-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
45 lines (38 loc) · 1.48 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import time
import torch
import base64
from io import BytesIO
from torch import autocast
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
# Init is ran on server startup
# Load your model to GPU as a global variable here using the variable name "model"
def init():
global model
t1 = time.time()
model_id = "dreamlike-art/dreamlike-photoreal-2.0"
model = StableDiffusionPipeline.from_pretrained(model_id).to("cuda")
t2 = time.time()
print("Init took - ",t2-t1,"seconds")
# Inference is ran for every server call
# Reference your preloaded global model variable here.
def inference(model_inputs:dict) -> dict:
global model
# Parse out your arguments
prompt = model_inputs.get('prompt', None)
negative = model_inputs.get('negative', None)
steps = model_inputs.get('num_inference_steps', 50)
guidance = model_inputs.get('guidance_scale', 7)
if prompt == None:
return {'message': "No prompt provided"}
# Run the model
t1 = time.time()
with autocast("cuda"):
image = model(prompt, negative_prompt=negative, num_images_per_prompt=1, num_inference_steps=steps, guidance_scale=guidance).images[0]
t2 = time.time()
print("Inference took - ",t2-t1,"seconds")
buffered = BytesIO()
image.save(buffered,format="JPEG")
image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
# Return the results as a dictionary
return {'image_base64': image_base64}