forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreader.py
344 lines (307 loc) · 13.6 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Reads data that is produced by dataset/gen_data.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
from absl import logging
import tensorflow as tf
import util
gfile = tf.gfile
QUEUE_SIZE = 2000
QUEUE_BUFFER = 3
# See nets.encoder_resnet as reference for below input-normalizing constants.
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_SD = (0.229, 0.224, 0.225)
FLIP_RANDOM = 'random' # Always perform random flipping.
FLIP_ALWAYS = 'always' # Always flip image input, used for test augmentation.
FLIP_NONE = 'none' # Always disables flipping.
class DataReader(object):
"""Reads stored sequences which are produced by dataset/gen_data.py."""
def __init__(self, data_dir, batch_size, img_height, img_width, seq_length,
num_scales, file_extension, random_scale_crop, flipping_mode,
random_color, imagenet_norm, shuffle, input_file='train'):
self.data_dir = data_dir
self.batch_size = batch_size
self.img_height = img_height
self.img_width = img_width
self.seq_length = seq_length
self.num_scales = num_scales
self.file_extension = file_extension
self.random_scale_crop = random_scale_crop
self.flipping_mode = flipping_mode
self.random_color = random_color
self.imagenet_norm = imagenet_norm
self.shuffle = shuffle
self.input_file = input_file
def read_data(self):
"""Provides images and camera intrinsics."""
with tf.name_scope('data_loading'):
with tf.name_scope('enqueue_paths'):
seed = random.randint(0, 2**31 - 1)
self.file_lists = self.compile_file_list(self.data_dir, self.input_file)
image_paths_queue = tf.train.string_input_producer(
self.file_lists['image_file_list'], seed=seed,
shuffle=self.shuffle,
num_epochs=(1 if not self.shuffle else None)
)
seg_paths_queue = tf.train.string_input_producer(
self.file_lists['segment_file_list'], seed=seed,
shuffle=self.shuffle,
num_epochs=(1 if not self.shuffle else None))
cam_paths_queue = tf.train.string_input_producer(
self.file_lists['cam_file_list'], seed=seed,
shuffle=self.shuffle,
num_epochs=(1 if not self.shuffle else None))
img_reader = tf.WholeFileReader()
_, image_contents = img_reader.read(image_paths_queue)
seg_reader = tf.WholeFileReader()
_, seg_contents = seg_reader.read(seg_paths_queue)
if self.file_extension == 'jpg':
image_seq = tf.image.decode_jpeg(image_contents)
seg_seq = tf.image.decode_jpeg(seg_contents, channels=3)
elif self.file_extension == 'png':
image_seq = tf.image.decode_png(image_contents, channels=3)
seg_seq = tf.image.decode_png(seg_contents, channels=3)
with tf.name_scope('load_intrinsics'):
cam_reader = tf.TextLineReader()
_, raw_cam_contents = cam_reader.read(cam_paths_queue)
rec_def = []
for _ in range(9):
rec_def.append([1.0])
raw_cam_vec = tf.decode_csv(raw_cam_contents, record_defaults=rec_def)
raw_cam_vec = tf.stack(raw_cam_vec)
intrinsics = tf.reshape(raw_cam_vec, [3, 3])
with tf.name_scope('convert_image'):
image_seq = self.preprocess_image(image_seq) # Converts to float.
if self.random_color:
with tf.name_scope('image_augmentation'):
image_seq = self.augment_image_colorspace(image_seq)
image_stack = self.unpack_images(image_seq)
seg_stack = self.unpack_images(seg_seq)
if self.flipping_mode != FLIP_NONE:
random_flipping = (self.flipping_mode == FLIP_RANDOM)
with tf.name_scope('image_augmentation_flip'):
image_stack, seg_stack, intrinsics = self.augment_images_flip(
image_stack, seg_stack, intrinsics,
randomized=random_flipping)
if self.random_scale_crop:
with tf.name_scope('image_augmentation_scale_crop'):
image_stack, seg_stack, intrinsics = self.augment_images_scale_crop(
image_stack, seg_stack, intrinsics, self.img_height,
self.img_width)
with tf.name_scope('multi_scale_intrinsics'):
intrinsic_mat = self.get_multi_scale_intrinsics(intrinsics,
self.num_scales)
intrinsic_mat.set_shape([self.num_scales, 3, 3])
intrinsic_mat_inv = tf.matrix_inverse(intrinsic_mat)
intrinsic_mat_inv.set_shape([self.num_scales, 3, 3])
if self.imagenet_norm:
im_mean = tf.tile(
tf.constant(IMAGENET_MEAN), multiples=[self.seq_length])
im_sd = tf.tile(
tf.constant(IMAGENET_SD), multiples=[self.seq_length])
image_stack_norm = (image_stack - im_mean) / im_sd
else:
image_stack_norm = image_stack
with tf.name_scope('batching'):
if self.shuffle:
(image_stack, image_stack_norm, seg_stack, intrinsic_mat,
intrinsic_mat_inv) = tf.train.shuffle_batch(
[image_stack, image_stack_norm, seg_stack, intrinsic_mat,
intrinsic_mat_inv],
batch_size=self.batch_size,
capacity=QUEUE_SIZE + QUEUE_BUFFER * self.batch_size,
min_after_dequeue=QUEUE_SIZE)
else:
(image_stack, image_stack_norm, seg_stack, intrinsic_mat,
intrinsic_mat_inv) = tf.train.batch(
[image_stack, image_stack_norm, seg_stack, intrinsic_mat,
intrinsic_mat_inv],
batch_size=self.batch_size,
num_threads=1,
capacity=QUEUE_SIZE + QUEUE_BUFFER * self.batch_size)
logging.info('image_stack: %s', util.info(image_stack))
return (image_stack, image_stack_norm, seg_stack, intrinsic_mat,
intrinsic_mat_inv)
def unpack_images(self, image_seq):
"""[h, w * seq_length, 3] -> [h, w, 3 * seq_length]."""
with tf.name_scope('unpack_images'):
image_list = [
image_seq[:, i * self.img_width:(i + 1) * self.img_width, :]
for i in range(self.seq_length)
]
image_stack = tf.concat(image_list, axis=2)
image_stack.set_shape(
[self.img_height, self.img_width, self.seq_length * 3])
return image_stack
@classmethod
def preprocess_image(cls, image):
# Convert from uint8 to float.
return tf.image.convert_image_dtype(image, dtype=tf.float32)
@classmethod
def augment_image_colorspace(cls, image_stack):
"""Apply data augmentation to inputs."""
image_stack_aug = image_stack
# Randomly shift brightness.
apply_brightness = tf.less(tf.random_uniform(
shape=[], minval=0.0, maxval=1.0, dtype=tf.float32), 0.5)
image_stack_aug = tf.cond(
apply_brightness,
lambda: tf.image.random_brightness(image_stack_aug, max_delta=0.1),
lambda: image_stack_aug)
# Randomly shift contrast.
apply_contrast = tf.less(tf.random_uniform(
shape=[], minval=0.0, maxval=1.0, dtype=tf.float32), 0.5)
image_stack_aug = tf.cond(
apply_contrast,
lambda: tf.image.random_contrast(image_stack_aug, 0.85, 1.15),
lambda: image_stack_aug)
# Randomly change saturation.
apply_saturation = tf.less(tf.random_uniform(
shape=[], minval=0.0, maxval=1.0, dtype=tf.float32), 0.5)
image_stack_aug = tf.cond(
apply_saturation,
lambda: tf.image.random_saturation(image_stack_aug, 0.85, 1.15),
lambda: image_stack_aug)
# Randomly change hue.
apply_hue = tf.less(tf.random_uniform(
shape=[], minval=0.0, maxval=1.0, dtype=tf.float32), 0.5)
image_stack_aug = tf.cond(
apply_hue,
lambda: tf.image.random_hue(image_stack_aug, max_delta=0.1),
lambda: image_stack_aug)
image_stack_aug = tf.clip_by_value(image_stack_aug, 0, 1)
return image_stack_aug
@classmethod
def augment_images_flip(cls, image_stack, seg_stack, intrinsics,
randomized=True):
"""Randomly flips the image horizontally."""
def flip(cls, image_stack, seg_stack, intrinsics):
_, in_w, _ = image_stack.get_shape().as_list()
fx = intrinsics[0, 0]
fy = intrinsics[1, 1]
cx = in_w - intrinsics[0, 2]
cy = intrinsics[1, 2]
intrinsics = cls.make_intrinsics_matrix(fx, fy, cx, cy)
return (tf.image.flip_left_right(image_stack),
tf.image.flip_left_right(seg_stack), intrinsics)
if randomized:
prob = tf.random_uniform(shape=[], minval=0.0, maxval=1.0,
dtype=tf.float32)
predicate = tf.less(prob, 0.5)
return tf.cond(predicate,
lambda: flip(cls, image_stack, seg_stack, intrinsics),
lambda: (image_stack, seg_stack, intrinsics))
else:
return flip(cls, image_stack, seg_stack, intrinsics)
@classmethod
def augment_images_scale_crop(cls, im, seg, intrinsics, out_h, out_w):
"""Randomly scales and crops image."""
def scale_randomly(im, seg, intrinsics):
"""Scales image and adjust intrinsics accordingly."""
in_h, in_w, _ = im.get_shape().as_list()
scaling = tf.random_uniform([2], 1, 1.15)
x_scaling = scaling[0]
y_scaling = scaling[1]
out_h = tf.cast(in_h * y_scaling, dtype=tf.int32)
out_w = tf.cast(in_w * x_scaling, dtype=tf.int32)
# Add batch.
im = tf.expand_dims(im, 0)
im = tf.image.resize_area(im, [out_h, out_w])
im = im[0]
seg = tf.expand_dims(seg, 0)
seg = tf.image.resize_area(seg, [out_h, out_w])
seg = seg[0]
fx = intrinsics[0, 0] * x_scaling
fy = intrinsics[1, 1] * y_scaling
cx = intrinsics[0, 2] * x_scaling
cy = intrinsics[1, 2] * y_scaling
intrinsics = cls.make_intrinsics_matrix(fx, fy, cx, cy)
return im, seg, intrinsics
# Random cropping
def crop_randomly(im, seg, intrinsics, out_h, out_w):
"""Crops image and adjust intrinsics accordingly."""
# batch_size, in_h, in_w, _ = im.get_shape().as_list()
in_h, in_w, _ = tf.unstack(tf.shape(im))
offset_y = tf.random_uniform([1], 0, in_h - out_h + 1, dtype=tf.int32)[0]
offset_x = tf.random_uniform([1], 0, in_w - out_w + 1, dtype=tf.int32)[0]
im = tf.image.crop_to_bounding_box(im, offset_y, offset_x, out_h, out_w)
seg = tf.image.crop_to_bounding_box(seg, offset_y, offset_x, out_h, out_w)
fx = intrinsics[0, 0]
fy = intrinsics[1, 1]
cx = intrinsics[0, 2] - tf.cast(offset_x, dtype=tf.float32)
cy = intrinsics[1, 2] - tf.cast(offset_y, dtype=tf.float32)
intrinsics = cls.make_intrinsics_matrix(fx, fy, cx, cy)
return im, seg, intrinsics
im, seg, intrinsics = scale_randomly(im, seg, intrinsics)
im, seg, intrinsics = crop_randomly(im, seg, intrinsics, out_h, out_w)
return im, seg, intrinsics
def compile_file_list(self, data_dir, split, load_pose=False):
"""Creates a list of input files."""
logging.info('data_dir: %s', data_dir)
with gfile.Open(os.path.join(data_dir, '%s.txt' % split), 'r') as f:
frames = f.readlines()
frames = [k.rstrip() for k in frames]
subfolders = [x.split(' ')[0] for x in frames]
frame_ids = [x.split(' ')[1] for x in frames]
image_file_list = [
os.path.join(data_dir, subfolders[i], frame_ids[i] + '.' +
self.file_extension)
for i in range(len(frames))
]
segment_file_list = [
os.path.join(data_dir, subfolders[i], frame_ids[i] + '-fseg.' +
self.file_extension)
for i in range(len(frames))
]
cam_file_list = [
os.path.join(data_dir, subfolders[i], frame_ids[i] + '_cam.txt')
for i in range(len(frames))
]
file_lists = {}
file_lists['image_file_list'] = image_file_list
file_lists['segment_file_list'] = segment_file_list
file_lists['cam_file_list'] = cam_file_list
if load_pose:
pose_file_list = [
os.path.join(data_dir, subfolders[i], frame_ids[i] + '_pose.txt')
for i in range(len(frames))
]
file_lists['pose_file_list'] = pose_file_list
self.steps_per_epoch = len(image_file_list) // self.batch_size
return file_lists
@classmethod
def make_intrinsics_matrix(cls, fx, fy, cx, cy):
r1 = tf.stack([fx, 0, cx])
r2 = tf.stack([0, fy, cy])
r3 = tf.constant([0., 0., 1.])
intrinsics = tf.stack([r1, r2, r3])
return intrinsics
@classmethod
def get_multi_scale_intrinsics(cls, intrinsics, num_scales):
"""Returns multiple intrinsic matrices for different scales."""
intrinsics_multi_scale = []
# Scale the intrinsics accordingly for each scale
for s in range(num_scales):
fx = intrinsics[0, 0] / (2**s)
fy = intrinsics[1, 1] / (2**s)
cx = intrinsics[0, 2] / (2**s)
cy = intrinsics[1, 2] / (2**s)
intrinsics_multi_scale.append(cls.make_intrinsics_matrix(fx, fy, cx, cy))
intrinsics_multi_scale = tf.stack(intrinsics_multi_scale)
return intrinsics_multi_scale