-
Notifications
You must be signed in to change notification settings - Fork 17
/
TGAT.py
83 lines (68 loc) · 3.56 KB
/
TGAT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
@version: 1.0
@author: Chao Chen
@contact: chao.chen@sjtu.edu.cn
"""
import tensorflow.compat.v1 as tf
import module.coding as C
import module.temporal as T
from model.Base import Sequential, FeedForward, layernorm
class TGAT(Sequential):
"""Implementation of the paper ---
Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K.
Inductive representation learning on temporal graphs.
ICLR 2020.
"""
def __init__(self, num_items, FLAGS):
super().__init__(num_items, FLAGS)
self.time_scale = FLAGS.time_scale
with tf.variable_scope("TGAT"):
self.item_embs = C.Embedding(num_items, self.num_units, self.l2_reg,
zero_pad=True, scale=True, scope="item_embs")
self.pcoding_K = C.PositionCoding(self.seqslen, self.num_units, self.l2_reg, scope="pcoding_K")
self.tcoding_K = C.TimeFunctionCoding(self.num_units, scope="tcoding_K")
self.output_bias = self.output_bias(inf_pad=True)
self.list_attention = list()
self.list_dense = list()
for i in range(FLAGS.num_blocks):
with tf.variable_scope("num_blocks_%d" % i):
attention = T.TfMultiHeadAttention(self.num_units, self.num_heads,
self.attention_probs_dropout_rate, self.l2_reg,
self.pcoding_K, self.tcoding_K)
fforward = FeedForward([self.num_units, self.num_units], self.hidden_dropout_rate)
self.list_attention.append(attention)
self.list_dense.append(fforward)
def __call__(self, features, is_training):
seqs_id = features['seqs_i']
seqs_ts = features['seqs_t'] / self.time_scale
# Embedding and Transform
seqs_units = self.item_embs(seqs_id)
# time delta hereby is sensitive to the timepoints of purchasing
seqs_spans = tf.tile(
tf.expand_dims(seqs_ts[:, 1:], 2), [1, 1, self.seqslen]) - tf.tile(
tf.expand_dims(seqs_ts[:, :-1], 1), [1, self.seqslen, 1])
seqs_spans = tf.to_float(tf.maximum(seqs_spans, 0.))
# Dropout
seqs_units = tf.layers.dropout(seqs_units, rate=self.hidden_dropout_rate,
training=tf.convert_to_tensor(is_training))
seqs_masks = tf.expand_dims(tf.to_float(tf.not_equal(seqs_id, 0)), -1)
# multi-head attention
seqs_outs = seqs_units * seqs_masks
for i, (attention, dense) in enumerate(zip(self.list_attention, self.list_dense)):
with tf.variable_scope("num_blocks_%d" % i):
with tf.variable_scope("attention"):
seqs_outs = attention(layernorm(seqs_outs), seqs_outs, seqs_spans, is_training, causality=True)
with tf.variable_scope("feedforward"):
seqs_outs = dense(layernorm(seqs_outs), is_training)
seqs_outs *= seqs_masks
with tf.variable_scope("out_ln"):
seqs_outs = layernorm(seqs_outs)
if is_training:
seqs_outs = tf.reshape(seqs_outs, [tf.shape(seqs_id)[0] * self.seqslen, self.num_units])
else:
# only using the latest representations for making predictions
seqs_outs = tf.reshape(seqs_outs[:, -1], [tf.shape(seqs_id)[0], self.num_units])
# compute logits
logits = tf.matmul(seqs_outs, self.item_embs.lookup_table, transpose_b=True)
logits = tf.nn.bias_add(logits, self.output_bias)
return logits