-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
118 lines (99 loc) · 4.42 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import math
import json
import torch
import logging
import numpy as np
from tqdm import tqdm
from transformers import BertTokenizer
from torch.utils.data import Dataset
logger = logging.getLogger(__name__)
class CollectionDataset:
def __init__(self, collection_memmap_dir):
self.pids = np.memmap(f"{collection_memmap_dir}/pids.memmap", dtype='int32',)
self.lengths = np.memmap(f"{collection_memmap_dir}/lengths.memmap", dtype='int32',)
self.collection_size = len(self.pids)
self.token_ids = np.memmap(f"{collection_memmap_dir}/token_ids.memmap",
dtype='int32', shape=(self.collection_size, 512))
def __len__(self):
return self.collection_size
def __getitem__(self, item):
assert self.pids[item] == item
return self.token_ids[item, :self.lengths[item]].tolist()
def load_queries(tokenize_dir, mode):
queries = dict()
for line in tqdm(open(f"{tokenize_dir}/queries.{mode}.json"), desc="queries"):
data = json.loads(line)
queries[int(data['id'])] = data['ids']
return queries
def load_querydoc_pairs(mode):
qids, pids, labels = [], [], []
if mode == "train":
for line in tqdm(open("../passage_exp/marco_passage_data/ANCE/qidpidtriples.train.small.ance.tsv"), desc="load train triples"):
qid, pos_pid, neg_pid, _, _ = line.split("\t")
qid, pos_pid, neg_pid = int(qid), int(pos_pid), int(neg_pid)
qids.append(qid)
pids.append(pos_pid)
labels.append(1)
qids.append(qid)
pids.append(neg_pid)
labels.append(0)
else:
for line in open("../passage_exp/dl_passage_data/ANCE/dltest_top1000_rank.tsv"):
qid, pid, rank = line.split("\t")
qids.append(int(qid))
pids.append(int(pid))
labels = None
return qids, pids, labels
class MSMARCODataset(Dataset):
def __init__(self, mode,
collection_memmap_dir, tokenize_dir,
max_query_length=20, max_doc_length=256):
self.collection = CollectionDataset(collection_memmap_dir)
self.queries = load_queries(tokenize_dir, mode)
self.qids, self.pids, self.labels = load_querydoc_pairs(mode)
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
self.cls_id = tokenizer.cls_token_id
self.sep_id = tokenizer.sep_token_id
self.max_query_length = max_query_length
self.max_doc_length = max_doc_length
def __len__(self):
return len(self.qids)
def __getitem__(self, item):
qid, pid = self.qids[item], self.pids[item]
query_input_ids, doc_input_ids = self.queries[qid], self.collection[pid]
query_input_ids = query_input_ids[:self.max_query_length]
query_input_ids = [self.cls_id] + query_input_ids + [self.sep_id]
doc_input_ids = doc_input_ids[:self.max_doc_length]
doc_input_ids = doc_input_ids + [self.sep_id]
ret_val = {
"query_input_ids": query_input_ids,
"doc_input_ids": doc_input_ids,
"qid": qid,
"docid": pid
}
return ret_val
def pack_tensor_2D(lstlst, default, dtype, length=None):
batch_size = len(lstlst)
length = length if length is not None else max(len(l) for l in lstlst)
tensor = default * torch.ones((batch_size, length), dtype=dtype)
for i, l in enumerate(lstlst):
tensor[i, :len(l)] = torch.tensor(l, dtype=dtype)
return tensor
def get_collate_function():
def collate_function(batch):
input_ids_lst = [x["query_input_ids"] + x["doc_input_ids"] for x in batch]
token_type_ids_lst = [[0]*len(x["query_input_ids"]) + [1]*len(x["doc_input_ids"])
for x in batch]
valid_mask_lst = [[1]*len(input_ids) for input_ids in input_ids_lst]
position_ids_lst = [list(range(len(input_ids))) for input_ids in input_ids_lst]
data = {
"input_ids": pack_tensor_2D(input_ids_lst, default=0, dtype=torch.int64),
"token_type_ids": pack_tensor_2D(token_type_ids_lst, default=0, dtype=torch.int64),
"valid_mask": pack_tensor_2D(valid_mask_lst, default=0, dtype=torch.int64),
"position_ids": pack_tensor_2D(position_ids_lst, default=0, dtype=torch.int64),
}
qid_lst = [x['qid'] for x in batch]
docid_lst = [x['docid'] for x in batch]
return data, qid_lst, docid_lst
return collate_function