-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_illumination_net.py
260 lines (212 loc) · 9.31 KB
/
train_illumination_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import tensorflow as tf
import dataflow.illumination_integration as dataflow
import utils.training_setup_utils as train_utils
from models.illumination_integration_net import IlluminationNetwork
from nn_utils.tensorboard_visualization import hdr_to_tb
def add_args(parser):
parser.add_argument(
"--log_step",
type=int,
default=100,
help="frequency of tensorboard metric logging",
)
parser.add_argument(
"--viz_step",
type=int,
default=2000,
help="frequency of tensorboard train image logging",
)
parser.add_argument(
"--weights_epoch", type=int, default=1, help="save weights every x epochs"
)
parser.add_argument(
"--validation_epoch",
type=int,
default=1,
help="render validation every x epochs",
)
parser.add_argument("--lrate_decay", type=int, default=500)
parser.add_argument(
"--allow_cnn_training",
help="Enables the CNN to be trained during the Neural-PIL training. This can lead to instabilities.",
action="store_true",
)
return parser
def parser():
parser = add_args(
dataflow.add_args(IlluminationNetwork.add_args(train_utils.setup_parser()))
)
return parser
def run_validation(val_df, illumination_model):
with tf.device("/device:gpu:0"):
mseMean = tf.keras.metrics.Mean()
for dp in val_df:
env_map, _, roughnesses, env_map_levels = dp
z = illumination_model.cnn_encoder(env_map)
level_recons = []
for i in range(roughnesses.shape[1]):
e = illumination_model.illumination_network.eval_env_map(
z, roughnesses[:, i : i + 1], env_map.shape[1],
)
level_recons.append(e)
level_recons = tf.stack(level_recons, 1)
env_map_reshape = tf.reshape(
env_map_levels, (-1, roughnesses.shape[1], *env_map.shape[1:])
)
mseMean.update_state(
tf.keras.losses.mean_squared_error(env_map_reshape, level_recons)
)
gt_stack = tf.reshape(
env_map_levels,
(-1, roughnesses.shape[1] * env_map.shape[1], *env_map.shape[2:]),
)
pred_stack = tf.reshape(
level_recons,
(-1, roughnesses.shape[1] * env_map.shape[1], *env_map.shape[2:]),
)
hdr_to_tb("val_roughness", tf.concat([gt_stack, pred_stack], 2))
mse = mseMean.result()
tf.summary.scalar("val_loss", mse)
def main(args):
# Setup directories, logging etc.
with train_utils.SetupDirectory(
args, copy_files=True, main_script=__file__, copy_data="data/illumination",
):
strategy = (
tf.distribute.get_strategy()
if train_utils.get_num_gpus() <= 1
else tf.distribute.MirroredStrategy()
)
global_batch_size = args.batch_size * train_utils.get_num_gpus()
print("Start reading the dataset ...")
train_df, val_df, _ = dataflow.get_train_val_data(
args.datadir,
args.steps_per_epoch,
args.val_holdout,
global_batch_size,
0,
args.num_random_roughness_samples,
)
print("... Dataset read!")
# Optimizer and models
with strategy.scope():
illumination_model = IlluminationNetwork(args)
eval_net = illumination_model.illumination_network
lrate = train_utils.adjust_learning_rate_to_replica(args)
if args.lrate_decay > 0:
lrate = tf.keras.optimizers.schedules.ExponentialDecay(
lrate, decay_steps=args.lrate_decay * 1000, decay_rate=0.1
)
optimizer = tf.keras.optimizers.Adam(lrate, beta_1=0, beta_2=0.9)
# Restore if possible
start_step = illumination_model.restore()
tf.summary.experimental.set_step(start_step)
start_epoch = start_step // len(train_df)
train_dist_df = strategy.experimental_distribute_dataset(train_df)
print(
"Starting training in epoch {} at step {}".format(start_epoch, start_step)
)
# initial validation to check everything is working
run_validation(val_df, illumination_model)
for epoch in range(start_epoch + 1, args.epochs + 1):
pbar = tf.keras.utils.Progbar(len(train_df))
# Iterate over the train dataset
with strategy.scope():
for dp in train_dist_df:
(
env_map,
_,
_,
directions_random,
roughness_random,
targets_random,
) = dp
losses_per_replica = strategy.run(
illumination_model.train_step,
(
env_map,
directions_random,
roughness_random,
targets_random,
optimizer,
# CNN retraining can lead to instability. I would suggest disabling it
epoch >= args.epochs // 3
if args.allow_cnn_training
else False,
),
)
losses = {
k: strategy.reduce(tf.distribute.ReduceOp.SUM, v, axis=None)
for k, v in losses_per_replica.items()
}
losses_for_pbar = [
("loss", losses["loss"].numpy()),
("random_loss", losses["random_loss"].numpy()),
("full_loss", losses["full_loss"].numpy()),
]
pbar.add(
1, values=losses_for_pbar,
)
with tf.summary.record_if(
tf.summary.experimental.get_step() % args.log_step == 0
):
for k, v in losses.items():
tf.summary.scalar(k, v)
for var in eval_net.trainable_variables:
tf.summary.histogram(var.name, var)
if tf.summary.experimental.get_step() % args.viz_step == 0:
with tf.device("/device:gpu:0"):
if train_utils.get_num_gpus() > 1:
env_map = env_map.values[0]
z = illumination_model.cnn_encoder(env_map)
env1 = env_map[:1]
z1 = z[:1]
# Show roughness value changes
rgh_list = eval_net.eval_env_map_multi_rghs(
z1, 5, env1.shape[1]
)
hdr_to_tb("roughness", tf.concat([env1, *rgh_list], 1))
# Compare MLP with CNN reconstruction
cnn_recon = illumination_model.cnn_decoder(z1)
mlp_recon = eval_net.eval_env_map(z1, 0, env1.shape[1])[:1]
cnn_stack = tf.concat([env1, cnn_recon], 1)
mlp_stack = tf.concat([env1, mlp_recon], 1)
hdr_to_tb(
"reconstruction", tf.concat([cnn_stack, mlp_stack], 2),
)
tf.summary.histogram("env/gt", env1)
tf.summary.histogram("env/pred", mlp_recon)
# Randomly sample
mean = tf.math.reduce_mean(z, 0)
std = tf.math.reduce_std(z, 0)
random_context = tf.random.normal(
shape=(1, z1.shape[-1]),
mean=mean,
stddev=std,
dtype=tf.float32,
)
rgh_list = eval_net.eval_env_map_multi_rghs(
random_context, 5, env1.shape[1]
)
cnn_r0_recon = illumination_model.cnn_decoder(
random_context
)
hdr_to_tb(
"random_sampling",
tf.concat([cnn_r0_recon, *rgh_list], 1),
)
tf.summary.experimental.set_step(
tf.summary.experimental.get_step() + 1
)
# Save when a weight epoch arrives
if epoch % args.weights_epoch == 0:
illumination_model.save(
tf.summary.experimental.get_step()
) # Step was already incremented
# Render validation if a validation epoch arrives
if epoch % args.validation_epoch == 0 or epoch == 1:
run_validation(val_df, illumination_model)
if __name__ == "__main__":
args = parser().parse_args()
print(args)
main(args)