-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2-datainfexerciseCGAP.R
454 lines (346 loc) · 12.4 KB
/
2-datainfexerciseCGAP.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
## ----setup, include=FALSE--------------------------------------------------------------------------------------------
options(htmltools.dir.version = FALSE)
## ----xaringan-themer, include=FALSE----------------------------------------------------------------------------------
library(xaringanthemer)
solarized_dark(
code_font_family = "Fira Code",
code_font_url = "https://cdn.rawgit.com/tonsky/FiraCode/1.204/distr/fira_code.css"
)
## /* From https://github.com/yihui/xaringan/issues/147 */
## .scroll-output {
## height: 80%;
## overflow-y: scroll;
## }
##
## /* https://stackoverflow.com/questions/50919104/horizontally-scrollable-output-on-xaringan-slides */
## pre {
## max-width: 100%;
## overflow-x: scroll;
## }
##
## /* From https://github.com/yihui/xaringan/wiki/Font-Size */
## .tiny{
## font-size: 40%
## }
##
## /* From https://github.com/yihui/xaringan/wiki/Title-slide */
## .title-slide {
## background-image: url(https://raw.githubusercontent.com/Bioconductor/OrchestratingSingleCellAnalysis/master/images/Workflow.png);
## background-size: 33%;
## background-position: 0% 100%
## }
## ----all_code, cache=TRUE--------------------------------------------------------------------------------------------
library('scRNAseq')
sce.416b <- LunSpikeInData(which = "416b")
# Load the SingleCellExperiment package
library('SingleCellExperiment')
# Extract the count matrix from the 416b dataset
counts.416b <- counts(sce.416b)
# Construct a new SCE from the counts matrix
sce <- SingleCellExperiment(assays = list(counts = counts.416b))
# Inspect the object we just created
sce
## How big is it?
pryr::object_size(sce)
# Access the counts matrix from the assays slot
# WARNING: This will flood RStudio with output!
# 1. The general method
assay(sce, "counts")[1:6, 1:3]
# 2. The special method for the assay named "counts"
counts(sce)[1:6, 1:3]
sce <- scater::logNormCounts(sce)
# Inspect the object we just updated
sce
## How big is it?
pryr::object_size(sce)
# 1. The general method
assay(sce, "logcounts")[1:6, 1:3]
# 2. The special method for the assay named "logcounts"
logcounts(sce)[1:6, 1:3]
# assign a new entry to assays slot
assay(sce, "counts_100") <- assay(sce, "counts") + 100
# List the assays in the object
assays(sce)
assayNames(sce)
## How big is it?
pryr::object_size(sce)
# Extract the sample metadata from the 416b dataset
colData.416b <- colData(sce.416b)
# Add some of the sample metadata to our SCE
colData(sce) <- colData.416b[, c("phenotype", "block")]
# Inspect the object we just updated
sce
# Access the sample metadata from our SCE
colData(sce)
# Access a specific column of sample metadata from our SCE
table(sce$block)
# Example of function that adds extra fields to colData
sce <- scater::addPerCellQC(sce.416b)
# Access the sample metadata from our updated SCE
colData(sce)
# Inspect the object we just updated
sce
## How big is it?
pryr::object_size(sce)
## Add the lognorm counts again
sce <- scater::logNormCounts(sce)
## How big is it?
pryr::object_size(sce)
# E.g., subset data to just wild type cells
# Remember, cells are columns of the SCE
sce[, sce$phenotype == "wild type phenotype"]
# Access the feature metadata from our SCE
# It's currently empty!
rowData(sce)
# Example of function that adds extra fields to rowData
sce <- scater::addPerFeatureQC(sce)
# Access the feature metadata from our updated SCE
rowData(sce)
## How big is it?
pryr::object_size(sce)
# Download the relevant Ensembl annotation database
# using AnnotationHub resources
library('AnnotationHub')
ah <- AnnotationHub()
query(ah, c("Mus musculus", "Ensembl", "v97"))
# Annotate each gene with its chromosome location
ensdb <- ah[["AH73905"]]
chromosome <- mapIds(ensdb,
keys = rownames(sce),
keytype = "GENEID",
column = "SEQNAME")
rowData(sce)$chromosome <- chromosome
# Access the feature metadata from our updated SCE
rowData(sce)
## How big is it?
pryr::object_size(sce)
# E.g., subset data to just genes on chromosome 3
# NOTE: which() needed to cope with NA chromosome names
sce[which(rowData(sce)$chromosome == "3"), ]
# Access the metadata from our SCE
# It's currently empty!
metadata(sce)
# The metadata slot is Vegas - anything goes
metadata(sce) <- list(favourite_genes = c("Shh", "Nck1", "Diablo"),
analyst = c("Pete"))
# Access the metadata from our updated SCE
metadata(sce)
# E.g., add the PCA of logcounts
# NOTE: We'll learn more about PCA later
sce <- scater::runPCA(sce)
# Inspect the object we just updated
sce
# Access the PCA matrix from the reducedDims slot
reducedDim(sce, "PCA")[1:6, 1:3]
# E.g., add a t-SNE representation of logcounts
# NOTE: We'll learn more about t-SNE later
sce <- scater::runTSNE(sce)
# Inspect the object we just updated
sce
# Access the t-SNE matrix from the reducedDims slot
head(reducedDim(sce, "TSNE"))
# E.g., add a 'manual' UMAP representation of logcounts
# NOTE: We'll learn more about UMAP later and a
# simpler way to compute it.
u <- uwot::umap(t(logcounts(sce)), n_components = 2)
# Add the UMAP matrix to the reducedDims slot
# Access the UMAP matrix from the reducedDims slot
reducedDim(sce, "UMAP") <- u
# List the dimensionality reduction results stored in # the object
reducedDims(sce)
# Extract the ERCC SCE from the 416b dataset
ercc.sce.416b <- altExp(sce.416b, "ERCC")
# Inspect the ERCC SCE
ercc.sce.416b
# Add the ERCC SCE as an alternative experiment to our SCE
altExp(sce, "ERCC") <- ercc.sce.416b
# Inspect the object we just updated
sce
## How big is it?
pryr::object_size(sce)
# List the alternative experiments stored in the object
altExps(sce)
# Subsetting the SCE by sample also subsets the
# alternative experiments
sce.subset <- sce[, 1:10]
ncol(sce.subset)
ncol(altExp(sce.subset))
## How big is it?
pryr::object_size(sce.subset)
# Extract existing size factors (these were added
# when we ran scater::logNormCounts(sce))
head(sizeFactors(sce))
# 'Automatically' replace size factors
sce <- scran::computeSumFactors(sce)
head(sizeFactors(sce))
# 'Manually' replace size factors
sizeFactors(sce) <- scater::librarySizeFactors(sce)
head(sizeFactors(sce))
## ----ercc_exercise, cache = TRUE, dependson='all_code'---------------------------------------------------------------
## Read the data from the web
ercc_info <-
read.delim(
'https://tools.thermofisher.com/content/sfs/manuals/cms_095046.txt',
as.is = TRUE,
row.names = 2,
check.names = FALSE
)
## Match the ERCC data
m <- match(rownames(altExp(sce, "ERCC")), rownames(ercc_info))
ercc_info <- ercc_info[m, ]
## Normalize the ERCC counts
altExp(sce, "ERCC") <- scater::logNormCounts(altExp(sce, "ERCC"))
## ----ercc_solution_plots, cache = TRUE, dependson='ercc_exercise'----------------------------------------------------
for (i in seq_len(2)) {
plot(
log2(10 * ercc_info[, "concentration in Mix 1 (attomoles/ul)"] + 1) ~
log2(counts(altExp(sce, "ERCC"))[, i] +
1),
xlab = "log norm counts",
ylab = "Mix 1: log2(10 * Concentration + 1)",
main = colnames(altExp(sce, "ERCC"))[i],
xlim = c(min(logcounts(
altExp(sce, "ERCC")
)), max(logcounts(
altExp(sce, "ERCC")
)))
)
abline(0, 1, lty = 2, col = 'red')
}
## ----all_code_part2, cache=TRUE--------------------------------------------------------------------------------------
# Download example data processed with CellRanger
# Aside: Using BiocFileCache means we only download the
# data once
library('BiocFileCache')
bfc <- BiocFileCache()
pbmc.url <-
paste0(
"http://cf.10xgenomics.com/samples/cell-vdj/",
"3.1.0/vdj_v1_hs_pbmc3/",
"vdj_v1_hs_pbmc3_filtered_feature_bc_matrix.tar.gz"
)
pbmc.data <- bfcrpath(bfc, pbmc.url)
# Extract the files to a temporary location
untar(pbmc.data, exdir = tempdir())
# List the files we downloaded and extracted
# These files are typically CellRanger outputs
pbmc.dir <- file.path(tempdir(),
"filtered_feature_bc_matrix")
list.files(pbmc.dir)
# Import the data as a SingleCellExperiment
library('DropletUtils')
sce.pbmc <- read10xCounts(pbmc.dir)
# Inspect the object we just constructed
sce.pbmc
## How big is it?
pryr::object_size(sce.pbmc)
# Store the CITE-seq data in an alternative experiment
sce.pbmc <- splitAltExps(sce.pbmc, rowData(sce.pbmc)$Type)
# Inspect the object we just updated
sce.pbmc
## How big is it?
pryr::object_size(sce.pbmc)
# Download example data processed with scPipe
library('BiocFileCache')
bfc <- BiocFileCache()
sis_seq.url <-
"https://github.com/LuyiTian/SIS-seq_script/archive/master.zip"
sis_seq.data <- bfcrpath(bfc, sis_seq.url)
# Extract the files to a temporary location
unzip(sis_seq.data, exdir = tempdir())
# List (some of) the files we downloaded and extracted
# These files are typical scPipe outputs
sis_seq.dir <- file.path(tempdir(),
"SIS-seq_script-master",
"data",
"BcorKO_scRNAseq",
"RPI10")
list.files(sis_seq.dir)
# Import the data as a SingleCellExperiment
library('scPipe')
sce.sis_seq <- create_sce_by_dir(sis_seq.dir)
# Inspect the object we just constructed
sce.sis_seq
## How big is it?
pryr::object_size(sce.sis_seq)
# Download example bunch o' files dataset
library('BiocFileCache')
bfc <- BiocFileCache()
lun_counts.url <-
paste0(
"https://www.ebi.ac.uk/arrayexpress/files/",
"E-MTAB-5522/E-MTAB-5522.processed.1.zip"
)
lun_counts.data <- bfcrpath(bfc, lun_counts.url)
lun_coldata.url <-
paste0("https://www.ebi.ac.uk/arrayexpress/files/",
"E-MTAB-5522/E-MTAB-5522.sdrf.txt")
lun_coldata.data <- bfcrpath(bfc, lun_coldata.url)
# Extract the counts files to a temporary location
lun_counts.dir <- tempfile("lun_counts.")
unzip(lun_counts.data, exdir = lun_counts.dir)
# List the files we downloaded and extracted
list.files(lun_counts.dir)
# Import the count matrix (for 1 plate)
lun.counts <- read.delim(
file.path(lun_counts.dir, "counts_Calero_20160113.tsv"),
header = TRUE,
row.names = 1,
check.names = FALSE
)
# Store the gene lengths for later
gene.lengths <- lun.counts$Length
# Convert the gene counts to a matrix
lun.counts <- as.matrix(lun.counts[, -1])
# Import the sample metadata
lun.coldata <- read.delim(lun_coldata.data,
check.names = FALSE,
stringsAsFactors = FALSE)
library('S4Vectors')
lun.coldata <- as(lun.coldata, "DataFrame")
# Match up the sample metadata to the counts matrix
m <- match(colnames(lun.counts),
lun.coldata$`Source Name`)
lun.coldata <- lun.coldata[m,]
# Construct the feature metadata
lun.rowdata <- DataFrame(Length = gene.lengths)
# Construct the SingleCellExperiment
lun.sce <- SingleCellExperiment(
assays = list(assays = lun.counts),
colData = lun.coldata,
rowData = lun.rowdata
)
# Inspect the object we just constructed
lun.sce
## How big is it?
pryr::object_size(lun.sce)
## ----'reproducibility', cache = TRUE, dependson=knitr::all_labels()--------------------------------------------------
options(width = 120)
##EXERCISE
#Leer tabla https://tools.thermofisher.com/content/sfs/manuals/cms_095046.txt con read.delim()
#Usar los ERCC ID para alinear esta tabla con el objeto sce (ERCC alt experiment)
#Usar plot() para graficar concentration in Mix 1 (attomoles/ul) vs las cuentas de ERCC de nuestro sce(en alt exp)
cms=read.delim(file="https://tools.thermofisher.com/content/sfs/manuals/cms_095046.txt", header=TRUE, sep="\t", stringsAsFactors=FALSE, row.names = 2)
head(sce)
altExp(sce, 'ERCC')
result=match(rownames(altExp(sce)), rownames(cms))
table(is.na(result)) #checar si hay nas en todo el vector
head(rowData(altExp(sce)))
head(counts(sce))
head(counts(altExp(sce, 'ERCC'))) #obtener las counts de genes con ese ID
cms= cms[result,]
head(cms)
identical(rownames(altExp(sce, "ERCC")), rownames(cms))
toplot=cbind(counts(altExp(sce,'ERCC'))[,1], cms[,'concentration.in.Mix.1..attomoles.ul.'])
head(cms)
head(toplot)
pdf('counts1.pdf')
plot(toplot, main="Concentration in Mix 1 vs ERCC counts",xlab= "Concentration in Mix 1", ylab="Counts of a single cell")
dev.off()
for (i in 1:dim(counts(altExp(sce)))[2]){
toplot=cbind(counts(altExp(sce,'ERCC'))[,i], cms[,'concentration.in.Mix.1..attomoles.ul.'])
pdf(paste('counts', i,'.pdf', sep=""))
plot(toplot, main=paste('Concentration in Mix 1 vs ERCC counts of cell ',i),xlab= "Concentration in Mix 1", ylab="Counts of a single cell")
dev.off()
}
sessioninfo::session_info()