forked from midas-journal/midas-journal-784
-
Notifications
You must be signed in to change notification settings - Fork 0
/
itkNormalizedCorrelationTwoImageToOneImageMetric.h
executable file
·123 lines (93 loc) · 4.97 KB
/
itkNormalizedCorrelationTwoImageToOneImageMetric.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkNormalizedCorrelationTwoImageToOneImageMetric.h,v $
Language: C++
Date: $Date: 2010/12/20 $
Version: $Revision: 1.0 $
Author: Jian Wu (eewujian@hotmail.com)
Univerisity of Florida
Virginia Commonwealth University
This program was modified from the ITK program--itkNormalizedCorrelationImageToImageMetric.h
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkNormalizedCorrelationTwoImageToOneImageMetric_h
#define __itkNormalizedCorrelationTwoImageToOneImageMetric_h
#include "itkTwoImageToOneImageMetric.h"
#include "itkCovariantVector.h"
#include "itkPoint.h"
namespace itk
{
/** \class NormalizedCorrelationTwoImageToOneImageMetric
* \brief Computes similarity between two fixed images and one moving image
*
* This metric computes the correlation between pixels in the two fixed images
* and pixels in the moving image. The spatial correspondance between
* two fixed images and the moving image is established through a Transform. Pixel values are
* taken from the fixed images, their positions are mapped to the moving
* image and result in general in non-grid position on it. Values at these
* non-grid position of the moving image are interpolated using user-selected
* Interpolators. The correlation is normalized by the autocorrelations of both
* the fixed and moving images.
*
* \ingroup RegistrationMetrics
*/
template < class TFixedImage, class TMovingImage >
class ITK_EXPORT NormalizedCorrelationTwoImageToOneImageMetric :
public TwoImageToOneImageMetric< TFixedImage, TMovingImage>
{
public:
/** Standard class typedefs. */
typedef NormalizedCorrelationTwoImageToOneImageMetric Self;
typedef TwoImageToOneImageMetric<TFixedImage, TMovingImage > Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(NormalizedCorrelationTwoImageToOneImageMetric, Object);
/** Types transferred from the base class */
typedef typename Superclass::RealType RealType;
typedef typename Superclass::TransformType TransformType;
typedef typename Superclass::TransformPointer TransformPointer;
typedef typename Superclass::TransformParametersType TransformParametersType;
typedef typename Superclass::TransformJacobianType TransformJacobianType;
typedef typename Superclass::GradientPixelType GradientPixelType;
typedef typename Superclass::MeasureType MeasureType;
typedef typename Superclass::DerivativeType DerivativeType;
typedef typename Superclass::FixedImageType FixedImageType;
typedef typename Superclass::MovingImageType MovingImageType;
typedef typename Superclass::FixedImageConstPointer FixedImageConstPointer;
typedef typename Superclass::MovingImageConstPointer MovingImageConstPointer;
/** Get the derivatives of the match measure. */
void GetDerivative( const TransformParametersType & parameters,
DerivativeType & Derivative ) const;
/** Get the value for single valued optimizers. */
MeasureType GetValue( const TransformParametersType & parameters ) const;
/** Get value and derivatives for multiple valued optimizers. */
void GetValueAndDerivative( const TransformParametersType & parameters,
MeasureType& Value, DerivativeType& Derivative ) const;
/** Set/Get SubtractMean boolean. If true, the sample mean is subtracted
* from the sample values in the cross-correlation formula and
* typically results in narrower valleys in the cost fucntion.
* Default value is false. */
itkSetMacro( SubtractMean, bool );
itkGetConstReferenceMacro( SubtractMean, bool );
itkBooleanMacro( SubtractMean );
protected:
NormalizedCorrelationTwoImageToOneImageMetric();
virtual ~NormalizedCorrelationTwoImageToOneImageMetric() {};
void PrintSelf(std::ostream& os, Indent indent) const;
private:
NormalizedCorrelationTwoImageToOneImageMetric(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
bool m_SubtractMean;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkNormalizedCorrelationTwoImageToOneImageMetric.txx"
#endif
#endif