-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathscst_tuning.py
211 lines (170 loc) · 6.7 KB
/
scst_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os, argparse, importlib
import numpy as np
import torch
from collections import OrderedDict
from engine import do_train, evaluate_caption, evaluate_detection
from models.model_general import CaptionNet
from utils.io import resume_if_possible
from utils.misc import my_worker_init_fn
def make_args_parser():
parser = argparse.ArgumentParser("3D Dense Captioning Using Transformers", add_help=False)
##### Optimizer #####
parser.add_argument("--pretrained_params_lr", default=None, type=float)
parser.add_argument("--base_lr", default=5e-4, type=float)
parser.add_argument("--warm_lr", default=1e-6, type=float)
parser.add_argument("--warm_lr_epochs", default=0, type=int)
parser.add_argument("--final_lr", default=1e-6, type=float)
parser.add_argument("--lr_scheduler", default="cosine", type=str)
parser.add_argument("--weight_decay", default=0.1, type=float)
parser.add_argument(
"--clip_gradient", default=0.1, type=float,
help="Max L2 norm of the gradient"
)
##### Model #####
parser.add_argument(
'--vocabulary', default="scanrefer", type=str,
help="should be one of `gpt2` or `scanrefer`"
)
parser.add_argument(
"--detector", type=str, help="folder of the detector"
)
parser.add_argument(
"--captioner", default=None, type=str,
help="folder of the captioner"
)
parser.add_argument(
"--freeze_detector", default=False, action='store_true',
help="train detector or not"
)
parser.add_argument(
"--use_beam_search", default=False, action='store_true',
help='whether use beam search during evaluation.'
)
parser.add_argument(
"--max_des_len", default=32, type=int,
help="maximum length of object descriptions."
)
parser.add_argument("--use_color", default=False, action="store_true")
parser.add_argument("--use_normal", default=False, action="store_true")
parser.add_argument("--no_height", default=False, action="store_true")
parser.add_argument("--use_multiview", default=False, action="store_true")
##### Dataset #####
parser.add_argument(
"--dataset", default='scene_scanrefer',
help="dataset file which stores `dataset` and `dataset_config` class",
)
parser.add_argument(
"--k_sentence_per_scene", default=None, type=int,
help="k sentences per scene for training caption model",
)
parser.add_argument("--dataset_num_workers", default=4, type=int)
parser.add_argument("--batchsize_per_gpu", default=8, type=int)
##### Training #####
parser.add_argument("--start_epoch", default=-1, type=int)
parser.add_argument("--max_epoch", default=1080, type=int)
parser.add_argument("--eval_every_iteration", default=2000, type=int)
parser.add_argument(
"--eval_metric", default='caption', choices=['caption', 'detection'],
help='evaluate model through `caption` or `detection`.'
)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--gpu", default='0', type=str)
##### Testing #####
parser.add_argument(
"--test_min_iou", default=0.50, type=float,
help='minimum iou for evaluating detection and caption performance'
)
##### I/O #####
parser.add_argument("--pretrained_captioner", default=None, type=str)
parser.add_argument("--checkpoint_dir", default=None, type=str)
parser.add_argument("--log_every", default=10, type=int)
args = parser.parse_args()
args.use_height = not args.no_height
return args
def build_dataset(args):
dataset_module = importlib.import_module(f'datasets.{args.dataset}')
dataset_config = dataset_module.DatasetConfig()
datasets = {
"train": dataset_module.Dataset(
args,
dataset_config,
split_set="train",
use_color=args.use_color,
use_normal=args.use_normal,
use_multiview=args.use_multiview,
use_height=args.use_height,
augment=True
),
"test": dataset_module.Dataset(
args,
dataset_config,
split_set="val",
use_color=args.use_color,
use_normal=args.use_normal,
use_multiview=args.use_multiview,
use_height=args.use_height,
augment=False
),
}
dataloaders = {}
for split in ["train", "test"]:
if split == "train":
sampler = torch.utils.data.RandomSampler(datasets[split])
else:
sampler = torch.utils.data.SequentialSampler(datasets[split])
dataloaders[split] = torch.utils.data.DataLoader(
datasets[split],
sampler=sampler,
batch_size=args.batchsize_per_gpu,
num_workers=args.dataset_num_workers,
worker_init_fn=my_worker_init_fn,
)
return dataset_config, datasets, dataloaders
def main(args):
os.makedirs(args.checkpoint_dir, exist_ok=True)
### build datasets and dataloaders
dataset_config, datasets, dataloaders = build_dataset(args)
model = CaptionNet(args, dataset_config, datasets['train']).cuda()
assert (
args.checkpoint_dir is not None
), "Please specify a checkpoint dir using --checkpoint_dir"
assert (
args.pretrained_captioner is not None and args.captioner is not None
), "Pretrain captioner is required when training scst!"
os.makedirs(args.checkpoint_dir, exist_ok=True)
### whether or not use pretrained weights
optimizer = torch.optim.AdamW(
filter(lambda params: params.requires_grad, model.parameters()),
lr=args.base_lr,
weight_decay=args.weight_decay
)
print('certain parameters are not trained:')
for name, param in model.named_parameters():
if param.requires_grad is False:
print(name)
model.load_state_dict(
torch.load(args.pretrained_captioner, map_location='cpu')['model']
)
loaded_epoch, best_val_metrics = resume_if_possible(
args.checkpoint_dir, model, optimizer
)
args.start_epoch = loaded_epoch + 1
do_train(
args,
model,
optimizer,
dataset_config,
dataloaders,
best_val_metrics,
)
if __name__ == "__main__":
args = make_args_parser()
print(f"Called with args: {args}")
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
args.use_scst = True
main(args)