-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
174 lines (127 loc) · 5.14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Name : model.py
Time : Mar 20, 2018 20:32:44
Author : Licheng QU
Orga : AI Lab, Chang'an University
Desc : neural networks model definition.
"""
from keras.models import Model
from keras.models import Sequential
from keras.layers import Input, Dense, Dropout, Flatten
from keras.layers import LSTM, GRU, ConvLSTM2D
from keras.layers import Bidirectional
from keras.layers import multiply, concatenate
def get_lstm(units):
"""
LSTM(Long Short-Term Memory).
Build LSTM Model.
:param units: List(int), number of input, output and hidden units.
:return: Model, nn model.
"""
model = Sequential()
layersize = len(units)
if layersize <= 3:
model.add(LSTM(units[1], input_shape=(units[0], 1)))
else:
model.add(LSTM(units[1], input_shape=(units[0], 1), return_sequences=True))
for layer in range(2, layersize - 2):
model.add(LSTM(units[layer], return_sequences=True))
model.add(LSTM(units[-2]))
model.add(Dropout(0.2))
model.add(Dense(units[-1], activation='sigmoid'))
return model
def get_lstm_2(units):
"""
LSTM(Long Short-Term Memory).
Build 2-layers LSTM Model.
:param units: List(int), number of input, output and hidden units.
:return: Model, nn model.
"""
model = Sequential()
model.add(LSTM(units[1], input_shape=(units[0], 1), return_sequences=True))
model.add(LSTM(units[2]))
model.add(Dropout(0.2))
model.add(Dense(units[3], activation='sigmoid'))
return model
def get_bilstm(units):
"""
Binary directional LSTM(Long Short-Term Memory)
Build BiLSTM Model.
:param units: List(int), number of input, output and hidden units.
:return: Model, nn model.
"""
model = Sequential()
model.add(Bidirectional(LSTM(units[1], input_shape=(units[0], 1), return_sequences=True)))
model.add(Bidirectional(LSTM(units[2])))
model.add(Dropout(0.2))
model.add(Dense(units[3], activation='sigmoid'))
return model
def get_filstm(units, features):
"""
Features Injected LSTM(Long Short-Term Memory)
Build FI-LSTM Model.
:param units: List(int), number of input, output and hidden units.
:param features: List(int), number of input, output unites of feature layer.
:return: Model, nn model.
"""
featurelayer = Input(shape=(features[0],), name='factors')
dens1 = Dense(features[1], activation='tanh', name='factor_1')(featurelayer)
dens2 = Dense(features[2], activation='softmax', name='factor_2')(dens1)
inputlayer = Input(shape=(units[0], 1), name='series')
lstm1 = LSTM(units[1], return_sequences=True, name='lstm_1')(inputlayer)
lstm2 = LSTM(units[2], name='lstm_2')(lstm1)
merge = multiply([dens2, lstm2])
md1 = Dense(units[2], activation='tanh', name='merge_1')(merge)
dropout = Dropout(0.2, name='dropout')(md1)
outputlayer = Dense(units[3], activation='sigmoid', name='Output')(dropout)
model = Model(inputs=[featurelayer, inputlayer], outputs=outputlayer)
return model
def get_figru(units, features):
"""
Features Injected GRU(Gated Recurrent Unit)
Build FI-GRU Model.
:param units: List(int), number of input, output and hidden units.
:param features: List(int), number of input, output unites of feature layer.
:return: Model, nn model.
"""
featurelayer = Input(shape=(features[0],), name='factors')
dens1 = Dense(features[1], activation='tanh', name='factor_1')(featurelayer)
dens2 = Dense(features[2], activation='softmax', name='factor_2')(dens1)
inputlayer = Input(shape=(units[0], 1), name='series')
gru1 = GRU(units[1], return_sequences=True, name='gru_1')(inputlayer)
gru2 = GRU(units[2], name='gru_2')(gru1)
merge = multiply([dens2, gru2])
md1 = Dense(units[2], activation='tanh', name='merge_1')(merge)
dropout = Dropout(0.2, name='dropout')(md1)
outputlayer = Dense(units[3], activation='sigmoid', name='Output')(dropout)
model = Model(inputs=[featurelayer, inputlayer], outputs=outputlayer)
return model
def get_convlstm(units):
"""
ConvLSTM(Convolutional Long Short-Term Memory)
Build ConvLSTM Model.
:param units: List(int), number of input, output and hidden units.
:return: Model, nn model.
"""
model = Sequential()
model.add(ConvLSTM2D(units[1], kernel_size=(1, 3), input_shape=(units[0], 1, 1, 1), padding='same', data_format="channels_last", return_sequences=True))
model.add(ConvLSTM2D(units[2], kernel_size=(1, 3), input_shape=(units[0], 1, 1, 1), padding='same', data_format="channels_last")) # "channels_last" default
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(units[3], activation='sigmoid'))
return model
def get_gru(units):
"""
GRU(Gated Recurrent Unit)
Build GRU Model.
:param units: List(int), number of input, output and hidden units.
:return: Model, nn model.
"""
model = Sequential()
model.add(GRU(units[1], input_shape=(units[0], 1), return_sequences=True))
model.add(GRU(units[2]))
model.add(Dropout(0.2))
model.add(Dense(units[3], activation='sigmoid'))
return model