-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathetl.py
131 lines (100 loc) · 4.6 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
import datetime
def process_song_file(cur, filepath):
'''
Extracts song relevant data and artist relevant data from the song data and insert into
the song and artist tables.
Args:
cur (psycopg2.extensions.cursor): connection cursor used to execute statements in the Sparkify database
filepath (str): this argument points to the filepath location of the songplay data
'''
# open song file
df = pd.read_json(filepath, lines = True)
# insert song record
song_data = df[['song_id', 'title', 'artist_id', 'year', 'duration']].values[0]
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = df[['artist_id','artist_name','artist_location','artist_latitude','artist_longitude']].values[0]
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
'''
Extracts timestamp data and Sparkify user relevant data from the songplay log data and inserts the data into the
time and user tables. Extracts the songplay data from the log data and returns song_id and artist_id matches from the song and
artist tables, combines the sonplay data with the song_id and artist_id, then loads into the songplay table in the Sparkify database.
Args:
cur (psycopg2.extensions.cursor): connection cursor used to execute statements in the Sparkify database
filepath (str): this argument points to the filepath location of the songplay data
'''
# open log file
df = pd.read_json(filepath, lines = True)
# filter by NextSong action
df = df[df.page == 'NextSong']
# convert timestamp column to datetime
t = df.ts.apply(lambda x: datetime.datetime.fromtimestamp(x/1000))
df.ts = t
# insert time data records
#time_data =
column_labels = ['start_time', 'hour',' day', 'week', 'month', 'year', 'weekday']
time_df = pd.DataFrame(dict(zip(column_labels, [t, t.dt.hour, t.dt.day, t.dt.week, t.dt.month, t.dt.year, t.dt.weekday])))
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df[['userId','firstName','lastName','gender','level']].drop_duplicates()
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = (
row.ts,
row.userId,
row.level,
songid,
artistid,
row.sessionId,
row.location,
row.userAgent)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
'''
Executes the process_log_file and process_song_file functions on all the JSON files found in the filepath.
Args:
cur (psycopg2.extensions.cursor): connection cursor used to execute statements in the Sparkify database
conn (psycopg2.extensions.connection): database connection object
filepath (str): this argument points to the filepath location of the songplay data
func (user-defined function): function to execute on data extracted in the filepath
'''
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()