-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy path__main__.py
201 lines (167 loc) · 7.07 KB
/
__main__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import logging
import os
import random
from copy import deepcopy
import numpy as np
import torch
from common.evaluate import EvaluatorFactory
from common.train import TrainerFactory
from datasets.aapd import AAPD
from datasets.imdb import IMDB
from datasets.reuters import Reuters
from datasets.yelp2014 import Yelp2014
from datasets.ag_news import AGNews
from datasets.dbpedia import DBpedia
from datasets.imdb_torchtext import IMDBTorchtext
from datasets.sogou_news import SogouNews
from datasets.yahoo_answers import YahooAnswers
from datasets.yelp_review_polarity import YelpReviewPolarity
from datasets.twenty_news import TwentyNews
from datasets.ohsumed import OHSUMED
from datasets.r8 import R8
from datasets.r52 import R52
from datasets.trec6 import TREC6
from models.reg_lstm.args import get_args
from models.reg_lstm.model import RegLSTM
class UnknownWordVecCache(object):
"""
Caches the first randomly generated word vector for a certain size to make it is reused.
"""
cache = {}
@classmethod
def unk(cls, tensor):
size_tup = tuple(tensor.size())
if size_tup not in cls.cache:
cls.cache[size_tup] = torch.Tensor(tensor.size())
cls.cache[size_tup].uniform_(-0.25, 0.25)
return cls.cache[size_tup]
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(levelname)s - %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
return logger
def evaluate_dataset(split_name, dataset_cls, model, embedding, loader, batch_size, device, is_multilabel):
saved_model_evaluator = EvaluatorFactory.get_evaluator(dataset_cls, model, embedding, loader, batch_size, device)
if hasattr(saved_model_evaluator, 'is_multilabel'):
saved_model_evaluator.is_multilabel = is_multilabel
scores, metric_names = saved_model_evaluator.get_scores()
print('Evaluation metrics for', split_name)
print(metric_names)
print(scores)
if __name__ == '__main__':
# Set default configuration in args.py
args = get_args()
logger = get_logger()
# Set random seed for reproducibility
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
np.random.seed(args.seed)
random.seed(args.seed)
if not args.cuda:
args.gpu = -1
if torch.cuda.is_available() and args.cuda:
print('Note: You are using GPU for training')
torch.cuda.set_device(args.gpu)
torch.cuda.manual_seed(args.seed)
if torch.cuda.is_available() and not args.cuda:
print('Warning: Using CPU for training')
dataset_map = {
'Reuters': Reuters,
'AAPD': AAPD,
'IMDB': IMDB,
'Yelp2014': Yelp2014,
'AG_NEWS': AGNews,
'DBpedia': DBpedia,
'IMDB_torchtext': IMDBTorchtext,
'SogouNews': SogouNews,
'YahooAnswers': YahooAnswers,
'YelpReviewPolarity': YelpReviewPolarity,
'TwentyNews': TwentyNews,
'OHSUMED': OHSUMED,
'R8': R8,
'R52': R52,
'TREC6': TREC6
}
if args.dataset not in dataset_map:
raise ValueError('Unrecognized dataset')
else:
dataset_class = dataset_map[args.dataset]
iters = dataset_class.iters(args.data_dir,
args.word_vectors_file,
args.word_vectors_dir,
batch_size=args.batch_size,
device=args.gpu,
unk_init=UnknownWordVecCache.unk)
# Some datasets (e.g. AG_NEWS) only have train and test splits
if len(iters) == 2:
train_iter, test_iter = iters
dev_iter = test_iter
else:
train_iter, dev_iter, test_iter = iters
config = deepcopy(args)
config.dataset = train_iter.dataset
config.target_class = train_iter.dataset.NUM_CLASSES
config.words_num = len(train_iter.dataset.TEXT_FIELD.vocab)
print('Dataset:', args.dataset)
print('No. of target classes:', train_iter.dataset.NUM_CLASSES)
print('No. of train instances', len(train_iter.dataset))
print('No. of dev instances', len(dev_iter.dataset) if dev_iter else 0)
print('No. of test instances', len(test_iter.dataset))
if args.resume_snapshot:
if args.cuda:
model = torch.load(args.resume_snapshot, map_location=lambda storage, location: storage.cuda(args.gpu))
else:
model = torch.load(args.resume_snapshot, map_location=lambda storage, location: storage)
else:
model = RegLSTM(config)
if args.cuda:
model.cuda()
if not args.trained_model:
save_path = os.path.join(args.save_path, dataset_map[args.dataset].NAME)
os.makedirs(save_path, exist_ok=True)
parameter = filter(lambda p: p.requires_grad, model.parameters())
optimizer = torch.optim.Adam(parameter, lr=args.lr, weight_decay=args.weight_decay)
train_evaluator = EvaluatorFactory.get_evaluator(dataset_class, model, None, train_iter, args.batch_size, args.gpu)
test_evaluator = EvaluatorFactory.get_evaluator(dataset_class, model, None, test_iter, args.batch_size, args.gpu)
dev_evaluator = EvaluatorFactory.get_evaluator(dataset_class, model, None, dev_iter, args.batch_size, args.gpu)
if hasattr(train_evaluator, 'is_multilabel'):
train_evaluator.is_multilabel = dataset_class.IS_MULTILABEL
if hasattr(test_evaluator, 'is_multilabel'):
test_evaluator.is_multilabel = dataset_class.IS_MULTILABEL
if hasattr(dev_evaluator, 'is_multilabel'):
dev_evaluator.is_multilabel = dataset_class.IS_MULTILABEL
trainer_config = {
'optimizer': optimizer,
'batch_size': args.batch_size,
'log_interval': args.log_every,
'patience': args.patience,
'model_outfile': args.save_path,
'logger': logger,
'is_multilabel': dataset_class.IS_MULTILABEL
}
trainer = TrainerFactory.get_trainer(args.dataset, model, None, train_iter, trainer_config, train_evaluator, test_evaluator, dev_evaluator)
if not args.trained_model:
trainer.train(args.epochs)
model = torch.load(trainer.snapshot_path)
else:
if args.cuda:
model = torch.load(args.trained_model, map_location=lambda storage, location: storage.cuda(args.gpu))
else:
model = torch.load(args.trained_model, map_location=lambda storage, location: storage)
if model.beta_ema > 0:
old_params = model.get_params()
model.load_ema_params()
# Calculate dev and test metrics
if dev_iter:
evaluate_dataset('dev', dataset_class, model, None, dev_iter, args.batch_size,
is_multilabel=dataset_class.IS_MULTILABEL,
device=args.gpu)
evaluate_dataset('test', dataset_class, model, None, test_iter, args.batch_size,
is_multilabel=dataset_class.IS_MULTILABEL,
device=args.gpu)
if model.beta_ema > 0:
model.load_params(old_params)