This repository has been archived by the owner on May 27, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathConv.lua
192 lines (170 loc) · 6.36 KB
/
Conv.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
local Conv = torch.class('similarityMeasure.Conv')
function Conv:__init(config)
self.mem_dim = config.mem_dim or 150
self.learning_rate = config.learning_rate or 0.01
self.batch_size = config.batch_size or 1 --25
self.num_layers = config.num_layers or 1
self.reg = config.reg or 1e-4
self.structure = config.structure or 'lstm' -- {lstm, bilstm}
self.sim_nhidden = config.sim_nhidden or 150
self.task = config.task or 'sic' -- or 'vid'
-- word embedding
self.emb_vecs = config.emb_vecs
self.emb_dim = config.emb_vecs:size(2)
-- number of similarity rating classes
if self.task == 'sic' then
self.num_classes = 5
elseif self.task == 'vid' then
self.num_classes = 6
else
error("not possible task!")
end
-- optimizer configuration
self.optim_state = { learningRate = self.learning_rate }
-- KL divergence optimization objective
self.criterion = nn.DistKLDivCriterion()
----------------------------------------Combination of ConvNets.
dofile 'models.lua'
print('<model> creating a fresh model')
-- Type of model; Size of vocabulary; Number of output classes
local modelName = 'deepQueryRankingNgramSimilarityOnevsGroupMaxMinMeanLinearExDGpPoinPercpt'
print(modelName)
self.ngram = 3
self.length = self.emb_dim
self.convModel = createModel(modelName, 10000, self.length, self.num_classes, self.ngram)
self.softMaxC = self:ClassifierOOne()
----------------------------------------
local modules = nn.Parallel()
:add(self.convModel)
:add(self.softMaxC)
self.params, self.grad_params = modules:getParameters()
--print(self.params:norm())
--print(self.convModel:parameters()[1][1]:norm())
--print(self.softMaxC:parameters()[1][1]:norm())
end
function Conv:ClassifierOOne()
local maxMinMean = 3
local separator = (maxMinMean+1)*self.mem_dim
local modelQ1 = nn.Sequential()
local ngram = self.ngram
local items = (ngram+1)*3
--local items = (ngram+1) -- no Min and Mean
local NumFilter = self.length --300
local conceptFNum = 20
inputNum = 2*items*items/3+NumFilter*items*items/3+6*NumFilter+(2+NumFilter)*2*ngram*conceptFNum --PoinPercpt model!
modelQ1:add(nn.Linear(inputNum, self.sim_nhidden))
modelQ1:add(nn.Tanh())
modelQ1:add(nn.Linear(self.sim_nhidden, self.num_classes))
modelQ1:add(nn.LogSoftMax())
return modelQ1
end
function Conv:trainCombineOnly(dataset)
--local classes = {1,2}
--local confusion = optim.ConfusionMatrix(classes)
--confusion:zero()
train_looss = 0.0
local indices = torch.randperm(dataset.size)
local zeros = torch.zeros(self.mem_dim)
for i = 1, dataset.size, self.batch_size do
--if i%10 == 1 then
-- xlua.progress(i, dataset.size)
--end
local batch_size = 1 --math.min(i + self.batch_size - 1, dataset.size) - i + 1
-- get target distributions for batch
local targets = torch.zeros(batch_size, self.num_classes)
for j = 1, batch_size do
local sim = -0.1
if self.task == 'sic' or self.task == 'vid' then
sim = dataset.labels[indices[i + j - 1]] * (self.num_classes - 1) + 1
elseif self.task == 'others' then
sim = dataset.labels[indices[i + j - 1]] + 1
else
error("not possible!")
end
local ceil, floor = math.ceil(sim), math.floor(sim)
if ceil == floor then
targets[{j, floor}] = 1
else
targets[{j, floor}] = ceil - sim
targets[{j, ceil}] = sim - floor
end--]]
end
local feval = function(x)
self.grad_params:zero()
local loss = 0
for j = 1, batch_size do
local idx = indices[i + j - 1]
local lsent, rsent = dataset.lsents[idx], dataset.rsents[idx]
local linputs = self.emb_vecs:index(1, lsent:long()):double()
local rinputs = self.emb_vecs:index(1, rsent:long()):double()
local part2 = self.convModel:forward({linputs, rinputs})
local output = self.softMaxC:forward(part2)
loss = self.criterion:forward(output, targets[1])
train_looss = loss + train_looss
local sim_grad = self.criterion:backward(output, targets[1])
local gErrorFromClassifier = self.softMaxC:backward(part2, sim_grad)
self.convModel:backward({linputs, rinputs}, gErrorFromClassifier)
end
-- regularization
loss = loss + 0.5 * self.reg * self.params:norm() ^ 2
self.grad_params:add(self.reg, self.params)
return loss, self.grad_params
end
_, fs = optim.sgd(feval, self.params, self.optim_state)
--train_looss = train_looss + fs[#fs]
end
print('Loss: ' .. train_looss)
end
-- Predict the similarity of a sentence pair.
function Conv:predictCombination(lsent, rsent)
local linputs = self.emb_vecs:index(1, lsent:long()):double()
local rinputs = self.emb_vecs:index(1, rsent:long()):double()
local part2 = self.convModel:forward({linputs, rinputs})
local output = self.softMaxC:forward(part2)
local val = -1.0
if self.task == 'sic' then
val = torch.range(1, 5, 1):dot(output:exp())
elseif self.task == 'vid' then
val = torch.range(0, 5, 1):dot(output:exp())
else
error("not possible task")
end
return val
end
-- Produce similarity predictions for each sentence pair in the dataset.
function Conv:predict_dataset(dataset)
local predictions = torch.Tensor(dataset.size)
for i = 1, dataset.size do
local lsent, rsent = dataset.lsents[i], dataset.rsents[i]
predictions[i] = self:predictCombination(lsent, rsent)
end
return predictions
end
function Conv:print_config()
local num_params = self.params:nElement()
print('num params: ' .. num_params)
print('word vector dim: ' .. self.emb_dim)
print('LSTM memory dim: ' .. self.mem_dim)
print('regularization strength: ' .. self.reg)
print('minibatch size: ' .. self.batch_size)
print('learning rate: ' .. self.learning_rate)
print('LSTM structure: ' .. self.structure)
print('LSTM layers: ' .. self.num_layers)
print('sim module hidden dim: ' .. self.sim_nhidden)
end
function Conv:save(path)
local config = {
batch_size = self.batch_size,
emb_vecs = self.emb_vecs:float(),
learning_rate = self.learning_rate,
num_layers = self.num_layers,
mem_dim = self.mem_dim,
sim_nhidden = self.sim_nhidden,
reg = self.reg,
structure = self.structure,
}
torch.save(path, {
params = self.params,
config = config,
})
end