Skip to content

深度真值使用 #7

@suyu-star

Description

@suyu-star

Thank you for your amazing project and making your code public!

  if self.depth2occ_intra:
      if self.depth_gt:
          if not self.training:
              kwargs['gt_depth']=kwargs['gt_depth'][0]
          gt_depth=self.get_downsampled_gt_depth(kwargs['gt_depth'])
              
          b,n,d,h,w=depth.shape
          gt_depth=gt_depth.reshape(b,n,h,w,d).permute(0,1,4,2,3)
          fg_mask = torch.max(gt_depth, dim=2,keepdim=True).values > 0.0
          fg_mask=fg_mask.repeat(1,1,d,1,1)
          
          depth_=depth.clone()
          depth_[fg_mask]=gt_depth[fg_mask]
      else:
          depth_=depth

the paper mentions that ground-truth depth is used to guide model training in the early stage. However, as shown in the code above, the depth used in the computation of occ_weight is expected to be the model’s own predicted depth. We find that ground-truth depth is actually used during this computation. Would this introduce unfairness or lead to an unfair comparison?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions