forked from ReactionMechanismGenerator/PyDQED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
158 lines (121 loc) · 5.04 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This file contains unit tests for PyDAS.
"""
import unittest
from pydqed import DQED
import math
import numpy
################################################################################
class Optimization1(DQED):
"""
A simple optimization of the function f(x) = (x - 100)^4 with no
constraints.
"""
def evaluate(self, x):
Neq = self.Neq; Nvars = self.Nvars; Ncons = self.Ncons
f = numpy.zeros((Neq), numpy.float64)
J = numpy.zeros((Neq, Nvars), numpy.float64)
fcons = numpy.zeros((Ncons), numpy.float64)
Jcons = numpy.zeros((Ncons, Nvars), numpy.float64)
f[0] = (x[0] - 100.)**4
J[0,0] = 4 * (x[0] - 100.)**3
return f, J, fcons, Jcons
class Optimization2(DQED):
"""
An optimization of the parameters (a, b, c, d) of the equation
f(t) = a*exp(b*t) + c*exp(d*t)
and linear constraint
0.05 <= b - d
"""
def __init__(self, tdata, fdata):
self.tdata = tdata
self.fdata = fdata
def evaluate(self, x):
Neq = self.Neq; Nvars = self.Nvars; Ncons = self.Ncons
f = numpy.zeros((Neq), numpy.float64)
J = numpy.zeros((Neq, Nvars), numpy.float64)
fcons = numpy.zeros((Ncons), numpy.float64)
Jcons = numpy.zeros((Ncons, Nvars), numpy.float64)
for i in range(Neq):
f[i] = x[0] * math.exp(x[1]*self.tdata[i]) + x[2] * math.exp(x[3]*self.tdata[i]) - self.fdata[i]
for i in range(Neq):
J[i,0] = math.exp(x[1] * self.tdata[i])
J[i,1] = x[0] * self.tdata[i] * math.exp(x[1] * self.tdata[i])
J[i,2] = math.exp(x[3] * self.tdata[i])
J[i,3] = x[2] * self.tdata[i] * math.exp(x[3] * self.tdata[i])
fcons[0] = x[1] - x[3]
Jcons[0,0] = 0.0
Jcons[0,1] = 1.0
Jcons[0,2] = 0.0
Jcons[0,3] = -1.0
return f, J, fcons, Jcons
################################################################################
class DQEDCheck(unittest.TestCase):
"""
Contains unit tests of the DASSL wrapper.
"""
def test1a(self):
"""
Test the optimization of f(x) = (x - 100)^4 without bounds.
"""
x0 = numpy.ones((1), numpy.float64)
opt = Optimization1()
opt.initialize(Nvars=1, Ncons=0, Neq=1, bounds=None, tolf=1e-16, told=1e-8, tolx=1e-8, maxIter=100)
x, igo = opt.solve(x0)
self.assertTrue(igo in [2,4,6,7], 'Unexpected return status %i from DQED' % igo)
self.assertAlmostEqual(x[0] / 100.0, 1.0, 5)
def test1b(self):
"""
Test the optimization of f(x) = (x - 100)^4 with an upper bound.
"""
x0 = numpy.ones((1), numpy.float64)
opt = Optimization1()
opt.initialize(Nvars=1, Ncons=0, Neq=1, bounds=[(None,50)], tolf=1e-16, told=1e-8, tolx=1e-8, maxIter=100)
x, igo = opt.solve(x0)
self.assertTrue(igo in [2,4,6,7], 'Unexpected return status %i from DQED' % igo)
self.assertAlmostEqual(x[0] / 50.0, 1.0, 5)
def test1c(self):
"""
Test the optimization of f(x) = (x - 100)^4 with a lower bound.
"""
x0 = numpy.ones((1), numpy.float64)
opt = Optimization1()
opt.initialize(Nvars=1, Ncons=0, Neq=1, bounds=[(-50,None)], tolf=1e-16, told=1e-8, tolx=1e-8, maxIter=100)
x, igo = opt.solve(x0)
self.assertTrue(igo in [2,4,6,7], 'Unexpected return status %i from DQED' % igo)
self.assertAlmostEqual(x[0] / 100.0, 1.0, 5)
def test2(self):
"""
An optimization of the parameters (a, b, c, d) of the equation
f(t) = a*exp(b*t) + c*exp(d*t)
given several pairs of values (t, f(t)) and subject to the bounds
0 <= a
-25.0 <= b <= 0
0 <= c
-25.0 <= d <= 0
and linear constraint
0.05 <= b - d
"""
tdata = numpy.array([0.05, 0.1, 0.4, 0.5, 1.0], numpy.float64)
fdata = numpy.array([2.206, 1.994, 1.350, 1.216, 0.7358], numpy.float64)
bounds = [
(0.0,None),
(-25.0,0.0),
(0.0,None),
(-25.0,0.0),
(0.05,None),
]
x0 = numpy.zeros(4, numpy.float64)
opt = Optimization2(tdata, fdata)
opt.initialize(Nvars=4, Ncons=1, Neq=5, bounds=bounds, tolf=1e-5, told=1e-5, tolx=1e-5, maxIter=100)
x, igo = opt.solve(x0)
self.assertTrue(igo in [2,4,6,7], 'Unexpected return status %i from DQED' % igo)
self.assertAlmostEqual(x[0] / 1.999475, 1.0, 4)
self.assertAlmostEqual(x[1] / -0.999801, 1.0, 4)
self.assertAlmostEqual(x[2] / 0.500057, 1.0, 4)
self.assertAlmostEqual(x[3] / -9.953988, 1.0, 4)
################################################################################
if __name__ == '__main__':
unittest.main( testRunner = unittest.TextTestRunner(verbosity=2) )