-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathBrain.py
318 lines (271 loc) · 13.2 KB
/
Brain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import mxnet as mx
import numpy as np
import random
from collections import deque
from env.wlanenvironment import wlanEnv
import time
import pickle
import os
# Hyper Parameters:
FRAME_PER_ACTION = 1
GAMMA = 0.6 # decay rate of past observations
OBSERVE = 100. # timesteps to observe before training
EXPLORE = 200000. # frames over which to anneal epsilon
FINAL_EPSILON = 0.001 # 0.001 # final value of epsilon
INITIAL_EPSILON = 0.1 # 0.01 # starting value of epsilon
REPLAY_MEMORY = 50000 # number of previous transitions to remember
BATCH_SIZE = 32 # size of minibatch
UPDATE_TIME = 10
RNN_NUMS_LAYER = 1
RNN_NUMS_HIDDEN = 512
ctx = mx.cpu()
class BrainDQN:
def __init__(self, numActions, numAps, numAdditionDim, seqLen, param_file=None):
# init replay memory
self.replayMemory = self.loadReplayMemory()
# init some parameters
self.timeStep = 0
self.epsilon = INITIAL_EPSILON
self.numActions = numActions
self.numAps = numAps
self.seqLen = seqLen
self.numAdditionDim = numAdditionDim
self.target = self.createQNetwork(isTrain=False)
self.Qnet = self.createQNetwork()
if param_file != None:
self.Qnet.load_params(param_file)
self.copyTargetQNetwork()
# saving and loading networks
def sym(self, predict=False):
stack = mx.rnn.SequentialRNNCell()
for i in range(RNN_NUMS_LAYER):
stack.add(mx.rnn.LSTMCell(num_hidden=RNN_NUMS_HIDDEN, prefix='lstm_l%d_' % i))
data = mx.sym.Variable('data')
yInput = mx.sym.Variable('yInput')
actionInput = mx.sym.Variable('actionInput')
if self.numAdditionDim > 0:
additionData = mx.sym.Variable('additionData')
stack.reset()
outputs, states = stack.unroll(self.seqLen, inputs=data, merge_outputs=True)
if predict :
pred = mx.sym.Reshape(states[0], shape=(1, -1))
else:
pred = mx.sym.Reshape(states[0], shape=(BATCH_SIZE, -1))
if self.numAdditionDim > 0:
# Concat additional dimension data
concatPred = mx.sym.Concat(pred, additionData, dim=1)
fc1 = mx.sym.FullyConnected(data=concatPred, num_hidden=512, name='fc1')
else:
fc1 = mx.sym.FullyConnected(data=pred, num_hidden=512, name='fc1')
relu4 = mx.sym.Activation(data=fc1, act_type='relu', name='relu4')
Qvalue = mx.sym.FullyConnected(data=relu4, num_hidden=self.numActions, name='qvalue')
temp = Qvalue * actionInput
coeff = mx.sym.sum(temp, axis=1, name='temp1')
output = (coeff - yInput) ** 2
loss = mx.sym.MakeLoss(output)
if predict:
return mx.sym.Group([Qvalue, pred])
else:
return loss
def createQNetwork(self, bef_args=None, isTrain=True):
if isTrain:
if self.numAdditionDim > 0:
modQ = mx.mod.Module(symbol=self.sym(), data_names=('data', 'actionInput', 'additionData'), label_names=('yInput',),
context=ctx)
batch = BATCH_SIZE
modQ.bind(data_shapes=[('data', (batch, self.seqLen, self.numAps)), ('actionInput', (batch, self.numActions)),
('additionData', (batch, self.numAdditionDim))],
label_shapes=[('yInput', (batch,))],
for_training=isTrain)
else:
modQ = mx.mod.Module(symbol=self.sym(), data_names=('data', 'actionInput'), label_names=('yInput',),
context=ctx)
batch = BATCH_SIZE
modQ.bind(data_shapes=[('data', (batch, self.seqLen, self.numAps)), ('actionInput', (batch, self.numActions))],
label_shapes=[('yInput', (batch,))],
for_training=isTrain)
modQ.init_params(initializer=mx.init.Xavier(factor_type="in", magnitude=2.34), arg_params=bef_args)
modQ.init_optimizer(
optimizer='adam',
optimizer_params={
'learning_rate': 0.0002,
'wd': 0.,
'beta1': 0.5,
})
else:
if self.numAdditionDim > 0:
modQ = mx.mod.Module(symbol=self.sym(predict=True), data_names=('data', 'additionData'), label_names=None, context=ctx)
batch = 1
modQ.bind(data_shapes=[('data', (batch, self.seqLen, self.numAps)),
('additionData', (batch, self.numAdditionDim))],
for_training=isTrain)
else:
modQ = mx.mod.Module(symbol=self.sym(predict=True), data_names=('data',), label_names=None, context=ctx)
batch = 1
modQ.bind(data_shapes=[('data', (batch, self.seqLen, self.numAps))],
for_training=isTrain)
modQ.init_params(initializer=mx.init.Xavier(factor_type="in", magnitude=2.34), arg_params=bef_args)
return modQ
def copyTargetQNetwork(self):
arg_params, aux_params = self.Qnet.get_params()
# arg={}
# for k,v in arg_params.iteritems():
# arg[k]=arg_params[k].asnumpy()
# print arg_params, aux_params
self.target.init_params(initializer=None, arg_params=arg_params, aux_params=aux_params, force_init=True)
# args,auxs=self.target.get_params()
# arg1={}
# for k,v in args.iteritems():
# arg1[k]=args[k].asnumpy()
print 'time to copy'
def trainQNetwork(self):
# Step 1: obtain random minibatch from replay memory
minibatch = random.sample(self.replayMemory, BATCH_SIZE)
action_batch = np.squeeze([data[1] for data in minibatch])
reward_batch = np.squeeze([data[2] for data in minibatch])
if self.numAdditionDim > 0:
rssiState_batch = np.squeeze([data[0][0] for data in minibatch])
additionalState_batch = np.squeeze([data[0][1] for data in minibatch])
nextRssiState_batch = [data[3][0] for data in minibatch]
nextAdditionalState_batch = [data[3][1] for data in minibatch]
else:
rssiState_batch = np.squeeze([data[0] for data in minibatch])
nextRssiState_batch = [data[3] for data in minibatch]
# Step 2: calculate y
y_batch = np.zeros((BATCH_SIZE,))
Qvalue = []
for i in range(BATCH_SIZE):
if self.numAdditionDim > 0:
self.target.forward(mx.io.DataBatch([mx.nd.array(nextRssiState_batch[i].reshape(1, self.seqLen, self.numAps), ctx),
mx.nd.array(nextAdditionalState_batch[i].reshape(1, self.numAdditionDim), ctx)],
[]))
else:
self.target.forward(
mx.io.DataBatch([mx.nd.array(nextRssiState_batch[i].reshape(1, self.seqLen, self.numAps), ctx)],
[]))
Qvalue.append(self.target.get_outputs()[0].asnumpy())
Qvalue_batch = np.squeeze(Qvalue)
terminal = np.squeeze([data[4] for data in minibatch])
y_batch[:] = reward_batch
if (terminal == False).shape[0] > 0:
y_batch[terminal == False] += (GAMMA * np.max(Qvalue_batch, axis=1))[terminal == False]
if self.numAdditionDim > 0:
self.Qnet.forward(mx.io.DataBatch([mx.nd.array(rssiState_batch, ctx),
mx.nd.array(action_batch, ctx),
mx.nd.array(additionalState_batch, ctx)],
[mx.nd.array(y_batch, ctx)]), is_train=True)
else:
self.Qnet.forward(mx.io.DataBatch([mx.nd.array(rssiState_batch, ctx),
mx.nd.array(action_batch, ctx)],
[mx.nd.array(y_batch, ctx)]), is_train=True)
self.Qnet.backward()
self.Qnet.update()
# save network every 1000 iteration
if self.timeStep % 100 == 0:
self.Qnet.save_params('saved_networks/network-dqn_mx%04d.params' % (self.timeStep))
if self.timeStep % UPDATE_TIME == 0:
self.copyTargetQNetwork()
def setInitState(self, observation):
self.currentState = observation
def setPerception(self, nextObservation, action, reward, terminal):
# newState = np.append(nextObservation,self.currentState[:,:,1:],axis = 2)
if reward >= 5: # FIXME: add this condition due to that the env is not perfect
self.replayMemory.append((self.currentState, action, reward, nextObservation, terminal))
if len(self.replayMemory) > REPLAY_MEMORY:
self.replayMemory.popleft()
if self.timeStep > OBSERVE:
# Train the network
self.trainQNetwork()
# print info
state = ""
if self.timeStep <= OBSERVE:
state = "observe"
elif self.timeStep > OBSERVE and self.timeStep <= OBSERVE + EXPLORE:
state = "explore"
else:
state = "train"
print "TIMESTEP", self.timeStep, "/ STATE", state, \
"/ EPSILON", self.epsilon
self.currentState = nextObservation
self.timeStep += 1
def getAction(self, retIndex=False):
# print type(self.currentState)
if self.numAdditionDim > 0:
self.target.forward(mx.io.DataBatch([mx.nd.array(self.currentState[0].reshape(1, self.seqLen, self.numAps), ctx),
mx.nd.array(self.currentState[1].reshape(1, self.numAdditionDim))],
[]))
else:
self.target.forward(
mx.io.DataBatch([mx.nd.array(self.currentState.reshape(1, self.seqLen, self.numAps), ctx)],
[]))
QValue = np.squeeze(self.target.get_outputs()[0].asnumpy())
action = np.zeros(self.numActions)
action_index = 0
if self.timeStep > OBSERVE and self.timeStep % FRAME_PER_ACTION == 0:
ran = random.random()
if ran <= self.epsilon:
print 'random: ' + str(ran)
action_index = random.randrange(self.numActions)
action[action_index] = 1
else:
print 'Qvalue: ' + str(QValue)
action_index = np.argmax(QValue)
action[action_index] = 1
else:
action[action_index] = 1 # do nothing
# change episilon
if self.epsilon > FINAL_EPSILON and self.timeStep > OBSERVE:
self.epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE
if retIndex:
return action_index, QValue
else:
# print 'type return action :' + str(type(action))
return action, QValue
def predict(self, observation):
if self.numAdditionDim > 0:
self.target.forward(mx.io.DataBatch([mx.nd.array(observation[0].reshape(1, self.seqLen, self.numAps), ctx),
mx.nd.array(observation[1].reshape(1, self.numAdditionDim))],
[]))
else:
self.target.forward(
mx.io.DataBatch([mx.nd.array(observation.reshape(1, self.seqLen, self.numAps), ctx)],
[]))
QValue = np.squeeze(self.target.get_outputs()[0].asnumpy())
feature_vector = np.squeeze(self.target.get_outputs()[1].asnumpy())
action = np.zeros(self.numActions)
action_index = np.argmax(QValue)
action[action_index] = 1
return action, QValue, action_index, feature_vector
def saveReplayMemory(self):
print 'Memory Size: ' + str(len(self.replayMemory))
with open('saved_networks/replayMemory.pkl', 'wb') as handle:
pickle.dump(self.replayMemory, handle, -1) # Using the highest protocol available
pass
def loadReplayMemory(self):
if os.path.exists('saved_networks/replayMemory.pkl'):
with open('saved_networks/replayMemory.pkl', 'rb') as handle:
replayMemory = pickle.load(handle) # Warning: If adding something here, also modifying saveDataset
else:
replayMemory = deque()
return replayMemory
if __name__ == '__main__':
CONTROLLER_IP = '10.103.12.166:8080'
BUFFER_LEN = 60
ENV_REFRESH_INTERVAL = 0.1
env = wlanEnv(CONTROLLER_IP, BUFFER_LEN, timeInterval=ENV_REFRESH_INTERVAL)
env.start()
numAPs, numActions, numAdditionDim = env.getDimSpace()
brain = BrainDQN(numActions, numAPs, numAdditionDim, BUFFER_LEN)
while not env.observe()[0]:
time.sleep(0.5)
observation0 = env.observe()[1]
brain.setInitState(observation0)
np.set_printoptions(threshold=5)
while True:
action = brain.getAction()
print 'action:\n' + str(action.argmax())
reward, throught, nextObservation = env.step(action)
print 'reward:\n' + str(reward)
print 'throught: ' + str(throught)
print 'observation:\n' + str(nextObservation)
brain.setPerception(nextObservation, action, reward, False)