-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathshortdot_test.py
52 lines (47 loc) · 1.37 KB
/
shortdot_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python
"""
simple test of the shortdot.pyx code
"""
import numpy as np
import shortdot
import time
test_rand = False
if test_rand:
rows = int(1e5)
dims = 1000
A = np.random.normal(size=(rows, dims)).astype('f4')
B = np.random.normal(size=(dims)).astype('f4')
C = np.zeros(dims)
thresh = -1.0
print "created matrix"
else:
A = np.load("/nobackupp5/cmoody3/data/ids/trained/vectors.fullwiki.1000.s50.num.npy")
A = A.astype('f4')
B = A[A.shape[0]/2]
C = np.zeros(A.shape[0]).astype('f8')
thresh = 0.0
rows = A.shape[0]
dims = A.shape[1]
C = C.astype('f4')
n = 20
start = time.time()
for i in range(n):
C = np.zeros(rows).astype('f4')
skipped = shortdot.shortdot(A, B, C, 50, thresh)
stop = time.time()
frac = skipped * 1.0 / (rows * dims)
print "finished cython, skipped %i, %1.1f%%" % (skipped, frac * 100.0)
cy = (stop - start) * 1.0 / n * 1e6
print 'cython top 5:', np.sort(C)[-5:], np.argsort(C)[-5:]
start = time.time()
for i in range(n):
x = np.zeros(rows).astype('f4')
D = np.dot(A, B)
stop = time.time()
py = (stop - start) * 1.0 / n * 1e6
print 'numpy top 5:', np.sort(D)[-5:], np.argsort(D)[-5:]
comp = np.where(np.argsort(D)[::-1] != np.argsort(C)[::-1])[0]
print "first inequal indices", comp[:10]
print "cython: %1.3ems" % cy
print "python: %1.3ems" % py
print "cython speed up %1.1f " % (py / cy)