-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathsource_segmenter.py
705 lines (594 loc) · 36.9 KB
/
source_segmenter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
'''
Here are implementations for source segmenter trained on single modality
'''
import os
import time
import shutil
import numpy as np
from collections import OrderedDict
import __future__
import logging
import matplotlib
from tensorflow.python import debug as tf_debug
from layers import *
from ops import *
from lib import _dice_eval, _save, _save_nii_prediction, _jaccard, _dice, _label_decomp, _indicator_eval, read_nii_image, read_nii_object
np.random.seed(0)
contour_map = {
"bg": 0,
"lv_myo": 1,
"la_blood": 2,
"lv_blood": 3,
"aa": 4,
}
verbose = True
if verbose == True:
logging.getLogger().addHandler(logging.StreamHandler())
view = True
logging.basicConfig(filename = "curr_log", level=logging.DEBUG, format='%(asctime)s %(message)s')
raw_size = [256, 256, 3] # original raw input size
volume_size = [256, 256, 3] # volume size after processing
label_size = [256, 256, 1]
decomp_feature = {
'dsize_dim0': tf.FixedLenFeature([], tf.int64),
'dsize_dim1': tf.FixedLenFeature([], tf.int64),
'dsize_dim2': tf.FixedLenFeature([], tf.int64),
'lsize_dim0': tf.FixedLenFeature([], tf.int64),
'lsize_dim1': tf.FixedLenFeature([], tf.int64),
'lsize_dim2': tf.FixedLenFeature([], tf.int64),
'data_vol': tf.FixedLenFeature([], tf.string),
'label_vol': tf.FixedLenFeature([], tf.string)}
class Full_DRN(object):
def __init__(self, channels, n_class, batch_size, adapt_module = True, main_trainable = True, adapt_trainable = True, cost_kwargs={}, **kwargs):
"""
Dilated Residual Network
:param channels: number of channels in the input image, set as 3
:param n_class: number of output labels, set as 5
:param batch_size: number of batch_size
:param adapt_module: (optional)
:param main_trainable: (optional)
:param adapt_trainable: (optional)
:param cost_kwargs: (optional) kwargs passed to the cost function
"""
tf.reset_default_graph()
self.n_class = n_class
self.batch_size = batch_size
self.summaries = kwargs.get("summaries", True)
self.conv_weights = []
self.x = tf.placeholder("float", shape=[None, volume_size[0], volume_size[1], channels])
self.y = tf.placeholder("float", shape=[None, label_size[0], label_size[1], self.n_class])
self.main_bn = tf.placeholder_with_default(True, shape = None, name = "main_batchnorm_training_switch")
self.main_trainable = main_trainable
self.adapt_trainable = adapt_trainable
self.adapt_bn = tf.placeholder_with_default(True, shape = None, name = "adapt_batchnorm_training_switch")
self.keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
logits = self.create_network(input_size = raw_size, input_channel = channels, num_cls = self.n_class, feature_base = 16, keep_prob = self.keep_prob, adapt_module = adapt_module,\
main_bn = self.main_bn, main_trainable = self.main_trainable,\
adapt_bn = self.adapt_bn, adapt_trainable = self.adapt_trainable)
self.predicter = pixel_wise_softmax_2(logits)
self.compact_pred = tf.argmax(self.predicter, 3)
self.compact_y = tf.argmax(self.y, 3)
self.cost, self.regularizer_loss = self._get_cost(logits, cost_kwargs)
self.confusion_matrix = tf.confusion_matrix(tf.reshape(self.compact_y,[-1]), tf.reshape(self.compact_pred, [-1]), num_classes = self.n_class)
def create_network(self, input_size, input_channel, num_cls, feature_base = 16, keep_prob = 0.75, main_bn = True, main_trainable = True,\
adapt_module = True, adapt_bn = True, adapt_trainable = True):
with tf.name_scope('group_1') as scope:
w1_1 = weight_variable(shape = [3, 3, input_channel, feature_base], trainable = adapt_trainable)
conv1_1 = conv2d(self.x, w1_1, keep_prob )
wr1_1 = weight_variable(shape = [3, 3, feature_base, feature_base], trainable = adapt_trainable)
wr1_2 = weight_variable(shape = [3, 3, feature_base, feature_base], trainable = adapt_trainable)
block1_1 = residual_block(conv1_1, wr1_1, wr1_2, keep_prob , is_train = adapt_bn, leak = True, bn_trainable = adapt_trainable)
out1 = max_pool2d(block1_1, n = 2)
self.conv_weights.append(w1_1)
self.conv_weights.append(wr1_1)
self.conv_weights.append(wr1_2)
with tf.name_scope('group_2') as scope:
wr2_1 = weight_variable(shape = [3, 3, feature_base, feature_base * 2], trainable = adapt_trainable)
wr2_2 = weight_variable(shape = [3, 3, feature_base * 2, feature_base * 2], trainable = adapt_trainable)
block2_1 = residual_block(out1, wr2_1, wr2_2, inc_dim = True, leak = True, keep_prob = keep_prob, is_train = adapt_bn, bn_trainable = adapt_trainable)
out2 = max_pool2d(block2_1, n = 2)
self.conv_weights.append(wr2_1)
self.conv_weights.append(wr2_2)
with tf.name_scope('group_3') as scope:
wr3_1 = weight_variable( shape = [3, 3, feature_base * 2, feature_base * 4], trainable = adapt_trainable )
wr3_2 = weight_variable( shape = [3, 3, feature_base * 4, feature_base * 4], trainable = adapt_trainable )
block3_1 = residual_block( out2, wr3_1, wr3_2, keep_prob, inc_dim = True, leak = True, is_train = adapt_bn, bn_trainable = adapt_trainable )
wr3_3 = weight_variable( shape = [3, 3, feature_base * 4, feature_base * 4], trainable = adapt_trainable )
wr3_4 = weight_variable( shape = [3, 3, feature_base * 4, feature_base * 4], trainable = adapt_trainable )
block3_2 = residual_block( block3_1, wr3_3, wr3_4,keep_prob = keep_prob, leak = True, is_train = adapt_bn, bn_trainable = adapt_trainable )
out3 = max_pool2d(block3_2, n = 2)
self.conv_weights.append(wr3_1)
self.conv_weights.append(wr3_2)
self.conv_weights.append(wr3_3)
self.conv_weights.append(wr3_4)
with tf.name_scope('group_4') as scope:
wr4_1 = weight_variable( shape = [3, 3, feature_base * 4, feature_base * 8], trainable = adapt_trainable )
wr4_2 = weight_variable( shape = [3, 3, feature_base * 8, feature_base * 8], trainable = adapt_trainable )
block4_1 = residual_block( out3, wr4_1, wr4_2, keep_prob, inc_dim = True, leak = True, is_train = adapt_bn, bn_trainable = adapt_trainable )
wr4_3 = weight_variable( shape = [3, 3, feature_base * 8, feature_base * 8], trainable = adapt_trainable )
wr4_4 = weight_variable( shape = [3, 3, feature_base * 8, feature_base * 8], trainable = adapt_trainable )
block4_2 = residual_block( block4_1, wr4_3, wr4_4, keep_prob, is_train = adapt_bn, leak = True, bn_trainable = adapt_trainable )
self.conv_weights.append(wr4_1)
self.conv_weights.append(wr4_2)
self.conv_weights.append(wr4_4)
self.conv_weights.append(wr4_4)
with tf.name_scope('group_5') as scope:
wr5_1 = weight_variable( shape = [3, 3, feature_base * 8, feature_base * 16], trainable = main_trainable )
wr5_2 = weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable )
block5_1 = residual_block( block4_2, wr5_1, wr5_2, keep_prob = keep_prob, leak = True, inc_dim = True, is_train = main_bn, bn_trainable = main_trainable )
wr5_3 = weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable )
wr5_4 = weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable )
block5_2 = residual_block( block5_1, wr5_3, wr5_4, keep_prob = keep_prob, leak = True, is_train = main_bn, bn_trainable = main_trainable )
self.conv_weights.append( wr5_1 )
self.conv_weights.append( wr5_2 )
self.conv_weights.append( wr5_3 )
self.conv_weights.append( wr5_4 )
with tf.name_scope('group_6') as scope:
wr6_1 = weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable )
wr6_2 = weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable )
block6_1 = residual_block( block5_2, wr6_1, wr6_2, keep_prob = keep_prob, leak = True, is_train = main_bn, bn_trainable = main_trainable )
wr6_3 = weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable )
wr6_4 = weight_variable( shape = [3, 3, feature_base * 16, feature_base * 16], trainable = main_trainable )
block6_2 = residual_block( block6_1, wr6_3, wr6_4, keep_prob = keep_prob, leak = True, is_train = main_bn, bn_trainable = main_trainable )
self.conv_weights.append( wr6_1 )
self.conv_weights.append( wr6_2 )
self.conv_weights.append( wr6_3 )
self.conv_weights.append( wr6_4 )
with tf.name_scope('group_7') as scope:
wr7_1 = weight_variable( shape = [3, 3, feature_base * 16, feature_base * 32], trainable = main_trainable )
wr7_2 = weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = main_trainable )
block7_1 = residual_block( block6_2, wr7_1, wr7_2, keep_prob = keep_prob, leak = True, inc_dim = True, is_train = main_bn, bn_trainable = main_trainable )
wr7_3 = weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = main_trainable )
wr7_4 = weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = main_trainable )
block7_2 = residual_block( block7_1, wr7_3, wr7_4, keep_prob = keep_prob, leak = True, is_train = main_bn, bn_trainable = main_trainable )
self.conv_weights.append( wr7_1 )
self.conv_weights.append( wr7_2 )
self.conv_weights.append( wr7_3 )
self.conv_weights.append( wr7_4 )
with tf.name_scope('group_8') as scope:
wr8_1 = weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = main_trainable )
wr8_2 = weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = main_trainable )
block8_1 = DR_block( block7_2, wr8_1, wr8_2, keep_prob = keep_prob, leak = True, rate = 2, is_train = main_bn, bn_trainable = main_trainable )
wr8_3 = weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = main_trainable )
wr8_4 = weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = main_trainable )
block8_2 = DR_block( block8_1, wr8_3, wr8_4, keep_prob = keep_prob, leak = True, rate = 2, is_train = main_bn, bn_trainable = main_trainable )
self.conv_weights.append( wr8_1 )
self.conv_weights.append( wr8_2 )
self.conv_weights.append( wr8_3 )
self.conv_weights.append( wr8_4 )
with tf.name_scope('group_9') as scope:
w9_1 = weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = main_trainable )
conv9_1 = conv_bn_relu2d( block8_2, w9_1, keep_prob, is_train = main_bn, bn_trainable = main_trainable, leak = True )
w9_2 = weight_variable( shape = [3, 3, feature_base * 32, feature_base * 32], trainable = main_trainable )
conv9_2 = conv_bn_relu2d( conv9_1, w9_2, keep_prob, is_train = main_bn, bn_trainable = main_trainable, leak = True )
self.conv_weights.append( w9_1 )
self.conv_weights.append( w9_2 )
with tf.name_scope('group_10') as scope:
local_size = 8 * 8 # (r^2)
w10_1 = weight_variable( shape = [3, 3, feature_base * 32, local_size * num_cls * 8], trainable = main_trainable )
conv10_1 = conv2d( conv9_2, w10_1, keep_prob_ = keep_prob, padding = 'SYMMETRIC')
self.conv_weights.append(w10_1)
flat_conv10_1 = PS(conv10_1, r = 8, n_channel = num_cls * 8, batch_size = self.batch_size)
with tf.name_scope('output') as scope:
w11_1 = weight_variable( shape = [5, 5, num_cls * 8, num_cls], trainable = main_trainable )
logits = conv2d( flat_conv10_1, w11_1, keep_prob_ = 1., padding = 'SYMMETRIC' )
self.conv_weights.append(w11_1)
return logits
def _get_cost(self, logits, cost_kwargs):
"""
Compute cost for segmentation network
Here we jointly use weighted cross-entropy (for class imbalance) and Dice loss
"""
loss = 0
dice_flag = cost_kwargs.pop("dice_flag", True)
cross_flag = cost_kwargs.pop("cross_flag", False)
miu_dice = cost_kwargs.pop("miu_dice", None)
miu_cross = cost_kwargs.pop("miu_cross", None)
reg_coeff = cost_kwargs.pop("regularizer", 1e-4)
if cross_flag is True:
self.weighted_loss = self._softmax_weighted_loss(logits)
loss += miu_cross * self.weighted_loss
if dice_flag is True:
self.dice_loss = self._dice_loss_fun(logits)
loss += miu_dice * self.dice_loss
self.dice_eval, self.dice_eval_arr = _dice_eval(self.compact_pred, self.y, self.n_class)
self.dice_eval_c1 = self.dice_eval_arr[1]
self.dice_eval_c2 = self.dice_eval_arr[2]
self.dice_eval_c3 = self.dice_eval_arr[3]
self.dice_eval_c4 = self.dice_eval_arr[4]
regularizers = sum([tf.nn.l2_loss(variable) for variable in self.conv_weights])
return loss, reg_coeff * regularizers
def _softmax_weighted_loss(self, logits):
'''
calculate weighted cross-entropy loss, the weight is dynamic dependent on the data
'''
softmaxpred = tf.nn.softmax(logits)
for i in range(self.n_class):
gti = self.y[:,:,:,i]
predi = softmaxpred[:,:,:,i]
weighted = 1-(tf.reduce_sum(gti) / tf.reduce_sum(self.y))
if i == 0:
raw_loss = -1.0 * weighted * gti * tf.log(tf.clip_by_value(predi, 0.005, 1))
else:
raw_loss += -1.0 * weighted * gti * tf.log(tf.clip_by_value(predi, 0.005, 1))
loss = tf.reduce_mean(raw_loss)
return loss
def _dice_loss_fun(self, logits):
'''
calculate dice loss, - 2*interesction/union, with relaxed for gradients backpropagation
'''
dice = 0
eps = 1e-7
softmaxpred = tf.nn.softmax(logits)
for i in range(self.n_class):
inse = tf.reduce_sum(softmaxpred[:, :, :, i]*self.y[:, :, :, i])
l = tf.reduce_sum(softmaxpred[:, :, :, i]*softmaxpred[:, :, :, i])
r = tf.reduce_sum(self.y[:, :, :, i])
dice += 2.0 * inse/(l+r+eps)
return -1.0 * dice / self.n_class
def restore(self, sess, model_path):
"""
Restores a session from a checkpoint
:param sess: current session instance
:param model_path: path to checkpoint file location
"""
saver = tf.train.Saver(tf.contrib.framework.get_variables() + tf.get_collection_ref("internal_batchnorm_variables") )
logging.info("Model restored from file: %s" % model_path)
try:
saver.restore(sess, model_path)
logging.info("Model restored from file: %s" % model_path)
except:
variables = tf.global_variables()
reader = tf.pywrap_tensorflow.NewCheckpointReader(model_path)
var_keep_dic = reader.get_variable_to_shape_map()
variables_to_restore = []
for v in variables:
if v.name.split(':')[0] in var_keep_dic:
variables_to_restore.append(v)
restorer = tf.train.Saver(variables_to_restore)
restorer.restore(sess, model_path)
logging.info("Model restored from file: %s with relaxation" % model_path)
logging.info("Restored variables: ")
for vname in list(var_keep_dic.keys()):
logging.info(str(vname))
class Trainer(object):
"""
Train a network instance
:param net: the network instance to train
:param train_list: image files for training
:param val_list: image files for validation
:param test_nii_list: image files used at testing mode
"""
def __init__(self, net, train_list, val_list, num_cls, batch_size, test_nii_list = None, test_label_list = None, optimizer="momentum", \
opt_kwargs={}, num_epochs = 100, checkpoint_space = 500, lr_update_flag = False):
self.net = net
self.batch_size = batch_size
self.num_cls = num_cls
self.checkpoint_space = checkpoint_space
self.opt_kwargs = opt_kwargs
self.optimizer = optimizer
self.train_list = train_list
self.val_list =val_list
self.test_label_list = test_label_list
self.test_nii_list = test_nii_list
self.train_queue = tf.train.string_input_producer(train_list, num_epochs = None, shuffle = True)
self.val_queue = tf.train.string_input_producer(val_list, num_epochs = None, shuffle = True)
self.dice = tf.Variable( -1 * np.ones( self.num_cls))
self.jaccard = tf.Variable( -1 * np.ones( self.num_cls))
self.loss_dict = {}
self.lr_update_flag = lr_update_flag
def next_batch(self, input_queue, capacity = 120, num_threads = 4, min_after_dequeue = 30, label_type = 'float'):
""" move original input pipeline here"""
reader = tf.TFRecordReader()
fid, serialized_example = reader.read(input_queue)
parser = tf.parse_single_example(serialized_example, features = decomp_feature)
dsize_dim0 = tf.cast(parser['dsize_dim0'], tf.int32)
dsize_dim1 = tf.cast(parser['dsize_dim1'], tf.int32)
dsize_dim2 = tf.cast(parser['dsize_dim2'], tf.int32)
lsize_dim0 = tf.cast(parser['lsize_dim0'], tf.int32)
lsize_dim1 = tf.cast(parser['lsize_dim1'], tf.int32)
lsize_dim2 = tf.cast(parser['dsize_dim2'], tf.int32)
data_vol = tf.decode_raw(parser['data_vol'], tf.float32)
label_vol = tf.decode_raw(parser['label_vol'], tf.float32)
data_vol = tf.reshape(data_vol, raw_size)
label_vol = tf.reshape(label_vol, raw_size)
data_vol = tf.slice(data_vol, [0,0,0], volume_size)
label_vol = tf.slice(label_vol, [0,0,1], label_size)
data_feed, label_feed, fid_feed = tf.train.shuffle_batch([data_vol, label_vol, fid], batch_size =self.batch_size , capacity = capacity, \
num_threads = num_threads, min_after_dequeue = min_after_dequeue)
pair_feed = tf.concat([data_feed, label_feed], axis = 3)
return pair_feed, fid_feed
def _get_optimizer(self, training_iters, global_step):
if self.optimizer == "momentum":
learning_rate = self.opt_kwargs.pop("learning_rate", 0.2)
decay_rate = self.opt_kwargs.pop("decay_rate", 0.95)
momentum = self.opt_kwargs.pop("momentum", 0.2)
self.learning_rate_node = tf.train.exponential_decay(learning_rate=learning_rate,
global_step=global_step,
decay_steps=training_iters,
decay_rate=decay_rate,
staircase=True)
optimizer = tf.train.MomentumOptimizer(learning_rate=self.learning_rate_node, momentum=momentum,
**self.opt_kwargs).minimize(self.net.cost + self.net.regularizer_loss,
global_step=global_step)
elif self.optimizer == "adam":
learning_rate = self.opt_kwargs.pop("learning_rate", None)
self.learning_rate_node = tf.Variable(learning_rate)
self._new_LR = learning_rate # this for using a new specified learning rate when RESTORING a model
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_node,
**self.opt_kwargs).minimize(self.net.cost + self.net.regularizer_loss ,\
global_step=global_step)
return optimizer
def _initialize(self, training_iters, output_path, restore):
self.global_step = tf.Variable(0)
scalar_summaries = []
scalar_summaries.append(tf.summary.scalar('loss', self.net.cost))
scalar_summaries.append(tf.summary.scalar('regularizer_loss', self.net.regularizer_loss))
scalar_summaries.append(tf.summary.scalar('weighted_loss', self.net.weighted_loss))
scalar_summaries.append(tf.summary.scalar('dice_loss', self.net.dice_loss))
scalar_summaries.append(tf.summary.scalar('dice_eval', self.net.dice_eval))
scalar_summaries.append(tf.summary.scalar('dice_eval_c1', self.net.dice_eval_c1))
scalar_summaries.append(tf.summary.scalar('dice_eval_c2', self.net.dice_eval_c2))
scalar_summaries.append(tf.summary.scalar('dice_eval_c3', self.net.dice_eval_c3))
scalar_summaries.append(tf.summary.scalar('dice_eval_c4', self.net.dice_eval_c4))
train_images = []
train_images.append(tf.summary.image('train_pred', tf.expand_dims(tf.cast(self.net.compact_pred, tf.float32), 3 )) )
train_images.append(tf.summary.image('image', tf.expand_dims(tf.cast(self.net.x[:,:,:,1], tf.float32), 3 )) )
train_images.append(tf.summary.image('GND', tf.expand_dims(tf.cast(self.net.compact_y, tf.float32), 3)))
val_images = []
val_images.append(tf.summary.image('val_pred', tf.expand_dims(tf.cast(self.net.compact_pred, tf.float32), 3)))
val_images.append(tf.summary.image('image', tf.expand_dims(tf.cast(self.net.x[:,:,:,1], tf.float32), 3)))
val_images.append(tf.summary.image('validation_GND', tf.expand_dims(tf.cast(self.net.compact_y, tf.float32), 3)))
self.scalar_summary_op = tf.summary.merge(scalar_summaries)
self.train_image_summary_op = tf.summary.merge(train_images)
self.val_image_summary_op = tf.summary.merge(val_images)
self.optimizer = self._get_optimizer(training_iters, self.global_step)
scalar_summaries.append(tf.summary.scalar('learning_rate', self.learning_rate_node))
init_glb = tf.global_variables_initializer()
init_loc = tf.variables_initializer(tf.local_variables())
output_path = os.path.abspath(output_path)
if not restore:
logging.info("Removing '{:}'".format(output_path))
shutil.rmtree(output_path, ignore_errors=True)
if not os.path.exists(output_path):
logging.info("Allocating '{:}'".format(output_path))
os.makedirs(output_path)
return init_glb, init_loc
def train(self, output_path, restored_path=None, restore=False, training_iters=100, epochs=100, display_step=5, dropout=0.75):
"""
Lauches the training process
:param output_path: path where to store checkpoints
:param restored_path: path where checkpoints are read from, for resume training
:param restore: Flag if previous model should be restored
:param training_iters: number of training mini batch iteration
:param epochs: number of epochs
:param display_step: number of steps till outputting stats
:param dropout: keep probability for dropout rate
"""
save_path = os.path.join(output_path, "model.cpkt")
if epochs == 0:
return save_path
init_glb, init_loc = self._initialize(training_iters, output_path, restore)
config = tf.ConfigProto()
config.gpu_options.allow_growth = False
with tf.Session(config=config) as sess:
sess.run([init_glb, init_loc])
coord = tf.train.Coordinator()
if restore:
if restored_path is None:
raise Exception("No restore path is provided")
ckpt = tf.train.get_checkpoint_state(restored_path)
if ckpt and ckpt.model_checkpoint_path:
self.net.restore(sess, ckpt.model_checkpoint_path)
else:
print("Unable to restore, start from beginning")
if self.lr_update_flag is True:
sess.run(tf.assign(self.learning_rate_node, self._new_LR))
logging.info("New learning rate %s has been loaded"%str(self._new_LR))
train_summary_writer = tf.summary.FileWriter(output_path + "/train_log", graph=sess.graph)
val_summary_writer = tf.summary.FileWriter(output_path + "/val_log", graph=sess.graph)
feed_all, feed_fid = self.next_batch(self.train_queue)
feed_val, feed_val_fid = self.next_batch(self.val_queue)
threads = tf.train.start_queue_runners(sess = sess, coord = coord)
train_vars = tf.trainable_variables()
for _var in train_vars:
logging.info(_var.name)
for epoch in range(epochs):
for step in range((epoch*training_iters), ((epoch+1)*training_iters)):
logging.info("Running step %s epoch %s ..."%(str(step), str(epoch)))
start = time.time()
batch, fid = sess.run([feed_all, feed_fid])
batch_x = batch[:,:,:,0:3]
raw_y = batch[:,:,:,3] # a single map with multi-classes
batch_y = _label_decomp(self.num_cls, raw_y) # n_class binary maps
fids = [ _single.decode('utf-8').split(":")[0] for _single in fid ]
_, loss, lr = sess.run((self.optimizer, self.net.cost, self.learning_rate_node),
feed_dict={self.net.x: batch_x,
self.net.y: batch_y,
self.net.main_bn: True,
self.net.adapt_bn: True,
self.net.keep_prob: dropout})
if verbose:
logging.info("Training at step %s epoch %s , loss is %0.4f"%(str(step), str(epoch), loss))
logging.info("Time elapsed %s seconds"%(str(time.time() - start)))
if step % display_step == 0:
self.output_minibatch_stats(sess, train_summary_writer, step, batch_x, batch_y, raw_y)
if step % (display_step * 1) == 0:
val_batch = feed_val.eval()
val_x = val_batch[:,:,:,0:3]
val_y = val_batch[:,:,:,3]
val_y = _label_decomp(self.num_cls, val_y)
detail_flag = False
if step % (1 * display_step) == 0:
detail_flag = True
self.val_stats(sess, val_summary_writer, step, val_x, val_y, detail_flag)
if step % (self.checkpoint_space) == 0 and step > 10000:
if step == 0:
pass
else:
save_path = _save(sess, save_path, global_step = self.global_step.eval())
last_ckpt = tf.train.get_checkpoint_state(output_path)
if last_ckpt and last_ckpt.model_checkpoint_path:
self.net.restore(sess, last_ckpt.model_checkpoint_path)
logging.info("Model has been restored for re-allocation")
_pre_lr = sess.run(self.learning_rate_node)
sess.run( tf.assign(self.learning_rate_node, _pre_lr * 0.9 ) )
logging.info("Global step %s"%str(self.global_step.eval()))
logging.info("Optimization Finished!")
coord.request_stop()
coord.join(threads)
return save_path
def output_minibatch_stats(self, sess, summary_writer, step, batch_x, batch_y, compact_y = None):
"""
minibatch stats for tensorboard observation
"""
summary_str, summary_img, loss= sess.run([\
self.scalar_summary_op,
self.train_image_summary_op,
self.net.cost],
feed_dict={self.net.x: batch_x,
self.net.y: batch_y,
self.net.keep_prob: 1.})
summary_writer.add_summary(summary_str, step)
summary_writer.add_summary(summary_img, step)
summary_writer.flush()
def val_stats(self, sess, summary_writer, step, batch_x, batch_y, detail = False):
if detail is False:
summary_str, summary_img, loss= sess.run([\
self.scalar_summary_op,
self.val_image_summary_op,
self.net.cost],
feed_dict ={self.net.x: batch_x,
self.net.y: batch_y,
self.net.main_bn: False,
self.net.adapt_bn: False,
self.net.keep_prob: 1.})
else:
pred, curr_conf_mat, summary_str, summary_img, loss = sess.run([\
self.net.compact_pred,
self.net.confusion_matrix,\
self.scalar_summary_op,
self.val_image_summary_op,
self.net.cost],
feed_dict ={self.net.x: batch_x,
self.net.y: batch_y,
self.net.main_bn: False,
self.net.adapt_bn: False,
self.net.keep_prob: 1.0 })
_indicator_eval(curr_conf_mat)
summary_writer.add_summary(summary_str, step)
summary_writer.add_summary(summary_img, step)
summary_writer.flush()
def test_eval(self, sess, output_path, flip_correction = True, save_result = False):
"""
Doing inference given test cases, in the format of .nii file
Args:
flip correction: use this to correct orientation mismatch between tfrecords and nii file
"""
pred_folder = os.path.join(output_path, "test_pred")
try:
os.makedirs(pred_folder)
except:
logging.info("Cannot create prediction result folder")
self.test_pair_list = list(zip(self.test_label_list, self.test_nii_list))
sample_eval_list = [] # evaluation of each sample
for idx_file, pair in enumerate(self.test_pair_list):
sample_cm = np.zeros([self.num_cls, self.num_cls]) # confusion matrix for each sample
label_fid = pair[0]
nii_fid = pair[1]
if not os.path.isfile(nii_fid):
raise Exception("cannot find sample %s"%str(nii_fid))
raw = read_nii_image(nii_fid)
raw_y = read_nii_image(label_fid)
nii_pred_bname = "dense_pred_" + os.path.basename(nii_fid)
if flip_correction is True:
raw = np.flip(raw, axis = 0)
raw = np.flip(raw, axis = 1)
raw_y = np.flip(raw_y, axis = 0)
raw_y = np.flip(raw_y, axis = 1)
tmp_y = np.zeros(raw_y.shape)
for ii in range( int(floor( raw.shape[2] // self.net.batch_size ) ) ):
vol = np.zeros( [self.net.batch_size, raw_size[0], raw_size[1], raw_size[2]] )
slice_y = np.zeros( [self.net.batch_size, label_size[0], label_size[1]] )
for idx, jj in enumerate(range(ii * self.net.batch_size : (ii + 1) * self.net.batch_size)):
vol[idx,...] = raw[ ..., jj -1: jj+2 ].copy()
slice_y[idx,...] = raw_y[..., jj ].copy()
vol_y = _label_decomp(self.num_cls, slice_y)
pred, curr_conf_mat= sess.run([self.net.compact_pred, self.net.confusion_matrix], \
feed_dict = {self.net.x: vol, self.net.y: vol_y, self.net.keep_prob: 1.0, \
self.net.main_bn: False, self.net.adapt_bn: False})
for idx, jj in enumerate(range(ii * self.net.batch_size : (ii + 1) * self.net.batch_size)):
tmp_y[..., jj] = pred[idx, ... ].copy()
logging.info(" part %s of %s of sample %s has been processed.."%(str(ii), str(floor(raw.shape[2] // self.net.batch_size)), str(idx_file)))
sample_cm += curr_conf_mat
sample_dice = _dice(sample_cm)
sample_jaccard = _jaccard(sample_cm)
sample_eval_list.append((sample_dice, sample_jaccard))
if save_result is True:
_save_nii_prediction(raw_y, tmp_y, nii_fid, pred_folder, out_bname = nii_pred_bname)
subject_dice_list, subject_jaccard_list = self.sample_metric_stddev(sample_eval_list)
return subject_dice_list, subject_jaccard_list
def sample_metric_stddev(self, sample_eval_list):
"""
calculate stddev of each organ across samples
"""
metric_mat = np.zeros( [len(sample_eval_list), self.num_cls, 2] )
for organ, ind in list(contour_map.items()):
for ii in range(len(sample_eval_list)):
metric_mat[ii, int(ind), 0] = sample_eval_list[ii][0][int(ind)] # dice
metric_mat[ii, int(ind), 1] = sample_eval_list[ii][1][int(ind)] # jaccard
print("------- inside the sample_metric_stddev file ---- ")
for organ, ind in list(contour_map.items()):
print(( "organ: %s"%organ ))
print(( "dice_stddev: %s"%( np.std(metric_mat[:, int(ind), 0] ) ) ))
print(( "jaccard_stddev: %s"%( np.std(metric_mat[:, int(ind), 1] ) ) ))
print("------- inside the sample_metric_stddev file ---- ")
for organ, ind in list(contour_map.items()):
print(( "organ: %s"%organ ))
print(( "dice_mean: %s"%( np.mean(metric_mat[:, int(ind), 0] ) ) ))
print(( "jaccard_mean %s"%( np.mean(metric_mat[:, int(ind), 1] ) ) ))
print("-------")
print(( "all_dice_mean: %s"%( np.mean(metric_mat[:, 1:, 0] ) ) ))
print(("all_jaccard_mean: %s" % (np.mean(metric_mat[:, 1:, 1] ) )))
subject_level_list = np.mean(metric_mat, axis=0)
subject_level_list_dice = subject_level_list[:,0]
subject_level_list_jaccard = subject_level_list[:1]
return subject_level_list_dice, subject_level_list_jaccard
def test_choose_model(self, this_model, output_path):
init_glb, init_loc = self._initialize(1, output_path, True)
with tf.Session() as sess:
sess.run([init_glb, init_loc])
self.net.restore(sess, this_model)
logging.info("model has been loaded!")
dice, jac = self.test_eval(sess, output_path)
logging.info("testing finished")
return dice, jac
# def _indicator_eval(self, cm, verbose = True):
# """
# Decompose confusion matrix and get statistics, for logging training procedure
# """
# my_dice = _dice(cm)
# my_jaccard = _jaccard(cm)
# print(cm)
# for organ, ind in list(contour_map.items()):
# print(("organ: %s "%organ))
# print(("dice: %s " %(my_dice[int(ind)])))
# print(("jaccard: %s " %(my_jaccard[int(ind)])))
# return my_dice, my_jaccard
#
# def test(self, output_path, restored_path):
# """
# Launches the test process
#
# :param output_path: path where to store checkpoints
# :param restored_path: path where checkpoints are read from
# """
# init_glb, init_loc = self._initialize(1, output_path, True)
#
# with tf.Session() as sess:
# sess.run([ init_glb, init_loc] )
# ckpt = tf.train.get_checkpoint_state(restored_path)
# self.net.restore(sess, ckpt.model_checkpoint_path)
# logging.info("model has been loaded!")
# self.test_eval(sess, output_path)
# logging.info("testing finished")