-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
268 lines (245 loc) · 17.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
'''The main
'''
import argparse
from qiskit.quantum_info import random_unitary
from optimize_initial_state_custom import OptimizeInitialStateCustom
from optimize_initial_state import OptimizeInitialState
from optimize_initial_state_nonpure import OptimizeInitialStateNonpure
from quantum_noise import DepolarisingChannel, AmplitudeDamping, PhaseDamping
from povm import Povm
from utility import Utility
import time
from input_output import Default, GeneticOutput, ParticleSwarmOutput, ProblemInput, TheoremOutput, HillclimbOutput, SimulatedAnnealOutput
from logger import Logger
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Parameters for intial state optimization')
parser.add_argument('-id', '--experiment_id', type=int, nargs=1, default=[0], help='experiment id number')
parser.add_argument('-ns', '--num_sensor', type=int, nargs=1, default=[Default.num_sensor], help='number of sensors')
parser.add_argument('-p', '--priors', type=float, nargs='+', default=None, help='the prior probability for sensors')
parser.add_argument('-us', '--unitary_seed', type=int, nargs=1, default=[Default.unitary_seed], help='the seed that affect the unitary operator')
parser.add_argument('-ut', '--unitary_theta', type=float, nargs=1, default=[None], help='the angle theta of the eigen values')
parser.add_argument('-m', '--methods', type=str, nargs='+', default=[Default.method], help='the method for finding the initial state')
parser.add_argument('-od', '--output_dir', type=str, nargs=1, default=[Default.output_dir], help='output directory')
parser.add_argument('-of', '--output_file', type=str, nargs=1, default=[Default.output_file], help='output file')
parser.add_argument('-dn', '--depolar_noise', action='store_true', help='apply depolarising noise')
parser.add_argument('-np', '--noise_probability', type=float, nargs=1, default=[Default.noise_probability], help='depolarising noise probability, for single qubit X, Y, or Z')
parser.add_argument('-an', '--amplitude_noise', action='store_true', help='apply amplitude damping noise')
parser.add_argument('-pn', '--phase_noise', action='store_true', help='apply phase damping noise')
parser.add_argument('-ga', '--gamma', type=float, nargs=1, default=[Default.gamma], help='gamma for amplitude damping or phase damping')
parser.add_argument('-r', '--repeat', type=int, nargs=1, default=[Default.repeat])
# below are for hill climbing
parser.add_argument('-ss', '--start_seed', type=int, nargs=1, default=[Default.start_seed], help='seed that affects the start point of hill climbing')
parser.add_argument('-st', '--step_size', type=float, nargs=1, default=[Default.step_size], help='step size')
parser.add_argument('-dr', '--decrease_rate', type=float, nargs=1, default=[Default.decrease_rate], help='decrease rate for the step sizes')
# below are for simulated annealing
parser.add_argument('-is', '--init_step', type=float, nargs=1, default=[Default.init_step], help='initial step')
parser.add_argument('-ms', '--max_stuck', type=int, nargs=1, default=[Default.max_stuck], help='max stuck in a same temperature')
parser.add_argument('-cr', '--cooling_rate', type=float, nargs=1, default=[Default.cooling_rate], help='the cooling rate')
parser.add_argument('-sd', '--stepsize_decreasing_rate', type=float, nargs=1, default=[Default.stepsize_decreasing_rate], help='the decreasing rate for stepsize')
# below are for both hill climbing and simulated annealing
parser.add_argument('-mi', '--min_iteration', type=int, nargs=1, default=[Default.min_iteration], help='minimum number of iteration in hill climbing')
parser.add_argument('-em', '--eval_metric', type=str, nargs=1, default=[Default.eval_metric], help='a state is evaluated by min error or unambiguous')
# below are for both genetic algorithm and pariticle swarm optimization
parser.add_argument('-ps', '--population_size', type=int, nargs=1, default=[Default.population_size], help='the size of the population, i.e. number of solutions')
# below are for genetic algorihm
parser.add_argument('-mu', '--mutation_rate', type=float, nargs=1, default=[Default.mutation_rate], help='the probability of doing mutation once during a offspring production')
parser.add_argument('-co', '--crossover_rate', type=float, nargs=1, default=[Default.crossover_rate], help='the probability of doing crossover once during a offspring production')
# below are for particle swarm optimization
parser.add_argument('-w', '--weight', type=float, nargs=1, default=[Default.weight], help='the velocity inertia')
parser.add_argument('-e1', '--eta1', type=int, nargs=1, default=[Default.eta1], help='cognitive constant')
parser.add_argument('-e2', '--eta2', type=int, nargs=1, default=[Default.eta2], help='social constant')
# below are for theorem when theta < T (temporary putting in experiment_id, may be removed)
parser.add_argument('-pa', '--partition', type=int, nargs=1, default=[1], help='the partition used to give positive coefficients')
args = parser.parse_args()
experiment_id = args.experiment_id[0]
num_sensor = args.num_sensor[0]
priors = args.priors
unitary_seed = args.unitary_seed[0]
unitary_theta = args.unitary_theta[0]
methods = args.methods
eval_metric = args.eval_metric[0]
depolar_noise = args.depolar_noise
amplitude_noise = args.amplitude_noise
phase_noise = args.phase_noise
repeat = args.repeat[0]
problem_input = ProblemInput(experiment_id, num_sensor, priors, unitary_seed, unitary_theta)
if unitary_theta is not None:
unitary_operator = Utility.generate_unitary_operator(theta=unitary_theta, seed=unitary_seed)
else:
# when not specifying the theta, generate a random unitary that has some random thetas
unitary_operator = random_unitary(dims=2, seed=unitary_seed)
outputs = []
if depolar_noise is False and amplitude_noise is False and phase_noise is False:
if "Theorem" in methods:
partition_i = args.partition[0]
opt_initstate = OptimizeInitialState(num_sensor)
opt_initstate.theorem(unitary_operator, unitary_theta, partition_i)
povm = Povm()
success = opt_initstate.evaluate(unitary_operator, priors, povm, eval_metric)
# success = opt_initstate.evaluate_orthogonal(unitary_operator)
# innerprods = opt_initstate.get_innerproducts(unitary_operator)
# print(innerprods)
# symmetry_index = opt_initstate.get_symmetry_index(opt_initstate.state_vector, unitary_operator)
success = round(success, 7)
error = round(1-success, 7)
theorem_output = TheoremOutput(partition_i, opt_initstate.optimize_method, error, success, str(opt_initstate))
outputs.append(theorem_output) # Theorem and Guess share the same output format
if "Hill climbing" in methods:
opt_initstate = OptimizeInitialState(num_sensor)
start_seed = args.start_seed[0]
epsilon = Default.EPSILON_OPT
step_size = [args.step_size[0]] * 2**num_sensor
decrease_rate = args.decrease_rate[0]
min_iteration = args.min_iteration[0]
start_time = time.time()
scores, symmetries = opt_initstate.hill_climbing(None, start_seed, unitary_operator, priors, epsilon, step_size, \
decrease_rate, min_iteration, eval_metric)
runtime = round(time.time() - start_time, 2)
success = scores[-1]
error = round(1 - success, 7)
real_iteration = len(scores) - 1 # minus the initial score, that is not an iteration
hillclimb_output = HillclimbOutput(experiment_id, opt_initstate.optimize_method, error, success, start_seed, args.step_size[0], \
decrease_rate, min_iteration, real_iteration, str(opt_initstate), scores, symmetries, runtime, eval_metric)
outputs.append(hillclimb_output)
if "Hill climbing C" in methods:
custom_basis = Utility.generate_custombasis(num_sensor, unitary_operator)
opt_initstate = OptimizeInitialStateCustom(num_sensor, custom_basis)
start_seed = args.start_seed[0]
epsilon = Default.EPSILON_OPT
step_size = [args.step_size[0]] * 2**num_sensor
decrease_rate = args.decrease_rate[0]
min_iteration = args.min_iteration[0]
start_time = time.time()
scores, symmetries = opt_initstate.hill_climbing(start_seed, unitary_operator, priors, epsilon, step_size, \
decrease_rate, min_iteration, eval_metric)
runtime = round(time.time() - start_time, 2)
success = scores[-1]
error = round(1 - success, 7)
real_iteration = len(scores) - 1 # minus the initial score, that is not an iteration
hillclimb_output = HillclimbOutput(experiment_id, opt_initstate.optimize_method, error, success, start_seed, args.step_size[0], \
decrease_rate, min_iteration, real_iteration, str(opt_initstate), scores, symmetries, runtime, eval_metric)
outputs.append(hillclimb_output)
if 'Simulated annealing' in methods:
opt_initstate = OptimizeInitialState(num_sensor)
start_seed = args.start_seed[0]
init_step = args.init_step[0]
stepsize_decreasing_rate = args.stepsize_decreasing_rate[0]
max_stuck = args.max_stuck[0]
cooling_rate = args.cooling_rate[0]
min_iteration = args.min_iteration[0]
epsilon = Default.EPSILON_OPT
start_time = time.time()
scores, symmetries = opt_initstate.simulated_annealing_new(start_seed, unitary_operator, priors, init_step, stepsize_decreasing_rate, \
epsilon, max_stuck, cooling_rate, min_iteration, eval_metric)
runtime = round(time.time() - start_time, 2)
success = scores[-1]
error = round(1 - success, 7)
real_iteration = len(scores) - 1
simulateanneal_output = SimulatedAnnealOutput(experiment_id, opt_initstate.optimize_method, error, success, start_seed, init_step, stepsize_decreasing_rate,\
max_stuck, cooling_rate, min_iteration, real_iteration, str(opt_initstate), scores, symmetries, runtime, eval_metric)
outputs.append(simulateanneal_output)
if "Genetic algorithm" in methods:
opt_initstate = OptimizeInitialState(num_sensor)
start_seed = args.start_seed[0]
epsilon = Default.EPSILON
min_iteration = args.min_iteration[0]
population_size = args.population_size[0]
crossover_rate = args.crossover_rate[0]
mutation_rate = args.mutation_rate[0]
init_step = args.init_step[0]
stepsize_decreasing_rate = args.stepsize_decreasing_rate[0]
start_time = time.time()
scores, symmetries = opt_initstate.genetic_algorithm(start_seed, unitary_operator, priors, epsilon, population_size, mutation_rate, \
crossover_rate, init_step, stepsize_decreasing_rate, min_iteration, eval_metric)
success = scores[-1]
error = round(1 - success, 7)
runtime = round(time.time() - start_time, 2)
real_iteration = len(scores) - 1
genetic_output = GeneticOutput(experiment_id, opt_initstate.optimize_method, error, success, population_size, crossover_rate, mutation_rate, start_seed, \
init_step, stepsize_decreasing_rate, min_iteration, real_iteration, str(opt_initstate), scores, symmetries, runtime, eval_metric)
outputs.append(genetic_output)
if "Particle swarm" in methods:
opt_initstate = OptimizeInitialState(num_sensor)
start_seed = args.start_seed[0]
epsilon = Default.EPSILON
min_iteration = args.min_iteration[0]
population_size = args.population_size[0]
w = args.weight[0]
eta1 = args.eta1[0]
eta2 = args.eta2[0]
init_step = args.init_step[0]
start_time = time.time()
scores = opt_initstate.particle_swarm_optimization(start_seed, unitary_operator, priors, epsilon, population_size, w, \
eta1, eta2, init_step, min_iteration, eval_metric)
success = scores[-1]
error = round(1 - success, 7)
runtime = round(time.time() - start_time, 2)
real_iteration = len(scores) - 1
particleswarm_output = ParticleSwarmOutput(experiment_id, opt_initstate.optimize_method, error, success, population_size, w, eta1, eta2, start_seed, \
init_step, min_iteration, real_iteration, str(opt_initstate), scores, runtime, eval_metric)
outputs.append(particleswarm_output)
else:
if depolar_noise:
noise_prob = args.noise_probability[0]
quantum_noise = DepolarisingChannel(num_sensor, noise_prob)
problem_input.noise_type = 'depolar'
problem_input.noise_param = noise_prob
elif amplitude_noise:
gamma = args.gamma[0]
quantum_noise = AmplitudeDamping(num_sensor, gamma)
problem_input.noise_type = 'amplitude_damping'
problem_input.noise_param = gamma
elif phase_noise:
gamma = args.gamma[0]
quantum_noise = PhaseDamping(num_sensor, gamma)
problem_input.noise_type = 'phase_damping'
problem_input.noise_param = gamma
else:
raise Exception('Unknown quantum noise')
# get the measurment operators POVM {E} with final states evolved from a initial state without noise,
# then use {E} on the final states evolved from noisy initial state
if 'Theorem' in methods:
opt_initstate_nonpure = OptimizeInitialStateNonpure(num_sensor)
opt_initstate_nonpure.theorem(unitary_operator, unitary_theta)
povm = opt_initstate_nonpure.get_povm_nonoise(unitary_operator, priors, eval_metric)
# error = opt_initstate_nonpure.evaluate_noise(unitary_operator, priors, povm, quantum_noise, repeat)
error = opt_initstate_nonpure.evaluate_noise_shortcut(unitary_operator, priors, povm, quantum_noise)
error = round(error, 7)
success = round(1-error, 7)
theorem_output = TheoremOutput(experiment_id, 'Theorem', error, success, str(opt_initstate_nonpure))
outputs.append(theorem_output)
if 'Non entangle' in methods:
opt_initstate_nonpure = OptimizeInitialStateNonpure(num_sensor)
opt_initstate_nonpure.non_entangle(unitary_operator)
povm = opt_initstate_nonpure.get_povm_nonoise(unitary_operator, priors, eval_metric)
# error = opt_initstate_nonpure.evaluate_noise(unitary_operator, priors, povm, quantum_noise, repeat)
error = opt_initstate_nonpure.evaluate_noise_shortcut(unitary_operator, priors, povm, quantum_noise)
error = round(error, 7)
success = round(1-error, 7)
theorem_output = TheoremOutput(experiment_id, 'Non entangle', error, success, str(opt_initstate_nonpure))
outputs.append(theorem_output)
# get the measurment operators POVM {E} with final states evolved from a noisy initial state,
# then use {E} on the final states evolved from noisy initial state
if 'Theorem povm-noise' in methods:
opt_initstate_nonpure = OptimizeInitialStateNonpure(num_sensor)
opt_initstate_nonpure.theorem(unitary_operator, unitary_theta)
povm = opt_initstate_nonpure.get_povm_noise(unitary_operator, priors, eval_metric, quantum_noise)
# error = opt_initstate_nonpure.evaluate_noise(unitary_operator, priors, povm, quantum_noise, repeat)
error = opt_initstate_nonpure.evaluate_noise_shortcut(unitary_operator, priors, povm, quantum_noise)
error = round(error, 7)
success = round(1-error, 7)
theorem_output = TheoremOutput(experiment_id, 'Theorem povm-noise', error, success, str(opt_initstate_nonpure))
outputs.append(theorem_output)
if 'Non entangle povm-noise' in methods:
opt_initstate_nonpure = OptimizeInitialStateNonpure(num_sensor)
opt_initstate_nonpure.non_entangle(unitary_operator)
povm = opt_initstate_nonpure.get_povm_noise(unitary_operator, priors, eval_metric, quantum_noise)
# error = opt_initstate_nonpure.evaluate_noise(unitary_operator, priors, povm, quantum_noise, repeat)
error = opt_initstate_nonpure.evaluate_noise_shortcut(unitary_operator, priors, povm, quantum_noise)
error = round(error, 7)
success = round(1-error, 7)
theorem_output = TheoremOutput(experiment_id, 'Non entangle povm-noise', error, success, str(opt_initstate_nonpure))
outputs.append(theorem_output)
log_dir = args.output_dir[0]
log_file = args.output_file[0]
Logger.write_log(log_dir, log_file, problem_input, outputs)