Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

akita train error #200

Open
guandailu opened this issue Jul 31, 2024 · 0 comments
Open

akita train error #200

guandailu opened this issue Jul 31, 2024 · 0 comments

Comments

@guandailu
Copy link

I am running the Akita tutorial, but I have the following errors:

2024-07-30 09:37:31.023852: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
Model: "model_1"


Layer (type) Output Shape Param # Connected to

sequence (InputLayer) [(None, 1048576, 4)] 0


stochastic_reverse_complement ( ((None, 1048576, 4), 0 sequence[0][0]


stochastic_shift (StochasticShi (None, 1048576, 4) 0 stochastic_reverse_complement[0][


re_lu (ReLU) (None, 1048576, 4) 0 stochastic_shift[0][0]


conv1d (Conv1D) (None, 1048576, 96) 4224 re_lu[0][0]


batch_normalization (BatchNorma (None, 1048576, 96) 384 conv1d[0][0]


max_pooling1d (MaxPooling1D) (None, 524288, 96) 0 batch_normalization[0][0]


re_lu_1 (ReLU) (None, 524288, 96) 0 max_pooling1d[0][0]


conv1d_1 (Conv1D) (None, 524288, 96) 46080 re_lu_1[0][0]


batch_normalization_1 (BatchNor (None, 524288, 96) 384 conv1d_1[0][0]


max_pooling1d_1 (MaxPooling1D) (None, 262144, 96) 0 batch_normalization_1[0][0]


re_lu_2 (ReLU) (None, 262144, 96) 0 max_pooling1d_1[0][0]


conv1d_2 (Conv1D) (None, 262144, 96) 46080 re_lu_2[0][0]


batch_normalization_2 (BatchNor (None, 262144, 96) 384 conv1d_2[0][0]


max_pooling1d_2 (MaxPooling1D) (None, 131072, 96) 0 batch_normalization_2[0][0]


re_lu_3 (ReLU) (None, 131072, 96) 0 max_pooling1d_2[0][0]


conv1d_3 (Conv1D) (None, 131072, 96) 46080 re_lu_3[0][0]


batch_normalization_3 (BatchNor (None, 131072, 96) 384 conv1d_3[0][0]


max_pooling1d_3 (MaxPooling1D) (None, 65536, 96) 0 batch_normalization_3[0][0]


re_lu_4 (ReLU) (None, 65536, 96) 0 max_pooling1d_3[0][0]


conv1d_4 (Conv1D) (None, 65536, 96) 46080 re_lu_4[0][0]


batch_normalization_4 (BatchNor (None, 65536, 96) 384 conv1d_4[0][0]


max_pooling1d_4 (MaxPooling1D) (None, 32768, 96) 0 batch_normalization_4[0][0]


re_lu_5 (ReLU) (None, 32768, 96) 0 max_pooling1d_4[0][0]


conv1d_5 (Conv1D) (None, 32768, 96) 46080 re_lu_5[0][0]


batch_normalization_5 (BatchNor (None, 32768, 96) 384 conv1d_5[0][0]


max_pooling1d_5 (MaxPooling1D) (None, 16384, 96) 0 batch_normalization_5[0][0]


re_lu_6 (ReLU) (None, 16384, 96) 0 max_pooling1d_5[0][0]


conv1d_6 (Conv1D) (None, 16384, 96) 46080 re_lu_6[0][0]


batch_normalization_6 (BatchNor (None, 16384, 96) 384 conv1d_6[0][0]


max_pooling1d_6 (MaxPooling1D) (None, 8192, 96) 0 batch_normalization_6[0][0]


re_lu_7 (ReLU) (None, 8192, 96) 0 max_pooling1d_6[0][0]


conv1d_7 (Conv1D) (None, 8192, 96) 46080 re_lu_7[0][0]


batch_normalization_7 (BatchNor (None, 8192, 96) 384 conv1d_7[0][0]


max_pooling1d_7 (MaxPooling1D) (None, 4096, 96) 0 batch_normalization_7[0][0]


re_lu_8 (ReLU) (None, 4096, 96) 0 max_pooling1d_7[0][0]


conv1d_8 (Conv1D) (None, 4096, 96) 46080 re_lu_8[0][0]


batch_normalization_8 (BatchNor (None, 4096, 96) 384 conv1d_8[0][0]


max_pooling1d_8 (MaxPooling1D) (None, 2048, 96) 0 batch_normalization_8[0][0]


re_lu_9 (ReLU) (None, 2048, 96) 0 max_pooling1d_8[0][0]


conv1d_9 (Conv1D) (None, 2048, 96) 46080 re_lu_9[0][0]


batch_normalization_9 (BatchNor (None, 2048, 96) 384 conv1d_9[0][0]


max_pooling1d_9 (MaxPooling1D) (None, 1024, 96) 0 batch_normalization_9[0][0]


re_lu_10 (ReLU) (None, 1024, 96) 0 max_pooling1d_9[0][0]


conv1d_10 (Conv1D) (None, 1024, 96) 46080 re_lu_10[0][0]


batch_normalization_10 (BatchNo (None, 1024, 96) 384 conv1d_10[0][0]


max_pooling1d_10 (MaxPooling1D) (None, 512, 96) 0 batch_normalization_10[0][0]


re_lu_11 (ReLU) (None, 512, 96) 0 max_pooling1d_10[0][0]


conv1d_11 (Conv1D) (None, 512, 48) 13824 re_lu_11[0][0]


batch_normalization_11 (BatchNo (None, 512, 48) 192 conv1d_11[0][0]


re_lu_12 (ReLU) (None, 512, 48) 0 batch_normalization_11[0][0]


conv1d_12 (Conv1D) (None, 512, 96) 4608 re_lu_12[0][0]


batch_normalization_12 (BatchNo (None, 512, 96) 384 conv1d_12[0][0]


dropout (Dropout) (None, 512, 96) 0 batch_normalization_12[0][0]


add (Add) (None, 512, 96) 0 max_pooling1d_10[0][0]
dropout[0][0]


re_lu_13 (ReLU) (None, 512, 96) 0 add[0][0]


conv1d_13 (Conv1D) (None, 512, 48) 13824 re_lu_13[0][0]


batch_normalization_13 (BatchNo (None, 512, 48) 192 conv1d_13[0][0]


re_lu_14 (ReLU) (None, 512, 48) 0 batch_normalization_13[0][0]


conv1d_14 (Conv1D) (None, 512, 96) 4608 re_lu_14[0][0]


batch_normalization_14 (BatchNo (None, 512, 96) 384 conv1d_14[0][0]


dropout_1 (Dropout) (None, 512, 96) 0 batch_normalization_14[0][0]


add_1 (Add) (None, 512, 96) 0 add[0][0]
dropout_1[0][0]


re_lu_15 (ReLU) (None, 512, 96) 0 add_1[0][0]


conv1d_15 (Conv1D) (None, 512, 48) 13824 re_lu_15[0][0]


batch_normalization_15 (BatchNo (None, 512, 48) 192 conv1d_15[0][0]


re_lu_16 (ReLU) (None, 512, 48) 0 batch_normalization_15[0][0]


conv1d_16 (Conv1D) (None, 512, 96) 4608 re_lu_16[0][0]


batch_normalization_16 (BatchNo (None, 512, 96) 384 conv1d_16[0][0]


dropout_2 (Dropout) (None, 512, 96) 0 batch_normalization_16[0][0]


add_2 (Add) (None, 512, 96) 0 add_1[0][0]
dropout_2[0][0]


re_lu_17 (ReLU) (None, 512, 96) 0 add_2[0][0]


conv1d_17 (Conv1D) (None, 512, 48) 13824 re_lu_17[0][0]


batch_normalization_17 (BatchNo (None, 512, 48) 192 conv1d_17[0][0]


re_lu_18 (ReLU) (None, 512, 48) 0 batch_normalization_17[0][0]


conv1d_18 (Conv1D) (None, 512, 96) 4608 re_lu_18[0][0]


batch_normalization_18 (BatchNo (None, 512, 96) 384 conv1d_18[0][0]


dropout_3 (Dropout) (None, 512, 96) 0 batch_normalization_18[0][0]


add_3 (Add) (None, 512, 96) 0 add_2[0][0]
dropout_3[0][0]


re_lu_19 (ReLU) (None, 512, 96) 0 add_3[0][0]


conv1d_19 (Conv1D) (None, 512, 48) 13824 re_lu_19[0][0]


batch_normalization_19 (BatchNo (None, 512, 48) 192 conv1d_19[0][0]


re_lu_20 (ReLU) (None, 512, 48) 0 batch_normalization_19[0][0]


conv1d_20 (Conv1D) (None, 512, 96) 4608 re_lu_20[0][0]


batch_normalization_20 (BatchNo (None, 512, 96) 384 conv1d_20[0][0]


dropout_4 (Dropout) (None, 512, 96) 0 batch_normalization_20[0][0]


add_4 (Add) (None, 512, 96) 0 add_3[0][0]
dropout_4[0][0]


re_lu_21 (ReLU) (None, 512, 96) 0 add_4[0][0]


conv1d_21 (Conv1D) (None, 512, 48) 13824 re_lu_21[0][0]


batch_normalization_21 (BatchNo (None, 512, 48) 192 conv1d_21[0][0]


re_lu_22 (ReLU) (None, 512, 48) 0 batch_normalization_21[0][0]


conv1d_22 (Conv1D) (None, 512, 96) 4608 re_lu_22[0][0]


batch_normalization_22 (BatchNo (None, 512, 96) 384 conv1d_22[0][0]


dropout_5 (Dropout) (None, 512, 96) 0 batch_normalization_22[0][0]


add_5 (Add) (None, 512, 96) 0 add_4[0][0]
dropout_5[0][0]


re_lu_23 (ReLU) (None, 512, 96) 0 add_5[0][0]


conv1d_23 (Conv1D) (None, 512, 48) 13824 re_lu_23[0][0]


batch_normalization_23 (BatchNo (None, 512, 48) 192 conv1d_23[0][0]


re_lu_24 (ReLU) (None, 512, 48) 0 batch_normalization_23[0][0]


conv1d_24 (Conv1D) (None, 512, 96) 4608 re_lu_24[0][0]


batch_normalization_24 (BatchNo (None, 512, 96) 384 conv1d_24[0][0]


dropout_6 (Dropout) (None, 512, 96) 0 batch_normalization_24[0][0]


add_6 (Add) (None, 512, 96) 0 add_5[0][0]
dropout_6[0][0]


re_lu_25 (ReLU) (None, 512, 96) 0 add_6[0][0]


conv1d_25 (Conv1D) (None, 512, 48) 13824 re_lu_25[0][0]


batch_normalization_25 (BatchNo (None, 512, 48) 192 conv1d_25[0][0]


re_lu_26 (ReLU) (None, 512, 48) 0 batch_normalization_25[0][0]


conv1d_26 (Conv1D) (None, 512, 96) 4608 re_lu_26[0][0]


batch_normalization_26 (BatchNo (None, 512, 96) 384 conv1d_26[0][0]


dropout_7 (Dropout) (None, 512, 96) 0 batch_normalization_26[0][0]


add_7 (Add) (None, 512, 96) 0 add_6[0][0]
dropout_7[0][0]


re_lu_27 (ReLU) (None, 512, 96) 0 add_7[0][0]


conv1d_27 (Conv1D) (None, 512, 64) 30720 re_lu_27[0][0]


batch_normalization_27 (BatchNo (None, 512, 64) 256 conv1d_27[0][0]


re_lu_28 (ReLU) (None, 512, 64) 0 batch_normalization_27[0][0]


one_to_two (OneToTwo) (None, 512, 512, 64) 0 re_lu_28[0][0]


concat_dist2d (ConcatDist2D) (None, 512, 512, 65) 0 one_to_two[0][0]


re_lu_29 (ReLU) (None, 512, 512, 65) 0 concat_dist2d[0][0]


conv2d (Conv2D) (None, 512, 512, 48) 28080 re_lu_29[0][0]


batch_normalization_28 (BatchNo (None, 512, 512, 48) 192 conv2d[0][0]


symmetrize2d (Symmetrize2D) (None, 512, 512, 48) 0 batch_normalization_28[0][0]


re_lu_30 (ReLU) (None, 512, 512, 48) 0 symmetrize2d[0][0]


conv2d_1 (Conv2D) (None, 512, 512, 24) 10368 re_lu_30[0][0]


batch_normalization_29 (BatchNo (None, 512, 512, 24) 96 conv2d_1[0][0]


re_lu_31 (ReLU) (None, 512, 512, 24) 0 batch_normalization_29[0][0]


conv2d_2 (Conv2D) (None, 512, 512, 48) 1152 re_lu_31[0][0]


batch_normalization_30 (BatchNo (None, 512, 512, 48) 192 conv2d_2[0][0]


dropout_8 (Dropout) (None, 512, 512, 48) 0 batch_normalization_30[0][0]


add_8 (Add) (None, 512, 512, 48) 0 symmetrize2d[0][0]
dropout_8[0][0]


symmetrize2d_1 (Symmetrize2D) (None, 512, 512, 48) 0 add_8[0][0]


re_lu_32 (ReLU) (None, 512, 512, 48) 0 symmetrize2d_1[0][0]


conv2d_3 (Conv2D) (None, 512, 512, 24) 10368 re_lu_32[0][0]


batch_normalization_31 (BatchNo (None, 512, 512, 24) 96 conv2d_3[0][0]


re_lu_33 (ReLU) (None, 512, 512, 24) 0 batch_normalization_31[0][0]


conv2d_4 (Conv2D) (None, 512, 512, 48) 1152 re_lu_33[0][0]


batch_normalization_32 (BatchNo (None, 512, 512, 48) 192 conv2d_4[0][0]


dropout_9 (Dropout) (None, 512, 512, 48) 0 batch_normalization_32[0][0]


add_9 (Add) (None, 512, 512, 48) 0 symmetrize2d_1[0][0]
dropout_9[0][0]


symmetrize2d_2 (Symmetrize2D) (None, 512, 512, 48) 0 add_9[0][0]


re_lu_34 (ReLU) (None, 512, 512, 48) 0 symmetrize2d_2[0][0]


conv2d_5 (Conv2D) (None, 512, 512, 24) 10368 re_lu_34[0][0]


batch_normalization_33 (BatchNo (None, 512, 512, 24) 96 conv2d_5[0][0]


re_lu_35 (ReLU) (None, 512, 512, 24) 0 batch_normalization_33[0][0]


conv2d_6 (Conv2D) (None, 512, 512, 48) 1152 re_lu_35[0][0]


batch_normalization_34 (BatchNo (None, 512, 512, 48) 192 conv2d_6[0][0]


dropout_10 (Dropout) (None, 512, 512, 48) 0 batch_normalization_34[0][0]


add_10 (Add) (None, 512, 512, 48) 0 symmetrize2d_2[0][0]
dropout_10[0][0]


symmetrize2d_3 (Symmetrize2D) (None, 512, 512, 48) 0 add_10[0][0]


re_lu_36 (ReLU) (None, 512, 512, 48) 0 symmetrize2d_3[0][0]


conv2d_7 (Conv2D) (None, 512, 512, 24) 10368 re_lu_36[0][0]


batch_normalization_35 (BatchNo (None, 512, 512, 24) 96 conv2d_7[0][0]


re_lu_37 (ReLU) (None, 512, 512, 24) 0 batch_normalization_35[0][0]


conv2d_8 (Conv2D) (None, 512, 512, 48) 1152 re_lu_37[0][0]


batch_normalization_36 (BatchNo (None, 512, 512, 48) 192 conv2d_8[0][0]


dropout_11 (Dropout) (None, 512, 512, 48) 0 batch_normalization_36[0][0]


add_11 (Add) (None, 512, 512, 48) 0 symmetrize2d_3[0][0]
dropout_11[0][0]


symmetrize2d_4 (Symmetrize2D) (None, 512, 512, 48) 0 add_11[0][0]


re_lu_38 (ReLU) (None, 512, 512, 48) 0 symmetrize2d_4[0][0]


conv2d_9 (Conv2D) (None, 512, 512, 24) 10368 re_lu_38[0][0]


batch_normalization_37 (BatchNo (None, 512, 512, 24) 96 conv2d_9[0][0]


re_lu_39 (ReLU) (None, 512, 512, 24) 0 batch_normalization_37[0][0]


conv2d_10 (Conv2D) (None, 512, 512, 48) 1152 re_lu_39[0][0]


batch_normalization_38 (BatchNo (None, 512, 512, 48) 192 conv2d_10[0][0]


dropout_12 (Dropout) (None, 512, 512, 48) 0 batch_normalization_38[0][0]


add_12 (Add) (None, 512, 512, 48) 0 symmetrize2d_4[0][0]
dropout_12[0][0]


symmetrize2d_5 (Symmetrize2D) (None, 512, 512, 48) 0 add_12[0][0]


re_lu_40 (ReLU) (None, 512, 512, 48) 0 symmetrize2d_5[0][0]


conv2d_11 (Conv2D) (None, 512, 512, 24) 10368 re_lu_40[0][0]


batch_normalization_39 (BatchNo (None, 512, 512, 24) 96 conv2d_11[0][0]


re_lu_41 (ReLU) (None, 512, 512, 24) 0 batch_normalization_39[0][0]


conv2d_12 (Conv2D) (None, 512, 512, 48) 1152 re_lu_41[0][0]


batch_normalization_40 (BatchNo (None, 512, 512, 48) 192 conv2d_12[0][0]


dropout_13 (Dropout) (None, 512, 512, 48) 0 batch_normalization_40[0][0]


add_13 (Add) (None, 512, 512, 48) 0 symmetrize2d_5[0][0]
dropout_13[0][0]


symmetrize2d_6 (Symmetrize2D) (None, 512, 512, 48) 0 add_13[0][0]


cropping2d (Cropping2D) (None, 448, 448, 48) 0 symmetrize2d_6[0][0]


upper_tri (UpperTri) (None, 99681, 48) 0 cropping2d[0][0]


dense (Dense) (None, 99681, 2) 98 upper_tri[0][0]


switch_reverse_triu (SwitchReve (None, 99681, 2) 0 dense[0][0]
stochastic_reverse_complement[0][

Total params: 751,506
Trainable params: 746,002
Non-trainable params: 5,504


None
model_strides [2048]
target_lengths [99681]
target_crops [-49585]
2024-07-30 09:37:32.487935: I tensorflow/core/profiler/lib/profiler_session.cc:136] Profiler session initializing.
2024-07-30 09:37:32.487981: I tensorflow/core/profiler/lib/profiler_session.cc:155] Profiler session started.
2024-07-30 09:37:32.488016: I tensorflow/core/profiler/lib/profiler_session.cc:172] Profiler session tear down.
2024-07-30 09:37:32.527294: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)
2024-07-30 09:37:32.527885: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2794625000 Hz
Epoch 1/10000
1/3504 [..............................] - ETA: 29:15:00 - loss: 1.7668 - pearsonr: 0.0199 - r2: -7.18172024-07-30 09:38:02.775668: I tensorflow/core/profiler/lib/profiler_session.cc:136] Profiler session initializing.
2024-07-30 09:38:02.775727: I tensorflow/core/profiler/lib/profiler_session.cc:155] Profiler session started.
2/3504 [..............................] - ETA: 20:41:28 - loss: 1.4813 - pearsonr: 0.0338 - r2: -5.04252024-07-30 09:38:23.867246: I tensorflow/core/profiler/lib/profiler_session.cc:71] Profiler session collecting data.
2024-07-30 09:38:23.896953: I tensorflow/core/profiler/lib/profiler_session.cc:172] Profiler session tear down.
2024-07-30 09:38:23.918338: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: ./data/1m/train_out/train/plugins/profile/2024_07_30_09_38_23
2024-07-30 09:38:23.933617: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for trace.json.gz to ./data/1m/train_out/train/plugins/profile/2024_07_30_09_38_23/bm15.trace.json.gz
2024-07-30 09:38:23.954239: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: ./data/1m/train_out/train/plugins/profile/2024_07_30_09_38_23
2024-07-30 09:38:23.956466: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for memory_profile.json.gz to ./data/1m/train_out/train/plugins/profile/2024_07_30_09_38_23/bm15.memory_profile.json.gz
2024-07-30 09:38:23.967561: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: ./data/1m/train_out/train/plugins/profile/2024_07_30_09_38_23Dumped tool data for xplane.pb to ./data/1m/train_out/train/plugins/profile/2024_07_30_09_38_23/bm15.xplane.pb
Dumped tool data for overview_page.pb to ./data/1m/train_out/train/plugins/profile/2024_07_30_09_38_23/bm15.overview_page.pb
Dumped tool data for input_pipeline.pb to ./data/1m/train_out/train/plugins/profile/2024_07_30_09_38_23/bm15.input_pipeline.pb
Dumped tool data for tensorflow_stats.pb to ./data/1m/train_out/train/plugins/profile/2024_07_30_09_38_23/bm15.tensorflow_stats.pb
Dumped tool data for kernel_stats.pb to ./data/1m/train_out/train/plugins/profile/2024_07_30_09_38_23/bm15.kernel_stats.pb

3504/3504 [==============================] - ETA: 0s - loss: 0.3867 - pearsonr: 0.0205 - r2: -0.1191 Traceback (most recent call last):
File "/group/zhougrp4/dguan/microc/12_modelling/Akita/basenji/bin/akita_train.py", line 182, in
main()
File "/group/zhougrp4/dguan/microc/12_modelling/Akita/basenji/bin/akita_train.py", line 171, in main
seqnn_trainer.fit_keras(seqnn_model)
File "/group/zhougrp4/dguan/microc/12_modelling/Akita/basenji/basenji/trainer.py", line 141, in fit_keras
seqnn_model.model.fit(
File "/group/zhougrp4/dguan/bin/.conda/akita/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py", line 1131, in fit
val_logs = self.evaluate(
File "/group/zhougrp4/dguan/bin/.conda/akita/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py", line 1384, in evaluate
self.reset_metrics()
File "/group/zhougrp4/dguan/bin/.conda/akita/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py", line 1669, in reset_metrics
m.reset_states()
File "/group/zhougrp4/dguan/bin/.conda/akita/lib/python3.8/site-packages/tensorflow/python/keras/metrics.py", line 253, in reset_states
K.batch_set_value([(v, 0) for v in self.variables])
File "/group/zhougrp4/dguan/bin/.conda/akita/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py", line 201, in wrapper
return target(*args, **kwargs)
File "/group/zhougrp4/dguan/bin/.conda/akita/lib/python3.8/site-packages/tensorflow/python/keras/backend.py", line 3706, in batch_set_value
x.assign(np.asarray(value, dtype=dtype(x)))
File "/group/zhougrp4/dguan/bin/.conda/akita/lib/python3.8/site-packages/tensorflow/python/ops/resource_variable_ops.py", line 888, in assign
raise ValueError(
ValueError: Cannot assign to variable count:0 due to variable shape (2,) and value shape () are incompatible

My conda environment:
name: akita
channels:

  • nvidia
  • conda-forge
  • bioconda
  • defaults
    dependencies:
  • _libgcc_mutex=0.1=conda_forge
  • _openmp_mutex=4.5=2_gnu
  • abseil-cpp=20200923.3=h9c3ff4c_0
  • absl-py=2.1.0=pyhd8ed1ab_0
  • aiohttp=3.9.5=py38h01eb140_0
  • aiosignal=1.3.1=pyhd8ed1ab_0
  • alsa-lib=1.2.12=h4ab18f5_0
  • anyio=4.4.0=pyhd8ed1ab_0
  • argon2-cffi=23.1.0=pyhd8ed1ab_0
  • argon2-cffi-bindings=21.2.0=py38h01eb140_4
  • arrow=1.3.0=pyhd8ed1ab_0
  • astor=0.8.1=pyh9f0ad1d_0
  • astropy=5.1=py38h7deecbd_0
  • asttokens=2.4.1=pyhd8ed1ab_0
  • astunparse=1.6.3=pyhd8ed1ab_0
  • async-lru=2.0.4=pyhd8ed1ab_0
  • async-timeout=4.0.3=pyhd8ed1ab_0
  • attr=2.5.1=h166bdaf_1
  • attrs=23.2.0=pyh71513ae_0
  • babel=2.14.0=pyhd8ed1ab_0
  • backcall=0.2.0=pyh9f0ad1d_0
  • beautifulsoup4=4.12.3=pyha770c72_0
  • bedtools=2.31.1=hf5e1c6e_2
  • blas=1.0=openblas
  • bleach=6.1.0=pyhd8ed1ab_0
  • blinker=1.8.2=pyhd8ed1ab_0
  • bottleneck=1.3.7=py38ha9d4c09_0
  • brotli=1.0.9=h5eee18b_8
  • brotli-bin=1.0.9=h5eee18b_8
  • brotli-python=1.0.9=py38h6a678d5_8
  • bzip2=1.0.8=h5eee18b_6
  • c-ares=1.32.3=h4bc722e_0
  • ca-certificates=2024.7.4=hbcca054_0
  • cached-property=1.5.2=hd8ed1ab_1
  • cached_property=1.5.2=pyha770c72_1
  • cairo=1.18.0=h3faef2a_0
  • certifi=2024.7.4=pyhd8ed1ab_0
  • cffi=1.16.0=py38h6d47a40_0
  • charset-normalizer=3.3.2=pyhd3eb1b0_0
  • click=8.1.7=unix_pyh707e725_0
  • comm=0.2.2=pyhd8ed1ab_0
  • contourpy=1.0.5=py38hdb19cb5_0
  • cryptography=39.0.0=py38h1724139_0
  • cudatoolkit=11.0.221=h6bb024c_0
  • cudnn=8.0.0=cuda11.0_0
  • cycler=0.11.0=pyhd3eb1b0_0
  • cython=3.0.10=py38h5eee18b_0
  • dbus=1.13.18=hb2f20db_0
  • debugpy=1.8.2=py38h854fd01_0
  • decorator=5.1.1=pyhd8ed1ab_0
  • defusedxml=0.7.1=pyhd8ed1ab_0
  • entrypoints=0.4=pyhd8ed1ab_0
  • exceptiongroup=1.2.2=pyhd8ed1ab_0
  • executing=2.0.1=pyhd8ed1ab_0
  • expat=2.6.2=h6a678d5_0
  • font-ttf-dejavu-sans-mono=2.37=hd3eb1b0_0
  • font-ttf-inconsolata=2.001=hcb22688_0
  • font-ttf-source-code-pro=2.030=hd3eb1b0_0
  • font-ttf-ubuntu=0.83=h8b1ccd4_0
  • fontconfig=2.14.2=h14ed4e7_0
  • fonts-anaconda=1=h8fa9717_0
  • fonts-conda-ecosystem=1=hd3eb1b0_0
  • fonttools=4.51.0=py38h5eee18b_0
  • fqdn=1.5.1=pyhd8ed1ab_0
  • freetype=2.12.1=h4a9f257_0
  • frozenlist=1.4.1=py38h01eb140_0
  • gettext=0.22.5=h59595ed_2
  • gettext-tools=0.22.5=h59595ed_2
  • giflib=5.2.2=hd590300_0
  • glib=2.80.2=hf974151_0
  • glib-tools=2.80.2=hb6ce0ca_0
  • google-pasta=0.2.0=pyh8c360ce_0
  • graphite2=1.3.14=h295c915_1
  • grpc-cpp=1.36.4=hf89561c_1
  • gst-plugins-base=1.14.1=h6a678d5_1
  • gstreamer=1.14.1=h5eee18b_1
  • h11=0.14.0=pyhd8ed1ab_0
  • h2=4.1.0=pyhd8ed1ab_0
  • h5py=2.10.0=nompi_py38h9915d05_106
  • harfbuzz=8.5.0=hfac3d4d_0
  • hdf5=1.10.6=nompi_h6a2412b_1114
  • hpack=4.0.0=pyh9f0ad1d_0
  • httpcore=1.0.5=pyhd8ed1ab_0
  • httpx=0.27.0=pyhd8ed1ab_0
  • hyperframe=6.0.1=pyhd8ed1ab_0
  • icu=73.2=h59595ed_0
  • idna=3.7=py38h06a4308_0
  • importlib-metadata=8.2.0=pyha770c72_0
  • importlib_metadata=8.2.0=hd8ed1ab_0
  • importlib_resources=6.4.0=py38h06a4308_0
  • intervaltree=3.1.0=pyhd3eb1b0_0
  • ipykernel=6.29.5=pyh3099207_0
  • ipython=8.12.2=pyh41d4057_0
  • isoduration=20.11.0=pyhd8ed1ab_0
  • jedi=0.19.1=pyhd8ed1ab_0
  • jinja2=3.1.4=pyhd8ed1ab_0
  • joblib=1.4.2=py38h06a4308_0
  • jpeg=9e=h166bdaf_2
  • json5=0.9.25=pyhd8ed1ab_0
  • jsonpointer=3.0.0=py38h578d9bd_0
  • jsonschema=4.23.0=pyhd8ed1ab_0
  • jsonschema-specifications=2023.12.1=pyhd8ed1ab_0
  • jsonschema-with-format-nongpl=4.23.0=hd8ed1ab_0
  • jupyter-lsp=2.2.5=pyhd8ed1ab_0
  • jupyter_client=8.6.2=pyhd8ed1ab_0
  • jupyter_core=5.7.2=py38h578d9bd_0
  • jupyter_events=0.10.0=pyhd8ed1ab_0
  • jupyter_server=2.14.2=pyhd8ed1ab_0
  • jupyter_server_terminals=0.5.3=pyhd8ed1ab_0
  • jupyterlab=4.2.4=pyhd8ed1ab_0
  • jupyterlab_pygments=0.3.0=pyhd8ed1ab_1
  • jupyterlab_server=2.27.3=pyhd8ed1ab_0
  • keras-preprocessing=1.1.2=pyhd8ed1ab_0
  • keyutils=1.6.1=h166bdaf_0
  • kiwisolver=1.4.4=py38h6a678d5_0
  • krb5=1.20.1=hf9c8cef_0
  • lame=3.100=h7b6447c_0
  • lcms2=2.12=hddcbb42_0
  • ld_impl_linux-64=2.38=h1181459_1
  • lerc=4.0.0=h27087fc_0
  • libasprintf=0.22.5=h661eb56_2
  • libasprintf-devel=0.22.5=h661eb56_2
  • libbrotlicommon=1.0.9=h5eee18b_8
  • libbrotlidec=1.0.9=h5eee18b_8
  • libbrotlienc=1.0.9=h5eee18b_8
  • libcap=2.69=h0f662aa_0
  • libclang-cpp15=15.0.7=default_h127d8a8_5
  • libclang13=14.0.6=default_h9986a30_1
  • libcups=2.3.3=h36d4200_3
  • libcurl=7.88.1=h91b91d3_2
  • libdeflate=1.20=hd590300_0
  • libedit=3.1.20230828=h5eee18b_0
  • libev=4.33=h7f8727e_1
  • libevent=2.1.10=h9b69904_4
  • libexpat=2.6.2=h59595ed_0
  • libffi=3.4.4=h6a678d5_1
  • libflac=1.4.3=h59595ed_0
  • libgcc-ng=14.1.0=h77fa898_0
  • libgcrypt=1.11.0=h4ab18f5_1
  • libgettextpo=0.22.5=h59595ed_2
  • libgettextpo-devel=0.22.5=h59595ed_2
  • libgfortran-ng=11.2.0=h00389a5_1
  • libgfortran5=11.2.0=h1234567_1
  • libglib=2.80.2=hf974151_0
  • libgomp=14.1.0=h77fa898_0
  • libgpg-error=1.50=h4f305b6_0
  • libiconv=1.17=hd590300_2
  • libjpeg-turbo=2.1.4=h166bdaf_0
  • libllvm14=14.0.6=hcd5def8_4
  • libllvm15=15.0.7=hb3ce162_4
  • libllvm18=18.1.7=hb77312f_0
  • libnghttp2=1.52.0=ha637b67_1
  • libnsl=2.0.1=hd590300_0
  • libogg=1.3.5=h27cfd23_1
  • libopenblas=0.3.21=h043d6bf_0
  • libopus=1.3.1=h7b6447c_0
  • libpng=1.6.43=h2797004_0
  • libpq=12.15=h37d81fd_1
  • libprotobuf=3.15.8=h780b84a_1
  • libsndfile=1.2.2=hc60ed4a_1
  • libsodium=1.0.18=h36c2ea0_1
  • libsqlite=3.46.0=hde9e2c9_0
  • libssh2=1.10.0=haa6b8db_3
  • libstdcxx-ng=14.1.0=hc0a3c3a_0
  • libsystemd0=255=h3516f8a_1
  • libtiff=4.2.0=hf544144_3
  • libuuid=2.38.1=h0b41bf4_0
  • libvorbis=1.3.7=h7b6447c_0
  • libwebp-base=1.3.2=h5eee18b_0
  • libxcb=1.15=h7f8727e_0
  • libxkbcommon=1.7.0=h662e7e4_0
  • libxml2=2.12.7=hc051c1a_1
  • libzlib=1.2.13=h4ab18f5_6
  • lz4-c=1.9.4=h6a678d5_1
  • markdown=3.6=pyhd8ed1ab_0
  • markupsafe=2.1.5=py38h01eb140_0
  • matplotlib=3.7.2=py38h06a4308_0
  • matplotlib-base=3.7.2=py38h1128e8f_0
  • matplotlib-inline=0.1.7=pyhd8ed1ab_0
  • mistune=3.0.2=pyhd8ed1ab_0
  • mpg123=1.32.6=h59595ed_0
  • multidict=6.0.5=py38h01eb140_0
  • mysql=5.7.20=hf484d3e_1001
  • mysql-common=8.0.32=h14678bc_0
  • mysql-libs=8.0.32=h54cf53e_0
  • natsort=7.1.1=pyhd3eb1b0_0
  • nbclient=0.10.0=pyhd8ed1ab_0
  • nbconvert-core=7.16.4=pyhd8ed1ab_1
  • nbformat=5.10.4=pyhd8ed1ab_0
  • ncurses=6.4=h6a678d5_0
  • nest-asyncio=1.6.0=pyhd8ed1ab_0
  • networkx=3.1=py38h06a4308_0
  • notebook-shim=0.2.4=pyhd8ed1ab_0
  • nspr=4.35=h6a678d5_0
  • nss=3.100=hca3bf56_0
  • numexpr=2.8.4=py38hd2a5715_1
  • oauthlib=3.2.2=pyhd8ed1ab_0
  • olefile=0.47=pyhd8ed1ab_0
  • openjpeg=2.4.0=hb52868f_1
  • openssl=1.1.1w=hd590300_0
  • opt_einsum=3.3.0=pyhc1e730c_2
  • overrides=7.7.0=pyhd8ed1ab_0
  • packaging=24.1=py38h06a4308_0
  • pandas=2.0.3=py38h1128e8f_0
  • pandocfilters=1.5.0=pyhd8ed1ab_0
  • parso=0.8.4=pyhd8ed1ab_0
  • patsy=0.5.6=py38h06a4308_0
  • pcre2=10.43=hcad00b1_0
  • pexpect=4.9.0=pyhd8ed1ab_0
  • pickleshare=0.7.5=py_1003
  • pillow=8.2.0=py38ha0e1e83_1
  • pip=24.0=py38h06a4308_0
  • pixman=0.43.2=h59595ed_0
  • pkgutil-resolve-name=1.3.10=pyhd8ed1ab_1
  • platformdirs=3.10.0=py38h06a4308_0
  • ply=3.11=py38_0
  • pooch=1.7.0=py38h06a4308_0
  • prometheus_client=0.20.0=pyhd8ed1ab_0
  • prompt-toolkit=3.0.47=pyha770c72_0
  • prompt_toolkit=3.0.47=hd8ed1ab_0
  • psutil=6.0.0=py38hfb59056_0
  • ptyprocess=0.7.0=pyhd3deb0d_0
  • pulseaudio-client=17.0=hb77b528_0
  • pure_eval=0.2.3=pyhd8ed1ab_0
  • pyasn1=0.6.0=pyhd8ed1ab_0
  • pyasn1-modules=0.4.0=pyhd8ed1ab_0
  • pybedtools=0.10.0=py38hd638cd3_2
  • pybigwig=0.3.22=py38hf8a4f86_0
  • pycparser=2.22=pyhd8ed1ab_0
  • pyerfa=2.0.0=py38h27cfd23_0
  • pygments=2.18.0=pyhd8ed1ab_0
  • pyjwt=2.8.0=pyhd8ed1ab_1
  • pyopenssl=23.2.0=pyhd8ed1ab_1
  • pyparsing=3.0.9=py38h06a4308_0
  • pyqt=5.15.10=py38h6a678d5_0
  • pyqt5-sip=12.13.0=py38h5eee18b_0
  • pysam=0.21.0=py38h1c8baaf_0
  • pysocks=1.7.1=py38h06a4308_0
  • python=3.8.15=h257c98d_0_cpython
  • python-dateutil=2.9.0post0=py38h06a4308_2
  • python-fastjsonschema=2.20.0=pyhd8ed1ab_0
  • python-flatbuffers=1.12=pyhd8ed1ab_1
  • python-json-logger=2.0.7=pyhd8ed1ab_0
  • python-tzdata=2023.3=pyhd3eb1b0_0
  • python_abi=3.8=2_cp38
  • pytz=2024.1=py38h06a4308_0
  • pyu2f=0.1.5=pyhd8ed1ab_0
  • pyyaml=6.0.1=py38h5eee18b_0
  • pyzmq=26.0.3=py38ha44f8e3_0
  • qt-main=5.15.2=h110a718_10
  • re2=2021.04.01=h9c3ff4c_0
  • readline=8.2=h5eee18b_0
  • referencing=0.35.1=pyhd8ed1ab_0
  • requests=2.32.3=py38h06a4308_0
  • requests-oauthlib=2.0.0=pyhd8ed1ab_0
  • rfc3339-validator=0.1.4=pyhd8ed1ab_0
  • rfc3986-validator=0.1.1=pyh9f0ad1d_0
  • rpds-py=0.19.1=py38h4005ec7_0
  • rsa=4.9=pyhd8ed1ab_0
  • scikit-learn=1.3.0=py38h1128e8f_1
  • scipy=1.10.1=py38h32ae08f_1
  • seaborn=0.13.2=py38h06a4308_0
  • send2trash=1.8.3=pyh0d859eb_0
  • setuptools=69.5.1=py38h06a4308_0
  • sip=6.7.12=py38h6a678d5_0
  • six=1.16.0=pyhd3eb1b0_1
  • snappy=1.1.10=hdb0a2a9_1
  • sniffio=1.3.1=pyhd8ed1ab_0
  • sortedcontainers=2.4.0=pyhd3eb1b0_0
  • soupsieve=2.5=pyhd8ed1ab_1
  • sqlite=3.45.3=h5eee18b_0
  • stack_data=0.6.2=pyhd8ed1ab_0
  • statsmodels=0.14.0=py38ha9d4c09_0
  • tabulate=0.9.0=py38h06a4308_0
  • tensorboard-plugin-wit=1.8.1=pyhd8ed1ab_0
  • tensorflow-base=2.4.0=py38h01d9eeb_0
  • termcolor=2.4.0=pyhd8ed1ab_0
  • terminado=0.18.1=pyh0d859eb_0
  • threadpoolctl=3.5.0=py38h2f386ee_0
  • tinycss2=1.3.0=pyhd8ed1ab_0
  • tk=8.6.14=h39e8969_0
  • tomli=2.0.1=py38h06a4308_0
  • tornado=6.4.1=py38h5eee18b_0
  • traitlets=5.14.3=pyhd8ed1ab_0
  • types-python-dateutil=2.9.0.20240316=pyhd8ed1ab_0
  • typing_extensions=4.12.2=pyha770c72_0
  • typing_utils=0.1.0=pyhd8ed1ab_0
  • unicodedata2=15.1.0=py38h5eee18b_0
  • uri-template=1.3.0=pyhd8ed1ab_0
  • urllib3=2.2.2=py38h06a4308_0
  • wcwidth=0.2.13=pyhd8ed1ab_0
  • webcolors=24.6.0=pyhd8ed1ab_0
  • webencodings=0.5.1=pyhd8ed1ab_2
  • websocket-client=1.8.0=pyhd8ed1ab_0
  • werkzeug=3.0.3=pyhd8ed1ab_0
  • wheel=0.43.0=py38h06a4308_0
  • wrapt=1.16.0=py38h01eb140_0
  • xcb-util=0.4.0=hd590300_1
  • xcb-util-image=0.4.0=h8ee46fc_1
  • xcb-util-keysyms=0.4.0=h8ee46fc_1
  • xcb-util-renderutil=0.3.9=hd590300_1
  • xcb-util-wm=0.4.1=h8ee46fc_1
  • xkeyboard-config=2.42=h4ab18f5_0
  • xorg-kbproto=1.0.7=h7f98852_1002
  • xorg-libice=1.1.1=hd590300_0
  • xorg-libsm=1.2.4=h7391055_0
  • xorg-libx11=1.8.9=h8ee46fc_0
  • xorg-libxau=1.0.11=hd590300_0
  • xorg-libxext=1.3.4=h0b41bf4_2
  • xorg-libxrender=0.9.11=hd590300_0
  • xorg-renderproto=0.11.1=h7f98852_1002
  • xorg-xextproto=7.3.0=h0b41bf4_1003
  • xorg-xf86vidmodeproto=2.3.1=h7f98852_1002
  • xorg-xproto=7.0.31=h27cfd23_1007
  • xz=5.2.6=h166bdaf_0
  • yaml=0.2.5=h7b6447c_0
  • yarl=1.9.4=py38h01eb140_0
  • zeromq=4.3.5=h59595ed_1
  • zipp=3.17.0=py38h06a4308_0
  • zlib=1.2.13=h4ab18f5_6
  • zstd=1.5.6=ha6fb4c9_0
  • pip:
    • asciitree==0.3.3
    • bioframe==0.7.2
    • cachetools==5.4.0
    • cooler==0.10.2
    • cooltools==0.7.1
    • cytoolz==0.12.3
    • dill==0.3.8
    • flatbuffers==24.3.25
    • gast==0.4.0
    • google-auth==2.32.0
    • google-auth-oauthlib==1.0.0
    • grpcio==1.65.1
    • imageio==2.34.2
    • keras==2.13.1
    • lazy-loader==0.4
    • libclang==18.1.1
    • llvmlite==0.41.1
    • multiprocess==0.70.16
    • numba==0.58.1
    • numpy==1.21.5
    • protobuf==4.25.4
    • pyfaidx==0.8.1.1
    • pywavelets==1.4.1
    • scikit-image==0.21.0
    • simplejson==3.19.2
    • tensorboard==2.13.0
    • tensorboard-data-server==0.7.2
    • tensorflow==2.13.1
    • tensorflow-estimator==2.13.0
    • tensorflow-io-gcs-filesystem==0.34.0
    • tifffile==2023.7.10
    • toolz==0.12.1
    • typing-extensions==4.5.0
      prefix: user/bin/.conda/akita
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant