forked from GoogleCloudPlatform/DataflowTemplates
-
Notifications
You must be signed in to change notification settings - Fork 0
/
JdbcToBigQuery.java
144 lines (132 loc) · 5.9 KB
/
JdbcToBigQuery.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
* Copyright (C) 2018 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.cloud.teleport.templates;
import com.google.api.services.bigquery.model.TableRow;
import com.google.auto.service.AutoService;
import com.google.cloud.teleport.io.DynamicJdbcIO;
import com.google.cloud.teleport.templates.common.JdbcConverters;
import com.google.cloud.teleport.util.KMSEncryptedNestedValueProvider;
import java.security.Security;
import javax.net.ssl.SSLServerSocketFactory;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.PipelineResult;
import org.apache.beam.sdk.harness.JvmInitializer;
import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO;
import org.apache.beam.sdk.io.gcp.bigquery.TableRowJsonCoder;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.ValueProvider;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* A template that copies data from a relational database using JDBC to an existing BigQuery table.
*/
public class JdbcToBigQuery {
private static final Logger LOG = LoggerFactory.getLogger(JdbcToBigQuery.class);
/**
* Custom JvmInitializer to override jdk.tls.disabledAlgorithms through the template parameters.
*/
@AutoService(JvmInitializer.class)
public static class CustomJvmInitializer implements JvmInitializer {
@Override
public void onStartup() {}
@Override
public void beforeProcessing(PipelineOptions options) {
JdbcConverters.JdbcToBigQueryOptions pipelineOptions =
options.as(JdbcConverters.JdbcToBigQueryOptions.class);
if (pipelineOptions.getDisabledAlgorithms() != null
&& pipelineOptions.getDisabledAlgorithms().get() != null) {
String value = pipelineOptions.getDisabledAlgorithms().get();
// if the user sets disabledAlgorithms to "none" then set "jdk.tls.disabledAlgorithms" to ""
if (value.equals("none")) {
value = "";
}
LOG.info("disabledAlgorithms is set to {}.", value);
Security.setProperty("jdk.tls.disabledAlgorithms", value);
SSLServerSocketFactory fact = (SSLServerSocketFactory) SSLServerSocketFactory.getDefault();
LOG.info("Supported Ciper Suites: " + String.join("\n", fact.getSupportedCipherSuites()));
}
}
}
private static ValueProvider<String> maybeDecrypt(
ValueProvider<String> unencryptedValue, ValueProvider<String> kmsKey) {
return new KMSEncryptedNestedValueProvider(unencryptedValue, kmsKey);
}
/**
* Main entry point for executing the pipeline. This will run the pipeline asynchronously. If
* blocking execution is required, use the {@link
* JdbcToBigQuery#run(JdbcConverters.JdbcToBigQueryOptions)} method to start the pipeline and
* invoke {@code result.waitUntilFinish()} on the {@link PipelineResult}
*
* @param args The command-line arguments to the pipeline.
*/
public static void main(String[] args) {
// Parse the user options passed from the command-line
JdbcConverters.JdbcToBigQueryOptions options =
PipelineOptionsFactory.fromArgs(args)
.withValidation()
.as(JdbcConverters.JdbcToBigQueryOptions.class);
run(options);
}
/**
* Runs the pipeline with the supplied options.
*
* @param options The execution parameters to the pipeline.
* @return The result of the pipeline execution.
*/
private static PipelineResult run(JdbcConverters.JdbcToBigQueryOptions options) {
// Create the pipeline
Pipeline pipeline = Pipeline.create(options);
/*
* Steps: 1) Read records via JDBC and convert to TableRow via RowMapper
* 2) Append TableRow to BigQuery via BigQueryIO
*/
pipeline
/*
* Step 1: Read records via JDBC and convert to TableRow
* via {@link org.apache.beam.sdk.io.jdbc.JdbcIO.RowMapper}
*/
.apply(
"Read from JdbcIO",
DynamicJdbcIO.<TableRow>read()
.withDataSourceConfiguration(
DynamicJdbcIO.DynamicDataSourceConfiguration.create(
options.getDriverClassName(),
maybeDecrypt(options.getConnectionURL(), options.getKMSEncryptionKey()))
.withUsername(
maybeDecrypt(options.getUsername(), options.getKMSEncryptionKey()))
.withPassword(
maybeDecrypt(options.getPassword(), options.getKMSEncryptionKey()))
.withDriverJars(options.getDriverJars())
.withConnectionProperties(options.getConnectionProperties()))
.withQuery(options.getQuery())
.withCoder(TableRowJsonCoder.of())
.withRowMapper(JdbcConverters.getResultSetToTableRow()))
/*
* Step 2: Append TableRow to an existing BigQuery table
*/
.apply(
"Write to BigQuery",
BigQueryIO.writeTableRows()
.withoutValidation()
.withCreateDisposition(BigQueryIO.Write.CreateDisposition.CREATE_NEVER)
.withWriteDisposition(BigQueryIO.Write.WriteDisposition.WRITE_APPEND)
.withCustomGcsTempLocation(options.getBigQueryLoadingTemporaryDirectory())
.to(options.getOutputTable()));
// Execute the pipeline and return the result.
return pipeline.run();
}
}