-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrack.py
510 lines (459 loc) · 19 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import dataclasses
import datetime
import logging
import multiprocessing
import os
import time
from dataclasses import dataclass
from typing import List, Optional, Final
# noinspection PyPackageRequirements
import celpy
import cv2
import torch
from ultralytics import YOLO
import lib_dmutil
import lib_mpex
from health import HealthPing
from lib_geom import Point, Box, Vector
from log import LOG_DEFAULT_FMT
from ntfy import ObjectNotification
@dataclass(frozen=True)
class TrackPrediction:
t: datetime.datetime
model_id: int
classification: str
is_track: bool
box: Box
image: cv2.typing.MatLike
id: str = dataclasses.field(default_factory=lib_dmutil.rand_id)
def to_cel(self) -> celpy.celtypes.Value:
"""
Convert this object to a CEL value, leaving out the image.
:return:
"""
return celpy.celtypes.MapType(
{
"t": celpy.celtypes.TimestampType(self.t),
"classification": celpy.celtypes.StringType(self.classification),
"box": self.box.to_cel(),
}
)
@dataclass
class Track:
predictions: List[TrackPrediction]
best_image: cv2.typing.MatLike
best_image_coverage: float
is_model_track: bool
triggered_notification: bool
id: str
@staticmethod
def from_prediction(p: TrackPrediction) -> "Track":
return Track(
predictions=[p],
best_image=p.image,
best_image_coverage=(p.box.b.x - p.box.a.x) * (p.box.b.y - p.box.a.y),
is_model_track=p.is_track,
triggered_notification=False,
id=p.id,
)
def first_t(self) -> datetime.datetime:
return self.predictions[0].t
def last_t(self) -> datetime.datetime:
return self.predictions[-1].t
def first_box(self) -> Box:
return self.predictions[0].box
def last_box(self) -> Box:
return self.predictions[-1].box
def average_box(self) -> Box:
return Box(
a=Point(
x=sum([p.box.a.x for p in self.predictions]) / len(self.predictions),
y=sum([p.box.a.y for p in self.predictions]) / len(self.predictions),
),
b=Point(
x=sum([p.box.b.x for p in self.predictions]) / len(self.predictions),
y=sum([p.box.b.y for p in self.predictions]) / len(self.predictions),
),
)
def total_box(self) -> Box:
return Box(
a=Point(
x=min([p.box.a.x for p in self.predictions]),
y=min([p.box.a.y for p in self.predictions]),
),
b=Point(
x=max([p.box.b.x for p in self.predictions]),
y=max([p.box.b.y for p in self.predictions]),
),
)
def classification(self) -> str:
name_votes = {}
for p in self.predictions:
name_votes[p.classification] = name_votes.get(p.classification, 0) + 1
return max(name_votes, key=name_votes.get)
def length_t(self) -> datetime.timedelta:
return self.last_t() - self.first_t()
def movement_vector(self) -> Vector:
return self.first_box().center().vector_to(self.last_box().center())
def to_cel(self) -> celpy.celtypes.Value:
"""
Convert this object to a CEL value, leaving out image-related fields.
:return:
"""
return celpy.celtypes.MapType(
{
"predictions": celpy.celtypes.ListType(
[p.to_cel() for p in self.predictions]
),
"first_t": celpy.celtypes.TimestampType(self.first_t()),
"last_t": celpy.celtypes.TimestampType(self.last_t()),
"first_box": self.first_box().to_cel(),
"last_box": self.last_box().to_cel(),
"classification": celpy.celtypes.StringType(self.classification()),
"length_t": celpy.celtypes.DurationType(self.length_t()),
"average_box": self.average_box().to_cel(),
"total_box": self.total_box().to_cel(),
"movement_vector": self.movement_vector().to_cel(),
}
)
def last_2_box_avg(self) -> Box:
if len(self.predictions) < 2:
return self.last_box()
return self.predictions[-2].box.average_with(self.last_box())
def add_prediction(self, p: TrackPrediction):
self.predictions.append(p)
if p.is_track:
self.is_model_track = True
image_coverage = (p.box.b.x - p.box.a.x) * (p.box.b.y - p.box.a.y)
if image_coverage > self.best_image_coverage:
self.best_image = p.image
self.best_image_coverage = image_coverage
class VideoEnded(Exception):
pass
@dataclass
class ModelConfig:
log_level: Optional[int] = logging.INFO
device: Optional[str] = None
half: Optional[bool] = None
confidence: float = 0.5
iou: float = 0.15
max_det: int = 5
liveness_tick_s: float = 30.0
healthcheck_ping_url: Optional[str] = None
class PredModel(lib_mpex.ChildProcess):
def __init__(
self,
in_fname: str,
config: ModelConfig,
output_queue: multiprocessing.Queue, # of TrackPrediction
health_ping_queue: multiprocessing.Queue, # of HealthPing
):
self._in_fname = in_fname
self._config = config
self._output_queue = output_queue
self._health_ping_queue = health_ping_queue
def _run(self):
is_stream: Final = self._in_fname.casefold().startswith(
"rtsp:"
) or self._in_fname.casefold().startswith("rtsps:")
logger: Final = logging.getLogger(__name__ + ".Model")
logging.basicConfig(level=self._config.log_level, format=LOG_DEFAULT_FMT)
logger.debug(f"healthcheck ping URL: {self._config.healthcheck_ping_url}")
model_name: Final = "yolov8n.pt"
logger.info(f"starting model {model_name}")
model = YOLO(model_name)
dev = self._config.device
if dev is None:
has_mps = torch.backends.mps.is_available()
has_cuda = torch.cuda.is_available()
if has_mps:
dev = "mps"
elif has_cuda:
dev = "cuda"
else:
dev = "cpu"
half = self._config.half
if half is None and dev in {"mps", "cuda"}:
half = True
else:
half = False
logger.info(f"{model_name} will use device '{dev}' (half={half})")
keep_trying = True
retryable_failures_at: List[datetime.datetime] = []
retryable_failure_threshold_window: Final = datetime.timedelta(seconds=30)
retryable_failure_threshold: Final = 10
while keep_trying:
keep_trying = False
try:
self._run_capture_loop(dev, half, logger, model)
except (IOError, VideoEnded):
if is_stream:
# if we're consuming a stream, try to restart it as long as we
# don't see 10 failures in 30 seconds:
utcnow = datetime.datetime.now(datetime.UTC)
retryable_failures_at.append(utcnow)
retryable_failures_at = [
t
for t in retryable_failures_at
if utcnow - t < retryable_failure_threshold_window
]
if len(retryable_failures_at) < retryable_failure_threshold:
logger.info("attempting to reopen stream ...")
keep_trying = True
time.sleep(2)
else:
logger.error(
f"too many stream failures ({len(retryable_failures_at)} in "
f"{retryable_failure_threshold_window.seconds} sec)"
)
raise
else:
# video ended, but it's not a stream, so we're done successfully:
pass
# any other exceptions (e.g. IOError opening a video file)
# will continue propagating and be handled by the parent process
# at this point we're done, with no error; delay exit if requested:
self._delay_exit_if_requested(logger)
def _run_capture_loop(self, dev, half, logger, model):
liveness_tick_t: Final = datetime.timedelta(
seconds=self._config.liveness_tick_s
)
last_liveness_tick_at: Optional[datetime.datetime] = None
frames_since_last_liveness_tick = 0
logger.info(f"opening video source {self._in_fname}")
cap = cv2.VideoCapture(self._in_fname)
if not cap.isOpened():
raise IOError(f"failed to open video source {self._in_fname}")
while cap.isOpened():
success, frame = cap.read()
if success:
utcnow = datetime.datetime.now(datetime.UTC)
frames_since_last_liveness_tick += 1
results = model.track(
frame,
conf=self._config.confidence,
iou=self._config.iou,
max_det=self._config.max_det,
persist=True,
device=dev,
half=half,
verbose=False,
)
for b in results[0].boxes:
if b.id is not None:
xyxyn = b.xyxyn.numpy()
p = TrackPrediction(
t=utcnow,
model_id=int(b.id.item()),
classification=results[0].names[int(b.cls)],
is_track=b.is_track,
box=Box(
a=Point(x=xyxyn.item(0), y=xyxyn.item(1)),
b=Point(x=xyxyn.item(2), y=xyxyn.item(3)),
),
image=frame,
)
self._output_queue.put_nowait(p)
if (
last_liveness_tick_at is None
or (utcnow - last_liveness_tick_at) > liveness_tick_t
):
if last_liveness_tick_at is not None:
logger.debug(
f"liveness tick at {utcnow}; processed "
f"{frames_since_last_liveness_tick} frames since last tick "
f"({frames_since_last_liveness_tick / (utcnow - last_liveness_tick_at).total_seconds()} fps)"
)
last_liveness_tick_at = utcnow
frames_since_last_liveness_tick = 0
self._health_ping_queue.put_nowait(
HealthPing(
at_t=utcnow,
url=self._config.healthcheck_ping_url,
)
)
else:
logger.info(f"video source {self._in_fname} ended")
raise VideoEnded
@staticmethod
def _delay_exit_if_requested(logger):
exit_mins_str = os.getenv("DM_DEV_EXIT_DELAY_MINS", "")
if not exit_mins_str:
return
exit_mins = int(exit_mins_str)
if exit_mins <= 0:
return
logger.info(f"DM_DEV_EXIT_DELAY_MINS={exit_mins_str}; delaying exit")
time.sleep(exit_mins * 60)
@dataclass
class TrackerConfig:
log_level: Optional[int] = logging.INFO
# prune out tracks that have seen no activity in this many seconds.
# this prevents them from being appended to by new motion:
inactive_track_prune_s: float = 1.0
# minimum overlap percentage with the average of the last 2 boxes in the track,
# assuming best case (classification is the same):
track_connect_min_overlap: float = 0.2
# only notify if the track is classified as one of these:
notify_classification_allowlist: Optional[List[str]] = None
# don't notify if the track is classified as one of these:
notify_classification_blocklist: Optional[List[str]] = None
# only notify if the track's length (in time) is at least this many seconds:
notify_min_track_length_s: float = 1
# allows customizing the minimum track length, in seconds, per classification
# (e.g. a person walking might need to be tracked for longer than a car to
# warrant a notification):
notify_min_track_length_s_per_classification: dict[str, float] = dataclasses.field(
default_factory=lambda: {}
)
notify_track_cel: Optional[str] = None
class Tracker(lib_mpex.ChildProcess):
def __init__(
self,
config: TrackerConfig,
input_queue: multiprocessing.Queue, # of TrackPrediction
output_queue: multiprocessing.Queue, # of lib_ntfy.Notification
):
self._config = config
self._input_queue = input_queue
self._output_queue = output_queue
self._tracks = list()
def _run(self):
logger = logging.getLogger(__name__ + ".Tracker")
logging.basicConfig(level=self._config.log_level, format=LOG_DEFAULT_FMT)
logger.info("starting tracker")
cel_env = celpy.Environment()
notify_cel_program: Optional[celpy.Runner] = None
if self._config.notify_track_cel:
notify_cel_ast = cel_env.compile(self._config.notify_track_cel)
notify_cel_program = cel_env.program(notify_cel_ast)
for ln in (
"Evaluator",
"evaluation",
"NameContainer",
"celtypes",
"Environment",
):
# https://github.com/cloud-custodian/cel-python/issues/46
logging.getLogger(ln).setLevel(max(self._config.log_level, logging.WARNING))
while True:
p: TrackPrediction = self._input_queue.get()
now = p.t
logger.debug(
f"(pred {p.id}) received prediction of {p.classification} at {now}"
)
# prune out tracks older than threshold:
self._tracks = [
t
for t in self._tracks
if now - t.last_t()
< datetime.timedelta(seconds=self._config.inactive_track_prune_s)
]
# connect to a preexisting track if possible:
track: Optional[Track] = None
for candidate in self._tracks:
overlap_needed = self._config.track_connect_min_overlap
# overlap requirement increases is classification is different:
if p.classification != candidate.classification():
overlap_needed = overlap_needed * 1.5
# FUTURE(cdzombak): consider velocity vector similarity
candidate_ia = candidate.last_2_box_avg().percent_intersection_with(
p.box
)
if candidate_ia > overlap_needed:
if track is not None:
if candidate_ia > track.last_box().percent_intersection_with(
p.box
):
track = candidate
else:
track = candidate
break
# update matching track or create a new track if necessary:
if track is not None:
logger.debug(
f"(pred {p.id}) adding prediction of {p.classification} "
f"to existing track {track.id}"
)
track.add_prediction(p)
else:
logger.debug(
f"(pred {p.id}) creating new track for prediction of {p.classification}"
)
track = Track.from_prediction(p)
self._tracks.append(track)
# if the model doesn't think this is a track, skip further processing:
if not track.is_model_track:
logger.debug(
f"(trck {track.id}) is not a track yet; skip further processing"
)
continue
# if this track has already triggered a notification, skip further processing:
if track.triggered_notification:
logger.debug(
f"(trck {track.id}) track has already triggered a notification; "
f"skip further processing"
)
continue
# determine whether this track now meets notification criteria:
if (
self._config.notify_classification_allowlist
and track.classification()
not in self._config.notify_classification_allowlist
):
logger.debug(
f"(trck {track.id}) track classification {track.classification()} is not "
f"allowlisted; skip further processing"
)
continue
if (
self._config.notify_classification_blocklist
and track.classification()
in self._config.notify_classification_blocklist
):
logger.debug(
f"(trck {track.id}) track classification {track.classification()} is blocklisted; "
f"skip further processing"
)
continue
min_track_len = datetime.timedelta(
seconds=self._config.notify_min_track_length_s_per_classification.get(
track.classification(), self._config.notify_min_track_length_s
)
)
if track.length_t() < min_track_len:
logger.debug(
f"(trck {track.id}) track length {track.length_t()} is less than "
f"requirement of {min_track_len}; skip further processing"
)
continue
# evaluate notify CEL rules:
if notify_cel_program and not notify_cel_program.evaluate(
{"track": track.to_cel()}
):
logger.debug(
f"(trck {track.id}) did not pass notify_cel expression; "
f"skip further processing"
)
continue
logger.info(
f"(trck {track.id}) has met criteria for notification of {track.classification()}; "
f"triggered notification"
)
# at this point the track has met all criteria; send notification:
jpeg: Optional[bytes] = None
ok, jpegarr = cv2.imencode(".jpg", track.best_image)
if ok:
jpeg = jpegarr.tobytes()
else:
logger.warning("failed to encode frame to JPEG")
self._output_queue.put_nowait(
ObjectNotification(
t=track.first_t(),
classification=track.classification(),
event="arrived in driveway",
jpeg_image=jpeg,
id=track.id,
)
)
track.triggered_notification = True