-
The following is a list of requirements and recommendations for a CF conforming netCDF file. They are organized by the section of the CF document that they pertain to.
-
This document is intended to be a concise summary of the CF Conventions document. If there are any discrepencies between the two, the conventions document is the ultimate authority.
-
This document will be updated as required to correct mistakes or add new material required for completeness or clarity.
Requirements:
-
Variable, dimension and attribute names must begin with a letter and be composed of letters, digits, and underscores.
Recommendations:
-
No two variable names should be identical when case is ignored.
Requirements:
-
The dimensions of a variable must all have different names.
Recommendations:
-
If any or all of the dimensions of a variable have the interpretations (as given by their units or axis attribute) of time (T), height or depth (Z), latitude (Y), or longitude (X) then those dimensions should appear in the relative order T, then Z, then Y, then X in the CDL definition corresponding to the file.
-
In files that are meant to conform to the COARDS subset of CF, any dimensions of a variable other than space and time dimensions should be added "to the left" of the space and time dimensions as represented in CDL.
Requirements:
-
The
valid_range
attribute must not be present if thevalid_min
and/orvalid_max
attributes are present. -
The
_FillValue
attribute must be the same type as its associated variable. -
The
missing_value
attribute must be the same type as its associated variable. -
The
actual_range
attribute must be of the same type as its associated variable unless there is ascale_factor
and/oradd_offset
attribute, in which case it must be of the same type as those attributes. -
The
actual_range
attribute must have two elements, of which the first exactly equals the minimum non-missing value occurring in the associated variable after anyscale_factor
andadd_offset
are applied, and the second exactly equals the maximum value in the same way. -
There must not be an
actual_range
attribute if all the data values of the associated variable equal the missing value. -
If both the
actual_range
andvalid_range/valid_min/valid_max
are specified, the values of theactual_range
must be valid values.
Recommendations:
-
The value of the
_FillValue
attribute should not be within a specified valid range. -
If both
missing_value
and_FillValue
be used, they should have the same value.
Requirements:
-
Files that conform to the CF version 1.8 conventions must indicate this by setting the global
Conventions
attribute to the string value "CF-1.8". -
The
Conventions
attribute may be a single text string containing a list of convention names separated by blank space or commas, one of which shall be the full CF string as described above.
Requirements:
-
The
title
,history
,institution
,source
,references
, andcomment
attributes are all type string.
Recommendations:
-
The
title
andhistory
attributes are only defined as global or groups attributes. If they are used as per variable attributes a CF compliant application should treat them exactly as it would treat any other unrecognized attribute.
Requirements:
-
The
external_variables
attribute is of string type and contains a blank-separated list of variable names. -
No variable named by
external_variables
is allowed in the file.
Requirements:
-
The
Conventions
andexternal_variables
attributes must not be used in non-root groups. -
If any dimension of an out-of-group variable has the same name as a dimension of the referring variable, the two must be the same dimension (i.e. they must have the same netCDF dimension ID).
-
Variable or dimension paths must follow a UNIX style file convention. They must be formed of words (composed of letters, digits and underscores) and be separated by the slash character ('/'). Paths may begin with either '/', '…' or a word.
-
The variable or dimension referenced must exist in the file unless it is an external variable. References can be absolute, relative or with no path, in which case, the variable or dimension must be found in one of the following (in order of precedence):
-
In the referring group
-
In the ancestor group (starting from the direct ancestor and proceeding toward the root group, until it is found)
-
By the lateral search algorithm for coordinate variables only.
-
Recommendations:
-
NUG-coordinate variables that are not in the referring group or one of its direct ancestors should be referenced by absolute or relative paths rather than relying on the lateral search algorithm.
Recommendations:
-
All variables should use either the
long_name
or thestandard_name
attributes to describe their contents. Exceptions are boundary and climatology variables.
Requirements:
-
The
units
attribute is required for all variables that represent dimensional quantities (except for boundary variables defined in section 7.1 and climatology variables defined in section 7.4 ). -
The type of the
units
attribute is a string that must be recognizable by the udunits package. Exceptions are the unitslevel, layer, and sigma_level
. -
The
units
of a variable that specifies astandard_name
must be physically equivalent to the canonical units given in the standard name table, as modified by thestandard_name
modifier, if there is one, according to Appendix C, and then modified by all the methods listed in order by thecell_methods
attribute, if one is present, according to Appendix E.
Recommendations:
-
The units
level
,layer
, andsigma_level
are deprecated.
Requirements:
-
The
standard_name
attribute takes a string value comprised of a standard name optionally followed by one or more blanks and a standard name modifier. -
The legal values for the standard name are contained in the standard name table.
-
The legal values for the standard name modifier are contained in Appendix C, Standard Name Modifiers.
-
If a variable has a
standard_name
ofregion
orarea_type
, it must have value(s) from the permitted list.
Recommendataions:
-
Use of the
standard_name
modifiersstatus_flag
andnumber_of_observations
is deprecated, and the correspondingstandard_names
are recommended instead.
Requirements:
-
The
flag_values
attribute must have the same type as the variable to which it is attached. -
If the
flag_values
attribute is present then theflag_meanings
attribute must be specified. -
The type of the
flag_meanings
attribute is a string whose value is a blank separated list of words or phrases, each consisting of characters from the alphanumeric set and the following five: '_', '-', '.', '+', '@'. -
The number of
flag_values
attribute values must equal the number of words or phrases appearing in theflag_meanings
string. -
The number of
flag_masks
attribute values must equal the number of words or phrases appearing in theflag_meanings
string. -
Variables with a
flag_masks
attribute must have a type that is compatible with bit field expression (char, byte, short and int), not floating-point (float, real, double), and theflag_masks
attribute must have the same type. -
The
flag_masks
attribute values must be non-zero. -
The
flag_values
attribute values must be mutually exclusive among the set offlag_values
attribute values defined for that variable.
Recommendations:
-
When
flag_masks
andflag_values
are both defined, the Boolean AND of each entry inflag_values
with its corresponding entry inflag_masks
should equal theflag_values
entry, ie, the mask selects all the bits required to express the value.
Requirements:
-
The
axis
attribute may only be attached to coordinate variables and geometry node coordinate variables (Chapter 7). -
The only legal values of axis are
X
,Y
,Z
, andT
(case insensitive). -
The
axis
attribute must be consistent with the coordinate type deduced fromunits
andpositive
. -
The
axis
attribute is not allowed for auxiliary coordinate variables. -
A data variable must not have more than one coordinate variable with a particular value of the
axis
attribute.
Requirements:
-
The only legal values for the
positive
attribute areup
ordown
(case insensitive).
Recommendations:
-
The
positive
attribute should be consistent with the sign convention implied by the definition of thestandard_name
, if both are provided.
Requirements:
-
The
formula_terms
attribute is only allowed on a coordinate variable which has astandard_name
listed in Appendix C. -
The type of the
formula_terms
attribute is a string whose value is list of blank separated word pairs in the formterm: var
. The legal valuesterm
are contained in Appendix C for each validstandard_name
. The values ofvar
must be variables that exist in the file. -
Where indicated by the appropriate definition in Appendix D, the
standard_name
attributes of variables named by theformula_terms
attribute must be consistent with thestandard_name
of the coordinate variable it is attached to, according to the appropriate definition in Appendix D. -
The
computed_standard_name
attribute is only allowed on a coordinate variable which has aformula_terms
attribute. -
The
computed_standard_name
attribute is a string whose value must be consistent with thestandard_name
of the coordinate variable it is attached to, and in some cases also with thestandard_name
attributes of variables named by theformula_terms
attribute, according to the appropriate definition in Appendix D.
Requirements:
-
The time units of a time coordinate variable must contain a reference time.
-
The reference time of a time coordinate variable must be a legal time in the specified calendar.
Recommendations:
-
The use of a reference time in the year 0 to indicate climatological time is deprecated. This restriction only applies to the real-world calendar as used by the udunits package.
-
Units of
year
andmonth
and any equivalent units should be used with caution.
Requirements:
-
The attributes
calendar
,month_lengths
,leap_year
, andleap_month
may only be attached to time coordinate variables. -
The standardized values of the calendar attribute are
gregorian
,standard
,proleptic_gregorian
,noleap
,365_day
,all_leap
,366_day
,360_day
,julian
, andnone
(case insensitive). If thecalendar
attribute is given a non-standard value, then the attributemonth_lengths
is required, along withleap_year
andleap_month
as appropriate. -
The type of the
month_lengths
attribute must be an integer array of size 12. -
The values of the
leap_month
attribute must be in the range 1-12. -
The values of the
leap_year
andleap_month
attributes are integer scalars.
Recommendations:
-
The attribute
leap_month
should not appear unless the attributeleap_year
is present. -
The time coordinate should not cross the date 1582-10-15 when the default mixed Gregorian/Julian calendar is in use.
Requirements:
-
All of a variable’s dimensions that are latitude, longitude, vertical, or time dimensions must have corresponding coordinate variables.
-
A coordinate variable must have values that are strictly monotonic (increasing or decreasing).
-
A coordinate variable must not have the
_FillValue
ormissing_value
attributes. -
The type of the
coordinates
attribute is a string whose value is a blank separated list of variable names. All specified variable names must exist in the file. -
The dimensions of each auxiliary coordinate must be a subset of the dimensions of the variable they are attached to, with two exceptions. First, a label variable which will have a trailing dimension for the maximum string length. Second a ragged array (Chapter 9, Discrete sampling geometries and Appendix H) uses special, more indirect, methods to connect the data and coordinates.
Recommendations:
-
The name of a multidimensional coordinate variable should not match the name of any of its dimensions.
-
All horizontal coordinate variables (in the Unidata sense) should have an
axis
attribute. -
All horizontal coordinate variables (in the unidata sense) should have an
axis
attribute.
-
The type of the
grid_mapping
attribute is a string whose value is of the following form, in which brackets indicate optional text:grid_mapping_name[: coord_var [coord_var ...]] [grid_mapping_name: [coord_var ... ]]
-
Note that in its simplest form the attribute comprises just a grid_mapping_name as a single word.
-
Each grid_mapping_name is the name of a variable (known as a grid mapping variable), which must exist in the file.
-
Each coord_var is the name of a coordinate variable or auxiliary coordinate variable, which must exist in the file. If it is an auxiliary coordinate variable, it must be listed in the coordinates attribute.
-
The grid mapping variables must have the
grid_mapping_name
attribute. The legal values for thegrid_mapping_name
attribute are contained in Appendix F. -
The data types of the attributes of the grid mapping variable must be specified in Table 1 of Appendix F.
-
If present, the
crs_wkt
attribute must be a text string conforming to the CRS WKT specification described in reference [OGC_CTS]. -
reference_ellipsoid_name
,prime_meridian_name
,horizontal_datum_name
andgeographic_crs_name
must be all defined if any one is defined. -
If
projected_crs_name
is defined thengeographic_crs_name
must be also.
Recommendations:
-
The grid mapping variables should have 0 dimensions.
Requirements:
-
A variable of character type that is named by a
coordinates
attribute is a label variable. This variable must have one or two dimensions. The trailing (CDL order) or sole dimension is for the maximum string length. If there are two dimensions, leading dimension (CDL order) must match one of those of the data variable.
Requirements:
-
The type of the
bounds
attribute is a string whose value is a single variable name. The specified variable must exist in the file. -
A boundary variable must have the same dimensions as its associated variable, plus have a trailing dimension (CDL order) for the maximum number of vertices in a cell.
-
A boundary variable must be a numeric data type.
-
If a boundary variable has
units
,standard_name
,axis
,positive
,calendar
,leap_month
,leap_year
ormonth_lengths
attributes, they must agree with those of its associated variable. -
Starting with version 1.7, a boundary variable must have a
formula_terms
attribute when it contains bounds for a parametric vertical coordinate variable that has aformula_terms
attribute. In this case the same terms and named variables must appear in both except for terms that depend on the vertical dimension. For such terms the variable name appearing in the boundary variable’sformula_terms
attribute must differ from that found in theformula_terms
attribute of the coordinate variable itself. The boundary variable of theformula_terms
variable must have the same dimensions as theformula_terms
variable, plus a trailing dimension (CDL order) for the maximum number of vertices in a cell, which must be the same as the trailing dimension of the boundary variable of the parametric vertical coordinate variable. If a named variable in theformula_terms
attribute of the vertical coordinate variable depends on the vertical dimension and is a coordinate, scalar coordinate or auxiliary coordinate variable then its bounds attribute must be consistent with the equivalent term informula_terms
attribute of the boundary variable.
Recommendations:
-
The points specified by a coordinate or auxiliary coordinate variable should lie within, or on the boundary, of the cells specified by the associated boundary variable.
-
Boundary variables should not have the
_FillValue
,missing_value
,units
,standard_name
,axis
,positive
,calendar
,leap_month
,leap_year
ormonth_lengths
attributes.
Requirements:
-
The type of the
cell_measures
attribute is a string whose value is list of blank separated word pairs in the formmeasure: var
. The valid values formeasure
arearea
orvolume
. Thevar
token specifies a variable that must either exist in the file or be named by theexternal_variables
attribute. The dimensions of the variable specified byvar
must be the same as, or be a subset of, the dimensions of the variable to which they are related. -
A measure variable must have units that are consistent with the measure type, i.e., square meters for area measures and cubic meters for volume measures.
Requirements:
-
The type of the
cell_methods
attribute is a string whose value is one or more blank separated word lists, each with the formdim1: [dim2: [dim3: ...]] method [where type1 [over type2]] [within|over days|years] [(comment)]
where brackets indicate optional words. The valid values for
dim1
[dim2
[dim3
…] ] are the names of dimensions of the data variable, names of scalar coordinate variables of the data variable, valid standard names, or the wordarea
. The valid values ofmethod
are contained in Appendix E. The valid values fortype1
are the name of a string-valued auxiliary or scalar coordinate variable with astandard_name
ofarea_type
, or any string value allowed for a variable ofstandard_name
ofarea_type
. Iftype2
is a string-valued auxiliary coordinate variable, it is not allowed to have a leading dimension (the number of strings) of more than one. When the method refers to a climatological time axis, the suffixes for within and over may be appended. -
A given dimension name may only occur once in a
cell_methods
string. An exception is a climatological time dimension. -
The comment, if present, must take the form ([
interval:
value unit [interval:
…]comment:
] remainder )The remainder text is not standardized. If no
interval
clauses are present, the entire comment is therefore not standardized. There may be zerointerval
clauses, oneinterval
clause, or exactly as manyinterval
clauses as there aredims
to which the method applies. The value must be a valid number and the unit a string that is recognizable by the udunits package.
Recommendations:
-
If a data variable has any dimensions or scalar coordinate variables referring to horizontal, vertical or time dimensions, it should have a
cell_methods
attribute with an entry for each of these spatiotemporal dimensions or scalar coordinate variables. (The horizontal dimensions may be covered by an area entry.) -
Except for entries whose cell method is point, all numeric coordinate variables and scalar coordinate variables named by
cell_methods
should havebounds
orclimatology
attributes.
Requirements:
-
The
climatology
attribute may only be attached to a time coordinate variable. -
The type of the
climatology
attribute is a string whose value is a single variable name. The specified variable must exist in the file. -
A climatology variable must have the same dimension as its associated time coordinate variable, and have a trailing dimension (CDL order) of size 2.
-
A climatology variable must be a numeric data type.
-
If a climatology variable has
units
,standard_name
, orcalendar
attributes, they must agree with those of its associated variable. -
A climatology variable must not have
_FillValue
ormissing_value
attributes.
Requirements:
-
One of the dimensions of the data variable with geometry must be the number of geometries to which the data applies.
-
The type of the
geometry
attribute is a string whose value is the name of a geometry container variable. The variable name must exist in the file. -
The geometry container variable must hold
geometry_type
andnode_coordinates
attributes. -
The only legal values of geometry_type are
point
,line
, andpolygon
(case insensitive). -
For a line
geometry_type
, each geometry must have a minimum of two node coordinates. -
For a polygon
geometry_type
, each geometry must have a minimum of three node coordinates. -
The type of the
node_coordinates
attribute is a string whose value is a blank separated list of variable names. All specified variable names must exist in the file. -
The geometry node coordinate variables must each have an
axis
attribute. -
A geometry container variable must not have more than one node coordinate variable with a particular value of the
axis
attribute. -
The
grid_mapping
andcoordinates
attributes can be carried by the geometry container variable provided they are also carried by the data variables associated with the container. -
If a coordinate variable named by a
coordinates
attribute carried by the geometry container variable or its parent data variable has anodes
attribute, then thenodes
attribute must be a string whose value is a single variable name. The specified variable must be a node coordinate variable that exists in the file. -
If coordinate variables have a
nodes
attribute, then the grid mapping of the coordinate variables must be the same as the grid mapping of the variables indicated by thenodes
attribute. -
The geometry node coordinate variables must all have the same single dimension, which is the total number of nodes in all the geometries.
-
Nodes for polygon exterior rings must be put in anticlockwise order (viewed from above) and polygon interior rings in clockwise order.
-
The single dimension of the part node count variable should equal the total number of parts in all the geometries.
-
When more than one geometry instance is present and the
node_count
attribute on the geometry container is missing, the geometry type must bepoint
, and the dimension of the node coordinate variables must be one of the dimensions of the data variable. -
If a
part_node_count
variable and anode_count
variable are present for a given geometry container, then the sum ofpart_node_count
values must equal the sum ofnode_count
values. -
If the
interior_ring
attribute is present on the geometry container, then thepart_node_count
attribute must also be present on the geometry container. -
The interior ring variable must contain the value 0 to indicate an exterior ring polygon and 1 to indicate an interior ring polygon.
-
The single dimension of the interior ring variable must be the same dimension as that of the part node count variable.
Requirements:
-
The
scale_factor
andadd_offset
attributes must be the same numeric data type. -
If
scale_factor
andadd_offset
are a different type than the variable, then they must be either type float or type double. -
If
scale_factor
andadd_offset
are a different type than the variable, then the variable must be type byte, short or int.
Recommendations:
-
If
scale_factor
andadd_offset
are type float, the variable should not be of type int.
Requirements:
-
The
compress
attribute may only be attached to a coordinate variable with an integer data type. -
The type of the
compress
attribute is a string whose value is a blank separated list of dimension names. The specified dimensions must exist in the file. -
The values of the associated coordinate variable must be in the range starting with 0 and going up to the product of the compressed dimension sizes minus 1 (CDL index conventions).