-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathactions.py
381 lines (358 loc) · 13.5 KB
/
actions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import urllib2
import json
import string
import re
import httplib
import urlparse
import sets
import cPickle
import os.path
import time
import multiprocessing
import traceback
import socket
from multiprocessing import Manager
from sets import Set
import numexpr as ne
from wiki import *
from utils import *
import veclib
backend_url_nearest = r'http://localhost:5005/nearest/'
#backend_url_nearest = r'http://thisplusthat.me:5005/nearest/'
backend_url_farthest = r'http://localhost:5005/farthest/'
#backend_url_farthest = r'http://thisplusthat.me:5005/farthest/'
def eval_sign(query):
""" This is a dumb parser that assign + or - to every character
in an expression. We can then use this to lookup the sign of
every token in the expression"""
out = ""
sign = '+' # defailt is positive
for c in query:
if c == '-':
sign = '-'
elif c == '+':
sign = '+'
out += sign
return out
def prettify(phrase):
phrase = phrase.replace('_', ' ')
phrase = phrase.replace(' ',' ')
phrase = phrase.replace(' ',' ')
phrase = phrase.replace(' ',' ')
phrase = phrase.replace(' ',' ')
text = ''
for word in phrase.split(' '):
try:
word = word[0].upper() + word[1:]
except:
pass
text += word + ' '
return text
def countdig(word):
return sum([w.isdigit() for w in word])
class Actor(object):
""" This encapsulates all of the actions associated with a results
page. We test multiple Actor objects until validate(query) is True
and then parse and evaluate the query, which is usually called
through run"""
name = 'Actor'
def validate(self, query):
"""Is the given query suitable for this Action"""
return False
def parse(self, query):
""" Reduce the query into arguments for evaluate"""
return
def evaluate(self, arg, **kwargs):
"""Evaluate the query and return a results object
that gets plugged into the Jinja code in results.html.
Defaults to a pass-through to OMDB"""
return {}
def run(self, query):
start = time.time()
if False:
try:
args, kwargs = self.parse(query)
reps = self.evaluate(*args, **kwargs)
except:
traceback.print_exc()
reps = {}
else:
args = self.parse(query)
reps = self.evaluate(*args)
reps['actor'] = self.name
stop = time.time()
reps['query_time'] = "%1.1f" %(stop - start)
return reps
@timer
@persist_to_file
def result_chain(canonical):
"""Chain the decanonization, wiki lookup,
wiki article lookup, and freebase all together"""
title = canonical.replace('_', ' ')
try:
wikiname, article = pick_wiki(canonical)
except:
print "Error in ", canonical
wikiname, article = None, None
notable, types = None, []
for search in (wikiname, title):
try:
notable, types = get_freebase_types(search)
break
except:
pass
return dict(wikiname=wikiname, article=article, notable=notable,
types=types)
img = r"http://upload.wikimedia.org/wikipedia/commons/thumb/5/51/"
img += r"Warren_Buffett_KU_Visit.jpg/220px-Warren_Buffett_KU_Visit.jpg"
text = "Warren Edward Buffett (August 30, 1930) is an American "
text += "business magnate, investor, and philanthropist. He is widely considered "
text += "the most successful investor of... the 20th century."
fake_results = [dict(info=dict(wikiname='Warren Buffet',
article=dict(description=text),
types=['type1a', 'typ1b']),
themes=['type 1', 'type 2'],
url="http://en.wikipedia.org/wiki/Warren_buffet",
title="Warren Buffet",
description=text,
notable="Wealthy Person",
img=img,
similarity=0.56)]
fake_other = dict(query='query', translated='translated query',
wikinames=[])
class Expression(Actor):
name = "Expression"
max = 2
skip_similar = True
@timer
def __init__(self, preloaded_actor=None, subsampling=False,
fast=False, test=True):
"""We need to load and preprocess all of the vectors into the
memory and persist them to cut down on IO costs"""
if not preloaded_actor:
# a= 'all'
# w='wikipedia'
trained = "data"
#fnw = '%s/vectors.fullwiki.1000.s50.5k.words' % trained
fnw = '%s/vectors.fullwiki.1000.s50.words' % trained
fnw = '%s/freebase.words' % trained
if False:
wc2t = '%s/c2t' % './data'
wt2c = '%s/t2c' % './data'
# all word vecotor lib VL
self.wc2t = cPickle.load(open(wc2t))
self.wt2c = cPickle.load(open(wt2c))
print "Loading...",
ks, vs = [], []
for k, v in self.wc2t.iteritems():
k = veclib.canonize(k, {}, match=False)
ks.append(k)
vs.append(v)
for k, v in zip(ks, vs):
self.wc2t[k] = v
print " done with veclib"
# all words, word to index mappings w2i
if os.path.exists(fnw + '.pickle'):
self.aw2i , self.ai2w = cPickle.load(open(fnw + '.pickle'))
else:
self.aw2i , self.ai2w = veclib.get_words(fnw)
cPickle.dump([self.aw2i, self.ai2w], open(fnw + '.pickle','w'))
print " done with aw2i"
else:
# Wikipedia articles and their canonical transformations
if False:
self.wc2t = preloaded_actor.wc2t #Wiki dump article titles
self.wt2c = preloaded_actor.wt2c
# All vectors from word2vec
self.aw2i = preloaded_actor.aw2i
self.ai2w = preloaded_actor.ai2w
def validate(self, query):
return ',' not in query
@timer
def parse(self, query):
"""Debug with parallel=False, production use
switch to multiprocessing"""
# Split the query and find the signs of every word
if query == 'None':
return fake_results, fake_other
words = query.replace('+', '|').replace('-', '|').replace(',', '|')
words = words.replace(',','|')
sign = eval_sign(query)
signs = ['+',]
signs.extend([sign[match.start() + 1] \
for match in re.finditer('\|', words)])
signs = [1.0 if s=='+' else -1.0 for s in signs]
words = words.split('|')
return signs, words
@persist_to_file
@timer
def canonize(self, signs, words, parallel=False):
# Get the canonical names for the query
canon = self.aw2i.keys()
if parallel:
wc = lambda x: wiki_canonize(x, canon, use_wiki=False)
rets = [wiki_canonize(words[0], canon, use_wiki=True)]
rets += parmap(wc, words[1:])
else:
rets = [wiki_canonize(words[0], canon, use_wiki=True)]
rets += [wiki_canonize(w, canon, use_wiki=False) for w in words[1:]]
canonizeds, wikinames = zip(*rets)
print rets
if wikinames[0] is None:
return '', [], [], []
wikinames = [w if len(w)>0 else c for c, w in zip(canonizeds, wikinames)]
# Make the translated query string
translated = ""
for sign, canonized in zip(signs, canonizeds):
translated += "%+1.0f %s " %(sign, canonized)
print 'translated: ', translated
return translated, signs, canonizeds, wikinames
@persist_to_file
@timer
def request(self, signs, canonizeds, parallel=True):
# Format the vector lib request
n = 8
results = []
iter = 0
while len(results) < 2 and n < 21:
args = []
for sign, canonical in zip(signs, canonizeds):
args.append([sign, canonical])
send = json.dumps(dict(args=args))
url = backend_url_nearest + urllib2.quote(send)
response = json.load(urllib2.urlopen(url))
# Decanonize the results and get freebase, article info
if parallel:
rv = parmap(result_chain, response['result'][:n])
else:
rv = [result_chain(x) for x in response['result'][:n]]
args = (response['result'], response['similarity'],
response['root_similarity'], rv)
args = sorted(zip(*args), key=lambda x:x[1])[::-1]
results = []
for c, s, r, v in args:
print '%1.3f %1.3f %s' % (s, r, v['wikiname'])
if r > 0.90:
print 'Too similar to root'
continue
if r > 0.75 and iter==0:
print 'Somewhat similar to root'
continue
if v['wikiname'] is None:
print 'No wikiname'
continue
if 'PA474' in v['wikiname']:
print 'skipping pa474'
continue
ret = dict(canonical=c, similarity=s)
ret.update(v)
ret.update(ret.pop('article'))
results.append(ret)
n += 8
iter += 1
print "%i results" % len(results)
return results, {}
@timer
def evaluate(self, query, translated, wikinames, results, other):
temp = dict(query=query, translated=translated,
wikinames=wikinames, query_text=query,
actor=self.name)
other.update(temp)
previous_titles = []
rets = []
for dresult in results:
if len(rets) > self.max: break
wikiname = dresult['wikiname']
if self.skip_similar:
if dresult['wikiname'] in other['wikinames']:
print 'Skipping direct in query', wikiname
continue
if wikiname in previous_titles:
print 'Skipping previous', wikiname
continue
result = {}
result['themes'] = dresult['types'][:3]
if len(result['themes']) == 0:
print 'Detected zero themes'
del result['themes']
result.update(dresult)
if 'similarity' in result:
result['similarity'] = "%1.2f" % result['similarity']
if 'n1' in result:
result['n1'] = "%1.2f" % result['n1']
if 'title' not in result or result['title'] is None:
result['title'] = resultresult['canonical']
rets.append(result)
previous_titles.append(wikiname)
if len(rets) == 0:
print 'no results kept'
return {}
else:
reps = dict(results=rets)
reps.update(other)
return reps
def run(self, query):
start = time.time()
signs, words = self.parse(query)
translated, signs, canonizeds, wikinames = self.canonize(signs, words)
if len(wikinames) > 0:
results, other = self.request(signs, canonizeds)
reps = self.evaluate(query, translated, wikinames, results, other)
reps['actor'] = self.name
reps['hostname'] = socket.gethostname()
stop = time.time()
reps['query_time'] = "%1.1f" %(stop - start)
return reps
else:
reps = dict(translated="Wikipedia failed to respond; maybe wait a minute?")
return reps
class Fraud(Expression):
max = 2
name = "Fraud"
skip_similar = False
def validate(self, query):
return ',' in query
@timer
@persist_to_file
def request(self, signs, canonizeds, parallel=True):
# Format the vector lib request
n = 6
args = []
for sign, canonical in zip(signs, canonizeds):
args.append(canonical)
send = json.dumps(dict(args=args))
url = backend_url_farthest + urllib2.quote(send)
response = json.load(urllib2.urlopen(url))
args = response['args']
self.max = len(args)
# Decanonize the results and get freebase, article info
if parallel:
rv = parmap(result_chain, args[:n])
else:
rv = [result_chain(x) for x in args[:n]]
results = []
rw = response['right_word']
r = response['right']
l = response['left']
print response['left_freebase']
print response['inner']
print response['right_freebase']
for n1, w, v in zip(response['N1'], response['args'], rv):
ret = {}
m = 'x' if w == rw else 'o'
print "%s %s %1.1f" % (m, w, n1)
ret['mark'] = m
ret['canonical'] = w
ret['themes'] = r if m == 'x' else l
ret['themes'] = ret['themes'][:4]
ret['n1'] = n1
ret.update(v)
article = ret.pop('article')
if article is not None:
ret.update(article)
results.append(ret)
results = sorted(results, key=lambda x: x['n1'])
left = [prettify(lw) for lw in l if countdig(lw) < 2]
right = [prettify(rw) for rw in r if countdig(rw) < 2]
other = dict(left=left[:4], right=right[:4])
return results, other