Skip to content

Latest commit

 

History

History
173 lines (142 loc) · 15.1 KB

README.md

File metadata and controls

173 lines (142 loc) · 15.1 KB



Introduction

Mr. TyDi is a multi-lingual benchmark dataset built on TyDi, covering eleven typologically diverse languages. It is designed for mono-lingual retrieval, specifically to evaluate ranking with learned dense representations. Mr. TyDi is licensed under the Apache License 2.0.

Download

Version 1.1

1. Dataset (topic, qrels, folds, collections)

     Ar | Bn | En | Fi | Id | Ja | Ko | Ru | Sw | Te | Th

    The dataset (v1.1) is also available on HuggingFace Dataset:

2. Pre-built sparse index (for BM25)

     Ar | Bn | En | Fi | Id | Ja | Ko | Ru | Sw | Te | Th

3. Pre-built dense index (for mDPR)

     Ar | Bn | En | Fi | Id | Ja | Ko | Ru | Sw | Te | Th

4. Checkpoints

Previous Versions

Version 1.0

1. Dataset

     Ar | Bn | En | Fi | Id | Ja | Ko | Ru | Sw | Te | Th

2. Pre-built sparse index (for BM25)

     Ar | Bn | En | Fi | Id | Ja | Ko | Ru | Sw | Te | Th

3. Pre-built dense index (for mDPR)

     Ar | Bn | En | Fi | Id | Ja | Ko | Ru | Sw | Te | Th

Baselines and Evaluation

The one-command reproduction (on v1.1) would require the recent dev version of Pyserini. Please follow this guidance to setup a dev installation for Pyserini.

This page only covers the scripts to reproduce searching. The indexes are all handled within Pyserini. That is, you won't need to manually download the above indexes or models to run the following scripts. For the scripts to reproduce the sparse and dense indexes, please refer to the Pyserini documentations:

Model Documentation Link
Sparse Index Ar | Bn | En | Fi | Id | Ja | Ko | Ru | Sw | Te | Th
Dense Index Ar | Bn | En | Fi | Id | Ja | Ko | Ru | Sw | Te | Th

1. BM25

lang=arabic     # one of {'arabic', 'bengali', 'english', 'finnish', 'indonesian', 'japanese', 'korean', 'russian', 'swahili', 'telugu', 'thai'}
lang_abbr=ar    # one of {'ar', 'bn', 'en', 'fi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th'}
set_name=test   # one of {'train', 'dev', 'test'}
runfile=runs/run.bm25.mrtydi-v1.1-${lang}.${set_name}.txt

python -m pyserini.search --bm25 \
    --language ${lang_abbr} \
    --topics mrtydi-v1.1-${lang}-${set_name} \
    --index mrtydi-v1.1-${lang} \
    --output ${runfile}

2. mDPR

lang=arabic     # one of {'arabic', 'bengali', 'english', 'finnish', 'indonesian', 'japanese', 'korean', 'russian', 'swahili', 'telugu', 'thai'}
set_name=test   # one of {'train', 'dev', 'test'}
runfile=runs/run.mdpr.mrtydi-v1.1-$lang.${set_name}.txt

python -m pyserini.dsearch \
    --topics mrtydi-v1.1-${lang}-${set_name} \
    --index mrtydi-v1.1-${lang}-mdpr-nq \
    --encoder castorini/mdpr-question-nq \
    --batch-size 36 \
    --threads 12 \
    --output 

3. BM25+mDPR hybrid

To use the pre-set best alpha for each language:

lang=arabic     # one of {'arabic', 'bengali', 'english', 'finnish', 'indonesian', 'japanese', 'korean', 'russian', 'swahili', 'telugu', 'thai'}
python scripts/hybrid.py    --lang ${lang} \
                            --sparse ${bm25_runfile} \
                            --dense ${dense_runfile} \
                            --output ${runfile} \
                            --weight-on-dense \
                            --normalization

Or to run hybrid with any alpha:

alpha=0.5
python scripts/hybrid.py    --alpha ${alpha} \
                            --sparse ${bm25_runfile} \
                            --dense ${dense_runfile} \
                            --output ${runfile} \
                            --weight-on-dense \
                            --normalization

where the bm25_runfile and dense_runfile are prepared from the previous two steps.

4. Evaluate

python -m pyserini.eval.trec_eval -c -mrecip_rank -mrecall.100 ${qrels} ${runfile} 

Results

Here we present the MRR@100 and Recall@100 scores after fixing a bug relavant to using multi-lingual models in Pyserini 0.13.0. The sparse scores are unaffected, whereas the mDPR and Hybrid scores are higher than the original reported ones to various degree. We also put the updated figures under the figures/ directory.

MRR@100

Ar Bn En Fi In Ja Ko Ru Sw Te Th avg
BM25 (default) 0.368 0.418 0.140 0.284 0.376 0.211 0.285 0.313 0.389 0.343 0.401 0.321
BM25 (tuned) 0.366 0.413 0.150 0.287 0.382 0.217 0.280 0.329 0.396 0.424 0.416 0.333
mDPR (NQ) 0.291 0.291 0.291 0.206 0.271 0.213 0.235 0.283 0.189 0.111 0.172 0.226
Hybrid 0.500 0.555 0.328 0.377 0.481 0.360 0.361 0.455 0.415 0.418 0.507 0.426

Recall@100

Ar Bn En Fi In Ja Ko Ru Sw Te Th avg
BM25 (default) 0.793 0.869 0.537 0.719 0.843 0.645 0.619 0.648 0.764 0.758 0.853 0.732
BM25 (tuned) 0.800 0.874 0.551 0.725 0.846 0.656 0.797 0.660 0.764 0.813 0.853 0.758
mDPR (NQ) 0.650 0.779 0.678 0.568 0.685 0.584 0.533 0.647 0.528 0.366 0.515 0.594
Hybrid 0.871 0.946 0.793 0.827 0.900 0.794 0.718 0.815 0.808 0.823 0.883 0.834

Citation

If you find our paper useful or use the dataset in your work, please cite our paper and the TyDi paper:

@article{mrtydi,
      title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, 
      author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
      year={2021},
      journal={arXiv:2108.08787},
}
@article{tydiqa,
    title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
    author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
    year={2020},
    journal={Transactions of the Association for Computational Linguistics}
}

Contact us

If you have any question or suggestions regarding the dataset, code or publication, please contact Xinyu Zhang (x978zhan[at]uwaterloo.ca)