-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_mydata.html
940 lines (909 loc) · 66.4 KB
/
script_mydata.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.4.550">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="author" content="Claudiu Forgaci">
<meta name="dcterms.date" content="2024-03-20">
<title>What do the Dutch news say about farming communities?</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
/* CSS for citations */
div.csl-bib-body { }
div.csl-entry {
clear: both;
margin-bottom: 0em;
}
.hanging-indent div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}</style>
<script src="script_mydata_files/libs/clipboard/clipboard.min.js"></script>
<script src="script_mydata_files/libs/quarto-html/quarto.js"></script>
<script src="script_mydata_files/libs/quarto-html/popper.min.js"></script>
<script src="script_mydata_files/libs/quarto-html/tippy.umd.min.js"></script>
<script src="script_mydata_files/libs/quarto-html/anchor.min.js"></script>
<link href="script_mydata_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="script_mydata_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="script_mydata_files/libs/bootstrap/bootstrap.min.js"></script>
<link href="script_mydata_files/libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="script_mydata_files/libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<style>
.cell-output-stdout code {
word-break: break-wor !important;
white-space: pre-wrap !important;
}
</style>
</head>
<body>
<div id="quarto-content" class="page-columns page-rows-contents page-layout-article">
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#setup" id="toc-setup" class="nav-link active" data-scroll-target="#setup">Setup</a>
<ul class="collapse">
<li><a href="#software" id="toc-software" class="nav-link" data-scroll-target="#software">Software</a></li>
</ul></li>
<li><a href="#introduction" id="toc-introduction" class="nav-link" data-scroll-target="#introduction">Introduction</a>
<ul class="collapse">
<li><a href="#motivation" id="toc-motivation" class="nav-link" data-scroll-target="#motivation">Motivation</a></li>
<li><a href="#the-dataset" id="toc-the-dataset" class="nav-link" data-scroll-target="#the-dataset">The dataset</a></li>
<li><a href="#topic-modeling-what-is-it-and-why-do-we-use-it" id="toc-topic-modeling-what-is-it-and-why-do-we-use-it" class="nav-link" data-scroll-target="#topic-modeling-what-is-it-and-why-do-we-use-it">Topic modeling: what is it and why do we use it?</a></li>
</ul></li>
<li><a href="#prepare-your-data" id="toc-prepare-your-data" class="nav-link" data-scroll-target="#prepare-your-data">Prepare your data</a></li>
<li><a href="#text-analysis" id="toc-text-analysis" class="nav-link" data-scroll-target="#text-analysis">Text analysis</a></li>
<li><a href="#interpretation" id="toc-interpretation" class="nav-link" data-scroll-target="#interpretation">Interpretation</a></li>
<li><a href="#now-its-your-turn" id="toc-now-its-your-turn" class="nav-link" data-scroll-target="#now-its-your-turn">Now it’s your turn!</a></li>
</ul>
</nav>
</div>
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title">What do the Dutch news say about farming communities?</h1>
<p class="subtitle lead">A Topic Modeling Approach using R</p>
</div>
<div class="quarto-title-meta-author">
<div class="quarto-title-meta-heading">Author</div>
<div class="quarto-title-meta-heading">Affiliation</div>
<div class="quarto-title-meta-contents">
<p class="author">Claudiu Forgaci <a href="mailto:C.Forgaci@tudelft.nl" class="quarto-title-author-email"><i class="bi bi-envelope"></i></a> <a href="https://orcid.org/0000-0003-3218-5102" class="quarto-title-author-orcid"> <img src=""></a></p>
</div>
<div class="quarto-title-meta-contents">
<p class="affiliation">
Delft University of Technology
</p>
</div>
</div>
<div class="quarto-title-meta">
<div>
<div class="quarto-title-meta-heading">Published</div>
<div class="quarto-title-meta-contents">
<p class="date">March 20, 2024</p>
</div>
</div>
</div>
</header>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note
</div>
</div>
<div class="callout-body-container callout-body">
<p>In this workshop, we work in a computational notebook, an environment that combines narrative, executable code and output in one place. The document you are reading is a Quarto document that combines <a href="https://www.markdowntutorial.com/">Markdown</a>, a markup language with a simple syntax for text formatting, with code chunks written in the R programming language. If you are reading the source document <code>script.qmd</code> and want to see a rendered version of it, click on the Render button above this window or visit <a href="https://cforgaci.github.io/mint2324Q3U/script.html" class="uri">https://cforgaci.github.io/mint2324Q3U/script.html</a>.</p>
</div>
</div>
<section id="setup" class="level2">
<h2 class="anchored" data-anchor-id="setup">Setup</h2>
<section id="software" class="level3">
<h3 class="anchored" data-anchor-id="software">Software</h3>
<ol type="1">
<li><p>During the workshop, we work in RStudio Server, a version of RStudio that is accessible through your web browser, so no installation is required. Visit <a href="http://rstudio-server-edu.bk.tudelft.nl:8787/">RStudio Server</a> and log in with the credentials provided in your handout. To follow the steps described in this document after the workshop, you will need to install <a href="https://posit.co/download/rstudio-desktop/">R, RStudio Desktop</a> and <a href="https://www.python.org/downloads/">Python</a> for your operating system.</p></li>
<li><p>If you haven’t created an RStudio project with the workshop material yet, create it from <code>File > New Project... > Version Control > Git</code> with the URL <code>https://github.com/cforgaci/mint2324Q3U.git</code> and project directory name <code>mint2324Q3U</code>. Browse to a location of your choice on your computer and click on <code>Create Project</code>. This will create a project directory populated with the data and scripts used in the workshop.</p></li>
<li><p>Open the file <code>script.qmd</code> from the Files tab in Rstudio. This will open the computational notebook from where this document was rendered. Activate the visual editor as shown below and continue reading there.</p></li>
</ol>
<p><img src="fig/rstudio.png" class="img-fluid"></p>
<ol start="4" type="1">
<li>For our analysis, we will need to load a number of R packages that extend the out-of-the-box functionality of R, as follows:</li>
</ol>
<ul>
<li>First, run the <code>install</code> code chunk below by pressing on the green arrow in its upper right corner. If you are running this script in RStudio Desktop, you will need to first delete the three <code>#</code> signs before running the <code>install</code> code chunk. It will take a few of minutes until all packages are installed. In RStudio Server, run the code as it is.</li>
</ul>
<div class="cell">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># renv::activate()</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="co"># if (!"renv" %in% installed.packages()) install.packages("renv")</span></span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="co"># renv::restore(prompt = FALSE)</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<ul>
<li><p>In RStudio Server, run <code>renv::deactivate()</code> in the console.</p></li>
<li><p>Then run this code to load the packages.</p></li>
</ul>
<div class="cell">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyverse) <span class="co"># Data manipulation and visualisation</span></span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(reticulate) <span class="co"># R interface with Python</span></span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidytext) <span class="co"># Text manipulation</span></span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(topicmodels) <span class="co"># Topic modeling</span></span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(LDAvis) <span class="co"># Interactive visualisation of LDA models</span></span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="fu">require</span>(servr) <span class="co"># LDAvis dependency</span></span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(wordcloud) <span class="co"># Generate word clouds</span></span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="fu">require</span>(reshape2) <span class="co"># wordcloud dependency</span></span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="fu">source</span>(<span class="st">"R/analyse.R"</span>) <span class="co"># Load custom functions</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
</section>
<section id="introduction" class="level2">
<h2 class="anchored" data-anchor-id="introduction">Introduction</h2>
<p>In this workshop, we will use topic modeling to reveal key topics in the Dutch news about farmer communities.</p>
<section id="motivation" class="level3">
<h3 class="anchored" data-anchor-id="motivation">Motivation</h3>
<p>As any quantitative method, topic modeling depends on data. The more, the better. And, of course, the better fit to the research question, the better. As opposed to qualitative methods, quantitative analyses conducted in a computational environment have three main benefits:</p>
<ul>
<li><p>Reproducibility - you can re-run the analysis with the same results, and thus make your work verifiable;</p></li>
<li><p>Automation - you can run the analysis on other data, allowing yourself to easily re-run your analysis when you collect more data;</p></li>
<li><p>Scalability - run the analysis on (much) more data, overcoming the limitation of manual analysis.</p></li>
</ul>
<p>We will demonstrate these three benefits first by analysing a given dataset, then re-running the analysis with tweaked parameters and then running the same analysis with other data.</p>
</section>
<section id="the-dataset" class="level3">
<h3 class="anchored" data-anchor-id="the-dataset">The dataset</h3>
<p>DESCRIBE YOUR DATASET HERE</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># What data will you work with? Use one of the following two values:</span></span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="co"># - "nrc" if you want to use the default dataset</span></span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="co"># - "mydata" if you want to use your own dataset</span></span>
<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>data_choice <span class="ot"><-</span> <span class="st">"mydata"</span></span>
<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>data_root <span class="ot"><-</span> <span class="fu">paste0</span>(<span class="st">"data/"</span>, data_choice)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="topic-modeling-what-is-it-and-why-do-we-use-it" class="level3">
<h3 class="anchored" data-anchor-id="topic-modeling-what-is-it-and-why-do-we-use-it">Topic modeling: what is it and why do we use it?</h3>
<p>We will use a selection of newsletter articles about farming communities in the Netherlands and we want to understand what are the main areas of concern in those news items. Topic modeling is an unsupervised machine learning method used to reveal hidden topics in text data, especially useful when large amounts of data are available, e.g., from social media or newsletter archives.</p>
<p>We will work with one of the most popular topic models called latent Dirichlet allocation (LDA), a probabilistic model in which every document is a distribution over a given number of topics and every topic is a distribution over the vocabulary, i.e., all distinct words used in all documents. The details of LDA are outside the scope of this workshop; if you want to know more, you can read more in <span class="citation" data-cites="blei2012">Blei (<a href="#ref-blei2012" role="doc-biblioref">2012</a>)</span>.</p>
</section>
</section>
<section id="prepare-your-data" class="level2">
<h2 class="anchored" data-anchor-id="prepare-your-data">Prepare your data</h2>
<p>Before fitting a topic model, we need to make sure that our data is in the right form. Pre-processing in general is an essential yet challenging part of quantitative data analysis, especially when dealing with unstructured data such as text coming from different media. Hence, it is very (and too) often the reason why one might give up before even starting to analyse their data. Moreover, trying to analyse poorly pre-processed data will very likely lead to unreliable and disappointing results. Do not underestimate and follow carefully these steps.</p>
<p>Text data can be obtained in many formats, but it is widely available in PDFs. Reports, journal articles, scans of physical publications, posters, are examples of types of text data that are openly available in PDF format. We will focus on this type of data and we will discuss other types of data coming from different media in other parts of the workshop.</p>
<p>We start with a set of PDFs of newsletter articles in Dutch. We are facing three challenges: the text is not-machine-readable, it is stored in PDFs and we need it them be in English.</p>
<section id="make-pdfs-machine-readable" class="level4">
<h4 class="anchored" data-anchor-id="make-pdfs-machine-readable">Make PDFs machine-readable</h4>
<p>Let’s tackle the first issue. Scanned documents and some PDF documents with garbled text are not machine readable. Tools such as the Python application <a href="https://ocrmypdf.readthedocs.io/en/latest/">OCRmyPDF</a> can help with this issue by rasterizing and then adding an optical character recognition (OCR) text layer to the document.</p>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note
</div>
</div>
<div class="callout-body-container callout-body">
<p>Note that points 1 and 2 below are specific to this dataset and that you can skip them if your data is machine-readable (it is if you can select and copy text from it).</p>
</div>
</div>
<ol type="1">
<li>Install <a href="https://ocrmypdf.readthedocs.io/en/latest/installation.html#">OCRmyPDF</a> for your operating system.</li>
<li>Using the terminal, navigate to the directory with <code>cd /path/to/your/directory/</code> where your PDFs are located and run the following command. Note that the language of the document, in our case <code>nld</code>, needs to be specified. See other language codes <a href="https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html">here</a>. Note that this requires all documents in the folder to be in the same language; if the documents are in different languages, then run the following command on documents separated into folders by language. This will not work with multi-lingual documents. The command will make the text in the existing PDFs machine readable.</li>
</ol>
<div class="sourceCode" id="cb4"><pre class="sourceCode sh code-with-copy"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">find</span> . <span class="at">-name</span> <span class="st">'*.pdf'</span> <span class="at">-exec</span> ocrmypdf <span class="at">--force-ocr</span> <span class="at">--language</span> nld <span class="at">--clean</span> <span class="st">'{}'</span> <span class="st">'{}'</span> <span class="dt">\;</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="extract-text-from-pdfs" class="level4">
<h4 class="anchored" data-anchor-id="extract-text-from-pdfs">Extract text from PDFs</h4>
<ol start="3" type="1">
<li>Extract text from PDF with the following script. This sets up and calls the Python package PyMuPDF.</li>
</ol>
<div class="cell">
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Set up and use Python for PDF text extraction</span></span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>reticulate<span class="sc">::</span><span class="fu">virtualenv_create</span>(<span class="at">envname =</span> <span class="st">"myenv"</span>, <span class="at">python =</span> <span class="fu">install_python</span>())</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>virtualenv: myenv</code></pre>
</div>
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>reticulate<span class="sc">::</span><span class="fu">py_install</span>(<span class="st">"PyMuPDF == 1.21.0"</span>, <span class="at">envname =</span> <span class="st">"myenv"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>Using virtual environment 'myenv' ...</code></pre>
</div>
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">use_virtualenv</span>(<span class="st">"myenv"</span>)</span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="fu">source_python</span>(<span class="st">"extract-text-from-pdf.py"</span>)</span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Get PDF file paths</span></span>
<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>pdf_paths <span class="ot"><-</span> <span class="fu">list.files</span>(data_root, <span class="at">full.names =</span> <span class="cn">TRUE</span>, <span class="at">pattern =</span> <span class="st">"*.pdf$"</span>)</span>
<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="co"># Extract text from PDFs</span></span>
<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a>text <span class="ot"><-</span> <span class="fu">convert_pdf</span>(pdf_paths) <span class="sc">|></span> <span class="fu">unlist</span>()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="translate-the-extracted-text" class="level4">
<h4 class="anchored" data-anchor-id="translate-the-extracted-text">Translate the extracted text</h4>
<p>The second issue, translation, can be automated</p>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note
</div>
</div>
<div class="callout-body-container callout-body">
<p>Note that point 4 below is specific to this dataset and that you can skip it if your data is in English. For the default dataset, the translated texts are already included in the <code>data</code> folder in <code>.txt</code> format.</p>
</div>
</div>
<ol start="4" type="1">
<li>If the text is in Dutch (or another language), translate it to English using the <a href="https://www.deepl.com/pro-api?cta=header-pro-api">DeepL API</a> accessible in R via the `deeplr` package. Note that you need to create a developer account and the free plan is limited to 500,000 characters per month. This quota was sufficient for the translation of the 51 newsletter articles (1187324 characters in total) used in this analysis. Before running the script below:
<ul>
<li>Set up a <a href="https://www.deepl.com/pro-api?cta=header-pro-api">DeepL API</a> developer account</li>
<li>Copy the Authentication Key from the settings in your <a href="https://www.deepl.com/your-account/summary">account page</a></li>
<li>Run <code>Sys.setenv(DEEPLR_AUTH_KEY = "PASTE_YOUR_AUTH_KEY_HERE")</code> , replacing <code>PASTE_YOUR_AUTH_KEY_HERE</code> with the Authentication Key you copied.</li>
<li>Run the <code>translate-deepl.R</code> script in this project</li>
</ul></li>
</ol>
</section>
</section>
<section id="text-analysis" class="level2">
<h2 class="anchored" data-anchor-id="text-analysis">Text analysis</h2>
<p>We first create a data frame with titles and texts in two separate columns. A data frame is the term used in R or Python for a table representation of data in which rows are observations (newsletter articles, in our case) and columns are variables.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>doc_names <span class="ot"><-</span> <span class="fu">list.files</span>(data_root, <span class="at">full.names =</span> <span class="cn">TRUE</span>, <span class="at">pattern =</span> <span class="st">"*.txt"</span>)</span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a><span class="co"># Read texts in English from files</span></span>
<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="fu">length</span>(doc_names) <span class="sc">==</span> <span class="dv">0</span>) {</span>
<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a> <span class="co"># Assuming text in English if translation is not found</span></span>
<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a> text_EN <span class="ot"><-</span> text</span>
<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>} <span class="cf">else</span>{</span>
<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a> <span class="co"># Assuming texts were translated and are available as text files</span></span>
<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a> text_EN <span class="ot"><-</span> <span class="fu">vector</span>(<span class="at">length =</span> <span class="fu">length</span>(text)) </span>
<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a> <span class="cf">for</span> (i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">length</span>(text_EN)) {</span>
<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a> text_EN[i] <span class="ot"><-</span> <span class="fu">read_file</span>(doc_names[i])</span>
<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a> }</span>
<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">tibble</span>(<span class="at">doc =</span> <span class="fu">str_sub</span>(<span class="fu">list.files</span>(data_root, <span class="at">pattern =</span> <span class="st">"*.pdf"</span>), <span class="dv">1</span>, <span class="sc">-</span><span class="dv">4</span>L), text_EN) <span class="sc">|></span> </span>
<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">text_EN =</span> <span class="fu">str_replace_all</span>(text_EN, <span class="st">"^[0-9]*$"</span>, <span class="st">""</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>At this step, we define a list of stop words that occur in high frequency across the entire set of documents and are not expected to add meaning to the topics. We will iterate on this as we examine the top words below.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Add custom words you want to remove from your results inside c("WORD1", "WORD2", "ETC.")</span></span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>custom_stop_words <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">word =</span> <span class="fu">c</span>(<span class="st">"WORD1"</span>, <span class="st">"WORD2"</span>, <span class="st">"ETC."</span>)) </span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>LDA works with tokens, that is units of text to be analised. We will use words as tokens. We split the entire set of documents into words.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>words <span class="ot"><-</span> <span class="fu">unnest_tokens</span>(df, word, text_EN) <span class="sc">|></span></span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">filter</span>(<span class="fu">is.na</span>(readr<span class="sc">::</span><span class="fu">parse_number</span>(word))) <span class="sc">|></span> <span class="co"># Remove numbers</span></span>
<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">anti_join</span>(stop_words, <span class="at">by =</span> <span class="st">"word"</span>) <span class="sc">|></span> <span class="co"># Remove English stop words</span></span>
<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">anti_join</span>(custom_stop_words, <span class="at">by =</span> <span class="st">"word"</span>) <span class="sc">|></span> <span class="co"># Remove custom stop words</span></span>
<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a> dplyr<span class="sc">::</span><span class="fu">filter</span>(<span class="fu">nchar</span>(word) <span class="sc">>=</span> <span class="dv">4</span>) <span class="co"># remove words of max. 3 characters</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>Now we have a quick look at the most frequently used words. We can already guess what this set of newsletter articles is about: frequently used words such as “emissions”, “water”, and “biodiversity” indicate different areas of concern present in articles. If we notice high-frequency words that do not add meaning we add them to <code>custom_stop_words</code> above and re-run the <code>swcustom</code>, <code>tokens</code> and <code>tokens-rank</code> code chunks until we only see meaningful words. The list of custom stop words is the result of such an iterative process.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>words_count <span class="ot"><-</span> words <span class="sc">|></span> </span>
<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">count</span>(word) <span class="sc">|></span> </span>
<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">arrange</span>(<span class="fu">desc</span>(n))</span>
<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>words_count</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code># A tibble: 10,281 × 2
word n
<chr> <int>
1 design 799
2 city 730
3 source 662
4 space 657
5 urban 618
6 urbanism 515
7 apartment 487
8 critical 485
9 study 418
10 public 403
# ℹ 10,271 more rows</code></pre>
</div>
</div>
<p>We can also quickly visualise the top words in the form of a wordcloud.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>wordcloud<span class="sc">::</span><span class="fu">wordcloud</span>(words<span class="sc">$</span>word, <span class="at">min.freq =</span> <span class="dv">50</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output-display">
<div>
<figure class="figure">
<p><img src="script_mydata_files/figure-html/wordcloud-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
</div>
</div>
<p>Note that we have 5022 rows in, each representing one distinct word. This is the vocabulary we will provide as input to the topic model in the form of a Document Term Matrix.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>dtm <span class="ot"><-</span> words <span class="sc">|></span></span>
<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">count</span>(doc, word, <span class="at">sort =</span> <span class="cn">TRUE</span>) <span class="sc">|></span></span>
<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">cast_dtm</span>(doc, word, n)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>We run the model with a given number of clusters <code>k</code>. Note that defining the number of clusters is a critical decision. <code>k</code> can be defined empirically or qualitatively. As the former is computationally intensive and tends to result in a relatively high value, we choose the latter strategy, with a relatively low value that is easy to interpret. In general, the lower <code>k</code> is, the more interpretable it is, but too low might result in topics that are too general. Conversely, the higher it is, the more accurate, but that comes at the cost of interpretability. So the choice of <code>k</code> is a matter of finding the balance between detail and interpretability.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Determine the value of k</span></span>
<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>k <span class="ot"><-</span> <span class="dv">5</span></span>
<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Fit the LDA model</span></span>
<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a>lda <span class="ot"><-</span> <span class="fu">LDA</span>(dtm, <span class="at">k =</span> k, <span class="at">method=</span><span class="st">"Gibbs"</span>,</span>
<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a> <span class="at">control =</span> <span class="fu">list</span>(<span class="at">seed =</span> <span class="dv">2023</span>, <span class="at">iter =</span> <span class="dv">500</span>))</span>
<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a><span class="co"># Extract beta and theta statistics from LDA model</span></span>
<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a>beta <span class="ot"><-</span> <span class="fu">posterior</span>(lda)<span class="sc">$</span>terms <span class="co"># Distribution of topics over words</span></span>
<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a>theta <span class="ot"><-</span> <span class="fu">posterior</span>(lda)<span class="sc">$</span>topics <span class="co"># Distribution of documents over topics</span></span>
<span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-12"><a href="#cb17-12" aria-hidden="true" tabindex="-1"></a><span class="co"># Add pseudo-names to topics based on the top n words in each topic</span></span>
<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a>n_words <span class="ot"><-</span> <span class="dv">5</span> <span class="co"># How many top words to include in the pseudo-name?</span></span>
<span id="cb17-14"><a href="#cb17-14" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-15"><a href="#cb17-15" aria-hidden="true" tabindex="-1"></a>topic_names <span class="ot"><-</span> <span class="fu">c</span>()</span>
<span id="cb17-16"><a href="#cb17-16" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> (i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span>k) {</span>
<span id="cb17-17"><a href="#cb17-17" aria-hidden="true" tabindex="-1"></a> name <span class="ot"><-</span> <span class="fu">paste</span>(<span class="fu">names</span>(<span class="fu">head</span>(<span class="fu">sort</span>(beta[i, ], <span class="at">decreasing =</span> <span class="cn">TRUE</span>), n_words)), <span class="at">collapse =</span> <span class="st">" "</span>)</span>
<span id="cb17-18"><a href="#cb17-18" aria-hidden="true" tabindex="-1"></a> topic_names <span class="ot"><-</span> <span class="fu">c</span>(topic_names, name)</span>
<span id="cb17-19"><a href="#cb17-19" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb17-20"><a href="#cb17-20" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-21"><a href="#cb17-21" aria-hidden="true" tabindex="-1"></a>topic_names</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>[1] "city naples source porosity buildings"
[2] "design street market space network"
[3] "apartment seoul complexes density housing"
[4] "design river medway landscape development"
[5] "critical montbau urbanism society hool" </code></pre>
</div>
</div>
<div class="cell">
<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Which are the top n most frequently used words in each topic?</span></span>
<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a>n <span class="ot"><-</span> <span class="dv">20</span></span>
<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a><span class="fu">vis_top_words_per_topic</span>(<span class="at">data =</span> lda, <span class="at">top_n =</span> n)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output-display">
<div>
<figure class="figure">
<p><img src="script_mydata_files/figure-html/unnamed-chunk-2-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
</div>
</div>
</section>
<section id="interpretation" class="level2">
<h2 class="anchored" data-anchor-id="interpretation">Interpretation</h2>
<p>In important final step of topic modeling is the interpretation of the results. This is a step that requires you, the person conducting the analysis, to qualitatively describe the topics. This boils down to naming the topics and describing them. The pseudo-naming we used above is an automated way to give an idea of what each topic is about, but we might want to further abstract those to overarching topics. This can be straightforward for some topics and challenging for others. Large Language Models like ChatGPT are very suitable for such a task. We will use the free version (3.5) of ChatGPT with a prompt generated below using the parameters set in this document. Run the code below and copy/paste its output in a new chat in ChatGPT.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a>keywords <span class="ot"><-</span> <span class="fu">vector</span>(<span class="at">length =</span> k)</span>
<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> (i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span>k) {</span>
<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a> keywords[i] <span class="ot"><-</span> <span class="fu">paste0</span>(<span class="st">"- The words for Topic "</span>, i, <span class="st">" are: "</span>, topic_names[i], <span class="st">".</span><span class="sc">\n</span><span class="st">"</span>)</span>
<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb20-6"><a href="#cb20-6" aria-hidden="true" tabindex="-1"></a><span class="fu">cat</span>(<span class="fu">paste0</span>(<span class="st">"I have "</span>, k, <span class="st">" topics, each described by "</span>, n_words, </span>
<span id="cb20-7"><a href="#cb20-7" aria-hidden="true" tabindex="-1"></a> <span class="st">" words. The keywords are as follows:</span><span class="sc">\n</span><span class="st">"</span>),</span>
<span id="cb20-8"><a href="#cb20-8" aria-hidden="true" tabindex="-1"></a> keywords, <span class="st">"How would you name these topics? Use maximum two words to name the topics and provide a one-sentence description for each."</span>,</span>
<span id="cb20-9"><a href="#cb20-9" aria-hidden="true" tabindex="-1"></a> <span class="at">sep =</span> <span class="st">""</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>I have 5 topics, each described by 5 words. The keywords are as follows:
- The words for Topic 1 are: city naples source porosity buildings.
- The words for Topic 2 are: design street market space network.
- The words for Topic 3 are: apartment seoul complexes density housing.
- The words for Topic 4 are: design river medway landscape development.
- The words for Topic 5 are: critical montbau urbanism society hool.
How would you name these topics? Use maximum two words to name the topics and provide a one-sentence description for each.</code></pre>
</div>
</div>
<p>The output below is a variant of ChatGPT’s answer to our prompt. This will be slightly different from the answer you get from ChatGPT.</p>
<blockquote class="blockquote">
<p>PASTE CHATGPT RESPONSE HERE. EVERY LINE SHOULD BE PRECEDED BY A <code>></code> SIGN, TO SHOW THE RESPONSE AS A QUOTE.</p>
</blockquote>
<p>Now, let’s put show one word cloud for each topic and name them according to the response from ChatGPT.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Which are the top n most frequently used words in each topic?</span></span>
<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a>n <span class="ot"><-</span> <span class="dv">20</span></span>
<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a><span class="co"># Construct this vector manually based on the answer you get from ChatGPT</span></span>
<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Make sure the number of phrases is equal to k</span></span>
<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a>topic_names <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"TOPIC 1 NAME"</span>,</span>
<span id="cb22-6"><a href="#cb22-6" aria-hidden="true" tabindex="-1"></a> <span class="st">"TOPIC 2 NAME"</span>,</span>
<span id="cb22-7"><a href="#cb22-7" aria-hidden="true" tabindex="-1"></a> <span class="st">"TOPIC 3 NAME"</span>,</span>
<span id="cb22-8"><a href="#cb22-8" aria-hidden="true" tabindex="-1"></a> <span class="st">"TOPIC 4 NAME"</span>,</span>
<span id="cb22-9"><a href="#cb22-9" aria-hidden="true" tabindex="-1"></a> <span class="st">"TOPIC N NAME"</span>)</span>
<span id="cb22-10"><a href="#cb22-10" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggwordcloud)</span>
<span id="cb22-11"><a href="#cb22-11" aria-hidden="true" tabindex="-1"></a><span class="fu">vis_wordclouds_per_topic</span>(<span class="at">data =</span> lda, <span class="at">top_n =</span> n, <span class="at">topic_names =</span> topic_names)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output-display">
<div>
<figure class="figure">
<p><img src="script_mydata_files/figure-html/unnamed-chunk-3-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
</div>
</div>
<p>The interpretation of the topic model can be further aided by LDAvis, a package that can generate interactive visualisation of the topics in a topic model. Running the following code chunk will open a browser window that allows you to explore topic-level top words as well as the relevance of individual words across topics.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Function to approximate the distance between topics</span></span>
<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a>svd_tsne <span class="ot"><-</span> <span class="cf">function</span>(x) tsne<span class="sc">::</span><span class="fu">tsne</span>(<span class="fu">svd</span>(x)<span class="sc">$</span>u)</span>
<span id="cb23-3"><a href="#cb23-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb23-4"><a href="#cb23-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Convert DTM into JSON required by the LDAvis package</span></span>
<span id="cb23-5"><a href="#cb23-5" aria-hidden="true" tabindex="-1"></a>json <span class="ot"><-</span> <span class="fu">createJSON</span>(</span>
<span id="cb23-6"><a href="#cb23-6" aria-hidden="true" tabindex="-1"></a> <span class="at">phi =</span> beta,</span>
<span id="cb23-7"><a href="#cb23-7" aria-hidden="true" tabindex="-1"></a> <span class="at">theta =</span> theta,</span>
<span id="cb23-8"><a href="#cb23-8" aria-hidden="true" tabindex="-1"></a> <span class="at">doc.length =</span> <span class="fu">rowSums</span>(<span class="fu">as.matrix</span>(dtm)),</span>
<span id="cb23-9"><a href="#cb23-9" aria-hidden="true" tabindex="-1"></a> <span class="at">vocab =</span> <span class="fu">colnames</span>(dtm),</span>
<span id="cb23-10"><a href="#cb23-10" aria-hidden="true" tabindex="-1"></a> <span class="at">term.frequency =</span> <span class="fu">colSums</span>(<span class="fu">as.matrix</span>(dtm)),</span>
<span id="cb23-11"><a href="#cb23-11" aria-hidden="true" tabindex="-1"></a> <span class="at">mds.method =</span> svd_tsne,</span>
<span id="cb23-12"><a href="#cb23-12" aria-hidden="true" tabindex="-1"></a> <span class="at">plot.opts =</span> <span class="fu">list</span>(<span class="at">xlab=</span><span class="st">""</span>, <span class="at">ylab=</span><span class="st">""</span>)</span>
<span id="cb23-13"><a href="#cb23-13" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb23-14"><a href="#cb23-14" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb23-15"><a href="#cb23-15" aria-hidden="true" tabindex="-1"></a><span class="co"># Visualise topics model with LDAvis</span></span>
<span id="cb23-16"><a href="#cb23-16" aria-hidden="true" tabindex="-1"></a>LDAvis<span class="sc">::</span><span class="fu">serVis</span>(json)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="now-its-your-turn" class="level2">
<h2 class="anchored" data-anchor-id="now-its-your-turn">Now it’s your turn!</h2>
<p>Now you are ready to run the document on your own data. You do that as follows:</p>
<ol type="1">
<li><p>In the Files tab, the file <code>script_mydata.qmd</code>. This identical to <code>script.qmd</code>, except that the value of <code>data_choice</code> was changed from <code>"nrc"</code> to <code>"mydata"</code> and the NRC-specific stop words were removed from <code>stop_words_custom</code>.</p></li>
<li><p>In the <code>Environment</code> tab, click on the broom icon to make sure you have a clean workspace (no conflicting data from the previous exercise).</p></li>
<li><p>Make sure you have a set of PDFs written in English ready to be used for topic modeling.</p></li>
<li><p>Create a zip archive of those PDF files.</p></li>
<li><p>In the <code>Files</code> tab of RStudio, click on <code>Upload</code>. Navigate to the target directory <code>~/mint2324Q3U/data/mydata</code>, click on <code>Choose File</code> to select the zipped archive you created and click on <code>OK</code>.</p></li>
<li><p>Run the code chunks from top to bottom (the order matters). Look at the overall word cloud and spot words that do not add meaning. Add those to the custom stop words and rerun the code chunks. Iterate until the overall wordcloud only shows meaningful words.</p></li>
<li><p>Tweak the topic model parameters by changing the value of <code>k</code> (number of topics) on line 222 and <code>n_words</code> (number of words to be included in pseudo-naming the topics) on line 233.</p></li>
<li><p>Paste the newly generated prompt into ChatGPT. Does the answer make sense? If needed continue the conversation with ChatGPT to refine its answers. Rename the topic names on lines 294-298 with the answers you got from ChatGPT.</p></li>
</ol>
<p>Note that every time you make a change, you need to run the code chunks in this document from top to bottom to see the updated results. When you are satisfied with the results, render the document to see the final html output.</p>
</section>
<div id="quarto-appendix" class="default"><section class="quarto-appendix-contents" role="doc-bibliography" id="quarto-bibliography"><h2 class="anchored quarto-appendix-heading">References</h2><div id="refs" class="references csl-bib-body hanging-indent" data-entry-spacing="0" data-line-spacing="2" role="list">
<div id="ref-blei2012" class="csl-entry" role="listitem">
Blei, D. M. (2012). Probabilistic topic models. <em>Communications of the ACM</em>, <em>55</em>(4), 7784. <a href="https://doi.org/10.1145/2133806.2133826">https://doi.org/10.1145/2133806.2133826</a>
</div>
</div></section><section class="quarto-appendix-contents" id="quarto-citation"><h2 class="anchored quarto-appendix-heading">Citation</h2><div><div class="quarto-appendix-secondary-label">BibTeX citation:</div><pre class="sourceCode code-with-copy quarto-appendix-bibtex"><code class="sourceCode bibtex">@report{forgaci2024,
author = {Forgaci, Claudiu},
publisher = {TU Delft},
title = {What Do the {Dutch} News Say about Farming Communities?},
date = {2024-03-20},
langid = {en}
}
</code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre><div class="quarto-appendix-secondary-label">For attribution, please cite this work as:</div><div id="ref-forgaci2024" class="csl-entry quarto-appendix-citeas" role="listitem">
Forgaci, C. (2024). <em>What do the Dutch news say about farming
communities?</em> TU Delft.
</div></div></section></div></main>
<!-- /main column -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const clipboard = new window.ClipboardJS('.code-copy-button', {
text: function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
const config = {
allowHTML: true,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start',
};
if (contentFn) {
config.content = contentFn;
}
if (onTriggerFn) {
config.onTrigger = onTriggerFn;
}
if (onUntriggerFn) {
config.onUntrigger = onUntriggerFn;
}
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
return note.innerHTML;
});
}
const xrefs = window.document.querySelectorAll('a.quarto-xref');
const processXRef = (id, note) => {
// Strip column container classes
const stripColumnClz = (el) => {
el.classList.remove("page-full", "page-columns");
if (el.children) {
for (const child of el.children) {
stripColumnClz(child);
}
}
}
stripColumnClz(note)
if (id === null || id.startsWith('sec-')) {
// Special case sections, only their first couple elements
const container = document.createElement("div");
if (note.children && note.children.length > 2) {
container.appendChild(note.children[0].cloneNode(true));
for (let i = 1; i < note.children.length; i++) {
const child = note.children[i];
if (child.tagName === "P" && child.innerText === "") {
continue;
} else {
container.appendChild(child.cloneNode(true));
break;
}
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(container);
}
return container.innerHTML
} else {
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
return note.innerHTML;
}
} else {
// Remove any anchor links if they are present
const anchorLink = note.querySelector('a.anchorjs-link');
if (anchorLink) {
anchorLink.remove();
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
// TODO in 1.5, we should make sure this works without a callout special case
if (note.classList.contains("callout")) {
return note.outerHTML;
} else {
return note.innerHTML;
}
}
}
for (var i=0; i<xrefs.length; i++) {
const xref = xrefs[i];
tippyHover(xref, undefined, function(instance) {
instance.disable();
let url = xref.getAttribute('href');
let hash = undefined;
if (url.startsWith('#')) {
hash = url;
} else {
try { hash = new URL(url).hash; } catch {}
}
if (hash) {
const id = hash.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note !== null) {
try {
const html = processXRef(id, note.cloneNode(true));
instance.setContent(html);
} finally {
instance.enable();
instance.show();
}
} else {
// See if we can fetch this
fetch(url.split('#')[0])
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.getElementById(id);
if (note !== null) {
const html = processXRef(id, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
} else {
// See if we can fetch a full url (with no hash to target)
// This is a special case and we should probably do some content thinning / targeting
fetch(url)
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.querySelector('main.content');
if (note !== null) {
// This should only happen for chapter cross references
// (since there is no id in the URL)
// remove the first header
if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
note.children[0].remove();
}
const html = processXRef(null, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
}, function(instance) {
});
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
div.style.left = 0;
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
// Handle positioning of the toggle
window.addEventListener(
"resize",
throttle(() => {
elRect = undefined;
if (selectedAnnoteEl) {
selectCodeLines(selectedAnnoteEl);
}
}, 10)
);
function throttle(fn, ms) {
let throttle = false;
let timer;
return (...args) => {
if(!throttle) { // first call gets through
fn.apply(this, args);
throttle = true;
} else { // all the others get throttled
if(timer) clearTimeout(timer); // cancel #2
timer = setTimeout(() => {
fn.apply(this, args);
timer = throttle = false;
}, ms);
}
};
}
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
annoteDlNode.addEventListener('click', (event) => {
const clickedEl = event.target;
if (clickedEl !== selectedAnnoteEl) {
unselectCodeLines();
const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
if (activeEl) {
activeEl.classList.remove('code-annotation-active');
}
selectCodeLines(clickedEl);
clickedEl.classList.add('code-annotation-active');
} else {
// Unselect the line
unselectCodeLines();
clickedEl.classList.remove('code-annotation-active');
}
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</div> <!-- /content -->
</body></html>