE_SEGMENTED_REDUCTION)->SEG_2048_ARGS()->UseManualTime();
BENCHMARK(CUB_DEVICE_SEGMENTED_REDUCTION)->SEG_4096_ARGS()->UseManualTime();
BENCHMARK(CUB_DEVICE_SEGMENTED_REDUCTION)->SEG_8192_ARGS()->UseManualTime();
BENCHMARK(CUB_DEVICE_SEGMENTED_REDUCTION)->SEG_16384_ARGS()->UseManualTime();
static void CUB_DEVICE_TUNE_SEGMENTED_REDUCTION(benchmark::State &state) {
CUB_DEVICE_SEGMENTED_REDUCTION(state);
}
#define RUN_CUB_DEVICE_TUNE(TUNE_ARGS) \
BENCHMARK(CUB_DEVICE_TUNE_SEGMENTED_REDUCTION)->Apply(TUNE_ARGS)->UseManualTime();
// RUN_CUB_DEVICE_TUNE(Tuning16_x_14);
// RUN_CUB_DEVICE_TUNE(Tuning16_x_18);
RUN_CUB_DEVICE_TUNE(Tuning16_x_22);
// RUN_CUB_DEVICE_TUNE(Tuning16_x_26);
RUN_CUB_DEVICE_TUNE(Tuning16_x_30);